
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

55

Combining EDF Scheduling with occam
using the Toc Programming Language

Martin KORSGAARD1 and Sverre HENDSETH

Department of Engineering Cybernetics, Norwegian University of Science and Technology

Abstract. A special feature of the occam programming language is that its concur-
rency support is at the very base of the language. However, its ability to specify
scheduling requirements is insufficient for use in some real-time systems. Toc is an
experimental programming language that builds on occam, keeping occam’s concur-
rency mechanisms, while fundamentally changing its concept of time. In Toc, dead-
lines are specified directly in code, replacing occam’s priority constructs as the method
for controlling scheduling. Processes are scheduled lazily, in that code is not executed
without an associated deadline. The deadlines propagate through channel communi-
cations, which means that a task blocked by a channel that is not ready will transfer
its deadline through the channel to the dependent task. Thisallows the deadlines of
dependent tasks to be inferred, and also creates a scheduling effect similar to priority
inheritance. A compiler and run-time system has been implemented to demonstrate
these principles.

Keywords. real-time programming, occam, earliest deadline first, EDF, scheduling.

Introduction

A real-time computer system is a system which success depends not only on the computa-
tional results, but also on the time the results are delivered. The typical implementation of a
real-time system is also concurrent, meaning that it has tasks that are run in parallel. While
there are plenty of programming languages designed with concurrency in mind, for instance
Ada [1], Java [2], occam [3] or Erlang [4], there are far fewerbased on timing. Synchronous
programming languages such as Esterel [5] and Lustre [6] arenotable exceptions. The tim-
ing support in most other programming languages is limited to delays and access to a clock,
and scheduling control is handled by specifying task priorities. A more integrated approach,
where timing requirements could be specified directly by using simple language constructs,
would make it easier to reason intuitively about the temporal properties of a program.

CSP [7,8] is a process algebra designed to model and reason about concurrent programs
and systems. The occam programming language is largely based on CSP. The concurrency
handling mechanisms of occam are one of the most fundamentalparts of the language. Paral-
lel execution is achieved using a simplePAR constructor, and is just as easy as creating serial
execution (which requires the mandatorySEQ constructor). The channel data type provides
native synchronous communication and synchronization between the parallel processes, the
only type of inter-process communication allowed. occam has built-in language support for
delays and clocks, but lacks a robust way of controlling scheduling, which can cause difficul-
ties when implementing real-time systems [9]. One problem is that priorities are static, dis-
abling online control over scheduling. Another problem is that certain combinations ofPAR,

1Corresponding Author:Martin Korsgaard, Department of Engineering Cybernetics,7491 Trondheim,
Norway. Tel.: +47 73 59 43 76; Fax: +47 73 59 45 99; E-mail:martin.korsgaard@itk.ntnu.no.

56 M. Korsgaard and S. Hendseth / The Toc Programming Language

PRI PAR, ALT, andPRI ALT can yield intuitively ambiguous programs. In some cases,
the addition of prioritized operators can change the logical behaviour of a program [10]. An
extended version of occam, called occam-π, adds many new features to occam, including
process priority control [11].

Ada [1] is a programming language designed to ensure safe real-time programming for
critical systems. It contains both asynchronous and synchronous concurrency functions, the
latter which also is influenced by CSP. Ada allows specification of absolute task priorities.
Specification of deadlines became possible from Ada 2005. The Ravenscar profile, however,
which defines a safer subset of Ada more suitable to critical systems, permits neither asyn-
chronous interruption of tasks nor synchronous concurrency. This is done to increase deter-
minism and to decrease the size and complexity of the run-time system [12].

A recurring problem in designing a programming language that is built on timing is the
lack of execution time information. In general, one cannot know in advance how long it will
take to execute a given piece of code, which severely limits asystem’s ability to take pre-
emptive measures to avoid missing deadlines. This also reduces the types of implementable
timing requirements: An example is executing a task as late as possible before a given dead-
line, which is impossible without knowledge of the execution time of the task. Measurements
of execution time are inadequate because execution time canvary greatly with input data.
Certain features of modern computer architectures, such ascaches, pipelining and branch
prediction, increases the average performance of a computer, but adds complexity that makes
execution times even harder to predict. Nevertheless, safeestimates of the worst-case exe-
cution time (WCET) of a program can be found using computerized tools such as aiT [13],
which Airbus has used with success [14]. However, the process is inconvenient and compu-
tationally expensive, and arguably most suitable for offline schedulability analysis of safety
critical systems.

Two common real-time scheduling strategies are rate-monotonic scheduling (RMS) and
earliest deadline first (EDF) [15]. In RMS, task priorities are ordered by their inverse peri-
ods. If a task’s relative deadline is allowed to be shorter than its period, then priorities are
ordered by inverse relative deadlines instead and the algorithm is called deadline-monotonic
scheduling [16]. EDF scheduling works by always executing the task with the earliest abso-
lute deadline.

If there is not enough time to complete all tasks within theirdeadlines, the system is
said to be overloaded. It is a common misconception that RMS is more predictable during
overload that EDF, because tasks will miss deadlines in order of priority. This is not correct
[17]. If a task has its execution time extended under RMS, it will affect any or all lower
priority tasks in no particular order.

EDF and RMS behave differently under permanent overload. RMS will first execute
tasks with a higher priority than the tasks that lead to the overload. This can result in some
tasks never being executed, but ensures at least that the higher priority tasks are undisturbed.
Note that priority is a function of a task’s period and not itsimportance, so this property is
not always useful. Under EDF, a task’s absolute deadline will always at some point become
the earliest in the system, as tasks will be scheduled even iftheir deadline has already passed.
This means that all tasks will be serviced even if the system is overloaded. EDF has the
remarkable property of doing period rescaling, where if thesystem has a utilisation factor
U > 1, a task with periodti will execute under an average period ofU · ti [18]. Which of
the overload behaviours is the most suitable will depend on the application. For a thorough
comparison of the two scheduling algorithms see [17].

In this paper we present Toc, an experimental programming language where the specifi-
cation of task deadlines is at the very core of the language. In Toc, a deadline is the only rea-
son for execution, and no code is executed without an associated deadline. Processes do not
execute simply because they exist, forcing the programmer to make all assumptions on tim-

M. Korsgaard and S. Hendseth / The Toc Programming Language 57

ing explicit. Scheduling is done earliest deadline first, making use of occam’s synchronous
channels as a way of propagating a deadline from one task to dependent tasks. Deadlines of
dependent processes can thus be inferred, so that the timingrequirements specified in code
can be the actual requirements stemming from the specifications of the system: If a control
system should do something in 10 ms, then that should appear exactly one place in the source
code as “TIME 10 MSEC”. The occam priority construct “PRI PAR” can then be omitted,
and the result is a language that can express many types of timing requirements in an ele-
gant manner, and where the timing requirements are clearly reflected in the source code. A
prototype Toc compiler and run-time system has been implemented.

The rest of this paper is organized as follows: Section 1 describes the Toc language and
gives a few examples of how to specify timing requirements using Toc. Section 2 discusses
scheduling and how it is implemented. The scheduling of an example program is explained.
In section 3, some of the implications of writing real-time programs in Toc are considered.

1. The Toc Language

Toc is an experimental programming language based on the idea that specification of tasks
and deadlines could be fully integrated in to a procedural programming language, and fur-
thermore, that all functionality of a program should be given an explicit deadline in order to
be executed. The idea was first described in [19].

1.1. Language Specification

The language is based on occam 2.1. As with occam, statementsare called processes, and
are divided into primitive and constructed processes. Primitive processes are assignment,
input and output on channels,SKIP andSTOP. The constructive processes alter or combine
primitive processes, and are made usingSEQ, PAR, IF, ALT, CASE or WHILE, where the
four first may be replicated usingFOR. Definitions of the occam processes can be found in the
occam reference manual [3]. Toc has the additionalTIME constructor, which takes a relative
time t, and a processP . It is defined as follows:

The construct “TIME t : P ” has a minimum allowed execution time and maximum
desired execution time oft.

The maximum execution time property ofTIME sets a deadline. It is specified only as “de-
sired” to account for the possibility that the actual execution time exceedst. The minimum
execution time property sets a minimum time before the construct is allowed to terminate. In
practice this is the earliest possible start time of processes following in sequence. This prop-
erty is absolute, even in cases where it will cause another deadline to be missed. Furthermore,
if a TIME construct follows in sequence to another, then the start time of the latter will be set
to the exact termination time of the first, removing drift in ready times between consecutive
tasks or task instances. TheTIME constructor is used to create deadlines, periods and delays.
Since allALTs that are executed already have a timing requirement associated with them, oc-
cam’s timer guards in alternations can be replaced by aTIMEOUT guard, which is triggered
on the expiration of a deadline. Examples are shown in Table 1and are discussed in the next
section.

Central to Toc is the concept of lazy scheduling, where no code is executed unless given
a deadline. With the above terminology in place, a more precise definition of the laziness of
Toc can be given:

In Toc, no primitive processes are executed unless needed tocomplete a process with a
deadline.

58 M. Korsgaard and S. Hendseth / The Toc Programming Language

Table 1. Use of the TIME constructor

Use Code

1 Set deadlined milliseconds to procedureP. The TIME
construct is not allowed to terminate before its deadline.

TIME d MSEC
P()

2 Delay for 2.5 seconds. TIME 2500 MSEC
SKIP

3 Periodic process running procedureP, with deadline
and period equal to 1 second.

WHILE TRUE
TIME 1 SEC
P()

4 Periodic process running procedureP, with deadlined
and periodt. Assumesd < t.

WHILE TRUE
TIME t MSEC
TIME d MSEC
P()

5 Sporadic process running procedureP(value) after
receiving input on channelch from another process
with a deadline. The sporadic task is given deadline and
minimum periodd.

WHILE TRUE
INT value:
SEQ
ch ? value
TIME d MSEC
P(value)

6 Timeout aftert microseconds waiting for input on
channelch

TIME t USEC
ALT
ch ? var
SKIP

TIMEOUT
SKIP

The restriction to primitive processes means that the outerlayers of constructed processes are
exempted from the laziness rule, and are allowed to execute until an inner primitive process.
This restriction is necessary to allow theTIME constructors themselves to be evaluated. A
periodic process can then be created by wrapping aTIME construct in aWHILE, without
needing to set a deadline for theWHILE.

That only non-primitive processes can execute without a deadline does not imply that
code without a deadline only requires insignificant execution time. For example, an arbitrarily
complex expression may be used as the condition in aWHILE construct. It does mean, how-
ever, that no code with side-effects will be executed without a deadline, and consequently,
that all functionality requiring input or output from a program will need a deadline.

1.2. Examples

A few examples are given in Table 1. Example one and two in Table 1 are trivial examples
of a deadline and a delay, respectively. A simple periodic task with deadline equal to period
can be made by enclosing aTIME block in a loop, as shown in example three. Here, the
maximum time property of theTIME constructor gives the enclosed process a deadline, and
the minimum time property ensures that the task is repeated with the given period. In this
example the period and relative deadline are set to one second, which means that unlessP
misses a deadline, one instance ofP will execute every second. The start time reference of
eachTIME construct is set to the termination time of the previous.

TIME-constructors can be nested to specify more complex tasks. The fourth example is
a task where the deadline is less than the period. This requires two nestedTIME constructors;
the outermost ensuring the minimum period (herep), and the innermost creating the deadline

M. Korsgaard and S. Hendseth / The Toc Programming Language 59

(d). The innermost maximum desired execution time takes precedence over the outermost,
because it is shorter; the outermost minimum allowed execution time takes precedence over
the innermost, because it is longer. In general, a timing requirement that takesn different
times to specify, will taken differentTIME constructors to implement.

CombiningTIME with other processes, for instance an input or anIF, makes it possible
to create sporadic tasks. Example five shows a sporadic task activated by input on a channel.
The task runsP(value) with deadlined milliseconds after receivingvalue from channel
ch. Example six shows a simple timeout, where theTIMEOUT guard is triggered on the
expiration of the deadline.

2. Scheduling

Because Toc specifies timing requirements as deadlines, EDFwas the natural choice of
scheduling algorithm. A preemptive scheduler was found necessary to facilitate the response-
time of short deadline tasks. A task that has the shortest relative deadline in the system when
it starts will never be preempted, somewhat limiting the number of preemptions. This is a
property of EDF. When the current task does not have the earliest deadline in the system, it
will be preempted when the earliest deadline task becomes ready.

There are two major benefits of using EDF. The first is simply that it is optimal; EDF
leads to a higher utilization than any priority-based scheduling algorithm. The second reason
is the behaviour in an overload situation: With fixed-priority scheduling, a task with a long
relative deadline risks never being run during overload. Because Toc has no way of specifying
importance, assuming that shorter tasks are more important cannot be justified. EDF gives
reduced service to all tasks during overload.

2.1. Discovery

A TIME constructor that can be reached without first executing any primitive processes must
be evaluated immediately, because it may represent the earliest deadline in the system. The
process of evaluating non-primitive processes to look forTIME constructs is calleddiscovery.
Discovery only needs to be run on processes where there is a chance that aTIME construct
can be reached without executing any primitive processes. This limits the need for discovery
to the following situations:

• At the start of a program, on procedureMain.
• After aTIME construct is completed, on processes in sequence.
• After a channel communication, on processes in sequence at both ends.
• On all branches of aPAR.

Discovery stops when a primitive process is encountered.
All TIME construct found during the same discovery will have the sameready-time,

which is the time of the event that caused the discovery. If the event is the end of an earlier
TIME block with timet, which deadline was not missed, then the ready time ofTIME blocks
found during the subsequent discovery will be preciselyt later than the ready time of the first
block. Thus, a periodic process such as example #3 in table 1 will have a period of exactly 1
second.

If a deadline is missed, the termination time of theTIME block and the ready time of
consequentTIME blocks are moved accordingly. This also means that there is no attempt to
make up for a missed deadline by executing the next instance of a task faster. This behaviour
is a good choice in some real-time systems such as computer control systems or media play-
ers, but wrong where synchronization to an absolute clock isintended. In this case the task
can re-synchronize itself for instance by skipping a sampleand issuing a delay.

60 M. Korsgaard and S. Hendseth / The Toc Programming Language

2.2. Deadline Propagation

The propagation of deadlines through channels is used to make lazy scheduling and EDF
work with dependent processes. If a task with a deadline requires communication with an-
other task, the first task will forward execution to the second to allow the communication to
complete, in effect transferring its deadline to the secondtask. The implementation of this
feature relies on a property inherited from the occam language, namely the usage rules. In
occam, a variable that is written to by a process cannot be accessed by any other processes
in parallel. Likewise, a channel that is used for input or output by a process cannot be used
for the same by any other processes in parallel. An occam compiler must enforce these rules
at compile-time. The process of enforcing the usage rules also gives the channel-ownerships,
defined below:

The input (/output)-owner of a channel is the process whose execution will lead to the
next input (/output) on that channel.

The initial input- and output-owner of a channel is the first process following the declaration
of the channel. The channel ownerships are updated at run-time at everyPAR and end of
PAR, using information gathered by the compiler during the usage rules check. With channel
ownership defined, the scheduling mechanism for propagating a deadline over a channel
becomes simple:

If the current task needs to complete an input/output on a channel that is not ready, then
forward execution to the output-/input-owner of that channel.

Per definition, the owner is the process whose execution willlead up to the next communica-
tion on that channel, so this forwarding is the fastest way ofcompleting the communication.
The forwarded process is executed up to the point of communication, where execution then
continues from the driving side of the channel.

Usage and channel ownership is fairly simple to evaluate forscalars. With arrays, the
indexing expressions may have to be evaluated at compile-time, if correct use cannot be en-
sured without taking the indices into account. In that case indexes will be limited to expres-
sions of constants, literals and replicators (variables defined by aFOR). The compiler will, if
necessary, simulate all necessary replicators to find the correct indices of an array used by a
process.

2.3. Alternation

The alternation processALT executes one of its actions that has a ready guard. A guard
consists of a Boolean expression and/or a channel input; a guard is ready if its Boolean
expression isTRUE and its channel is ready. Alternation behaves differently in Toc than in
occam. In occam, the alternation process will wait if no guards are ready, but in Toc there
is always a deadline driving the execution, so if there are noinputs in any guards that are
ready, then theALT must drive the execution of one of them until it, or another, becomes
ready. Selecting the best alternative to drive forward is either simple or hard, depending on
the deadline that drives theALT itself.

The simple case is if the execution of theALT is driven by a deadline from one of the
guard channels, and there is no boolean guard that blocks thechannel. The alternative that is
the source of the deadline is then chosen. This represents programs where theALT is a server
accessed by user processes, and only the users have deadlines.

The choice is less obvious if theALT is driven by its own deadline, or if the driving
channel is not an alternative or is disabled by a boolean guard. Here, the program needs
to select an alternative that allows it to proceed, ideally in some way that would aid the
earliest deadline task. Unfortunately, predicting the fastest way to e.g. a complex boolean

M. Korsgaard and S. Hendseth / The Toc Programming Language 61

guard may be arbitrarily difficult, thereby making it impossible to find the optimal algorithm
for choosingALT branches.

Because a perfect algorithm is not possible, it is importantthat the algorithm used is
intuitively simple to understand for the programmer, and that the behaviour is predictable.
The current implementation uses the following pragmatic decision algorithm:

1. If there are ready inputs as alternatives, choose the one with the earliest deadline.
Any input that is ready has a deadline associated with it, or it would not have become
ready.

2. If there is a ready guard without a channel input (just a Boolean expression that
evaluates toTRUE), then choose it.

3. If there exists a channel input alternative that is not disabled by a boolean guard,
forward execution to the output-owner of the channel, but donot select the alternative.
This is because execution could require input on another alternative of the sameALT,
which would cause a deadlock if the first alternative was already selected. At some
point, execution will be forwarded back to theALT, now with an input ready. That
input is then selected.

4. If no alternatives are unguarded, act as aSTOP. A STOP in Toc effectively hangs the
system, because it never terminates but retains the earliest deadline.

2.4. Deadline Inversion

In general, when synchronizing tasks, a task may be in a blocked state where it is not allowed
to continue execution until another task has completed somework. The näıve way to schedule
such a system is to ignore any blocked tasks and schedule the rest of the tasks normally. This
leads to a timing problem known as unbounded priority inversion.

Say the highest priority task is blocked waiting for the lowest priority task. This is a
simple priority inversion, and cannot be avoided as long as high and low-priority tasks share
resources. The unbounded priority inversion follows when the scheduler selects the second
highest priority task to run, leaving the lowest priority task waiting. Now the highest priority
task will remain blocked. In effect, all tasks now take precedence over the one with the highest
priority.

A reformulation of the problem is that the scheduler does notactively help to execute
its most urgent task. One way to alleviate the problem is to use priority inheritance [20].
Using priority inheritance, if a high priority task is blocked waiting for a lower priority task;
the lower priority task will inherit the priority of the blocked task, thus limiting the priority
inversion to one level. In a sense, the lower priority task completes its execution on behalf of
the higher priority task. Priority inheritance has a numberof weaknesses; in particular it does
not work well with nested critical regions [21]. Other schemes exist, for instance the priority
ceiling protocol [22] and the stack resource policy [23].

The Toc notion of priority inversion — or deadline inversion— is different than the
one used in classical scheduling. Classical priority inversion is defined for lockable resources
with well-defined owners, where the locking process is always the process that will open it
later. This property does not apply to systems synchronizedby channels. Also, in Toc, tasks
are meant to drive the execution of their dependencies. In principle, when communication is
done on channels there is a simple deadline inversion every time the earliest deadline task
needs to communicate and the other side is not ready. However, this is an inversion by design,
and not an unfortunate event.

A situation more similar to a classical priority inversion is when two tasks communicate
with a third server, which could represent a lockable resource. If the earliest deadline task is
not ready, then the second task may set the server in a state where it is unable to respond to
the earliest deadline task when it becomes ready. A third task, with a deadline between that

62 M. Korsgaard and S. Hendseth / The Toc Programming Language

Figure 1. Timeline of scheduling example. Approximate time scale.

of the first and second task will then indirectly block a task with a shorter deadline, possibly
leading to unbounded priority inversion.

In Toc, the deadline propagation rule automatically resolves these situations. The earliest
deadline process will never be blocked, rather it will transfer its execution and deadline to the
blocking processes, so that they execute as if with an earlier deadline. This effect is similar
to priority inheritance: With priority inheritance, the blocking process inherits the priority of
the blocked process; with deadline propagation, the blocked process will transfer its deadline
to the blocking process.

2.5. Scheduling Example

An example of the scheduling of a system with a server and two users is shown in Figures 1
and 2. A server allows a variable to be updated concurrently.Two periodic user tasks access
the server. If the server is not ready when the earliest deadline task needs it, then it will finish
its current transaction driven by the earliest deadline, the same way it would have executed
with a higher priority if priority inheritance was used. A brief explanation is given below:

1. The program starts and executes up to the first primitive processes in all three paral-
lels. Two parallel deadlines are discovered. The user process with the short deadline
will be referred to as process A, the other as process B.

2. Process A starts because it has the earliest deadline. It eventually needs to output on
channelupdate[0]. The input-owner of the channel-array is theServer process,
so execution is forwarded to the server process through deadline propagation.

3. The server executes up to the communication and zero is sent over the channel.
4. Process A now needs to input fromread[0]. First it executes up to the communi-

cation and then execution is forwarded to the server. The server executes up to the
communication andvalue is sent over the channel.

M. Korsgaard and S. Hendseth / The Toc Programming Language 63

PROC Server(CHAN[2] INT update?, read!, write?)
WHILE TRUE
INT dummy, value:
ALT i = 0 FOR 2
update[i] ? dummy

SEQ
read[i] ! value
write[i] ? value

PROC User(VAL INT period, CHAN INT update!, read?, write!)
WHILE TRUE
TIME period MSEC
INT x:
SEQ

update ! 0
read ? x
WORK 6 MSEC -- Pseudo-statement for requiring 6 ms of CPU time.
write ! x+id
WORK 500 USEC -- Do some clean-up to finish the task

PROC Main()
CHAN[2] INT update, read, write:
PAR
User(10, update[0], read[0], write[0]) -- Process A
User(30, update[1], read[1], write[1]) -- Process B
Server(update, read, write)

Figure 2. Code for scheduling example

5. Process A works. Some time later it writes the new value to the server through the
write channel, and finishes its task.

6. Process B begins in the same way. However, att = 10ms it is preempted by process
A, whose task is now ready and has the earliest deadline.

7. Now process B has blocked the server. This is a priority inversion in the classi-
cal sense. Process A proceeds as last time, forwarding execution to the input-owner
of update[0], which is still the server. To proceed, the server must output on
write[1], which is not ready, and forwards execution to the input-owner of that
channel (process B).

8. Process B executes up to the output onwrite[1], driven by the server’s need
to input onwrite[1], which again is driven by process A’s need to output on
update[0]. This frees the server and allows process A to continue.

9. Notice that the second instance of process A’s task missesits deadline. It has its new
period offset accordingly. Also notice that only then is process B allowed to finish.

3. Implications

In occam, aPRI PAR or PRI ALT can be used to affect the scheduling of parallel pro-
cesses. This can potentially affect the logical behaviour of a program when modelling the
program with CSP, as certain program traces are no longer possible. A TIME constructor
will also restrict possible traces of a Toc program by alwayspreferring execution of the ear-
liest deadline task to others. The effect ofTIME constructors on the logical behaviour of a
Toc program is much greater than the effect of prioritized constructs in occam programs. For
example removing allTIME constructors will make any Toc program equal toSTOP.

Addinga process may also make a program behave asSTOP. Take the example given in
Figure 3. This may be an attempt to initialize a variable before starting a periodic process, but
the primitive assignment makes the entire program behave asSTOP. There is no deadline for

64 M. Korsgaard and S. Hendseth / The Toc Programming Language

PROC Main()
INT a:
SEQ
a := 42
WHILE TRUE
TIME 100 MSEC

P(a)

Figure 3. Dead code example. Lack of timing requirements on the assignment makes the program equal to
STOP.

task body Periodic_Task is
Period : Time_Span := Milliseconds(30);
Rel_Deadline : Time_Span := Milliseconds(20);
Next : Ada.Real_Time.Time;

begin
Next := Ada.Real_Time.Clock;
Set_Deadline(Next+Rel_Deadline);
loop

delay until Get_Deadline;
Action;
Next := Next + Interval;
Set_Deadline(Next+Rel_Deadline);
delay until Next;

end loop;
end Periodic_Task;

WHILE TRUE
TIME 30 MSEC
TIME 20 MSEC
Action()

Figure 4. Comparison of a periodic process in Ada and Toc. Left: Ada. Right: Toc. Ada example is a modified
example from [25]

.

executing the assignment and therefore it will never happen. TheTIME constructor that fol-
lows will never be discovered and the periodic process will not start. In Toc, the programmer
must consider the deadlines of all functionality in the system, no matter how trivial. Because
assignments, like the one in Figure 3, are typically quite fast, not adding a timing requirement
signals that the programmer does not care exactly how long time the assignment will take.
In Toc, not caring is not an option, and deadlines are always required. The compiler will in
many cases issue a warning to avoid such mistakes.

It has been argued that it is more awkward to assign arbitrarydeadlines to tasks than to
assign arbitrary priorities [24]. This is debatable, but itmay anyway be easier to find anon-
arbitrary deadline than a priority: Many seemingly background tasks can be given sensible
deadlines: A key press does not need to give visual feedback faster than it is possible for
the human eye to perceive it. A control monitor in a process plant will need some minimum
update frequency in order to convey valid information to theoperators. Setting a deadline for
the latter task, however arbitrary, is a step up from giving it a low priority under fixed-priority
scheduling, where a scheduling overload could effectivelydisable the task.

4. Conclusions and Future Work

This paper presented the language Toc, which allows the specification of deadlines in the
source code of a program. This is done using theTIME constructor, which provides elegant
language support for specifying deadlines and tasks. A periodic task with a deadline can be
implemented with just a few lines of code, compared to the rather more complex construct
required in for example Ada, as shown in Figure 4. The combination of EDF and deadline
propagation yields a simple and versatile scheduling strategy. Lazy scheduling forces the pro-
grammer to consider all timing requirements in the system, not only those that are considered

M. Korsgaard and S. Hendseth / The Toc Programming Language 65

real-time in the classical sense. This may potentially increase awareness of timing require-
ments for parts of real-time systems for which such requirements were previously ignored,
such as sporadic or background tasks and error handling.

The prototype compiler was developed in Haskell, using the parser generatorbnfc [26].
The compiler generates C code, which can then be compiled with an ordinary C compiler.
The current run-time system is written in C, and includes a custom scheduler using POSIX
threads. The scheduler is linked into the program, and the resulting executable can be run as
an application under another operating system. Both the compiler and run-time system are
prototypes under development, and have so far only been usedto test small programs, though
quite successfully so.

The next task would be to test Toc on a real-time system of somecomplexity, to see if the
TIME constructor presented here is practical and suitable for such a task. Of particular interest
is seeing how many timing requirements that are actually necessary in the specification of
such a system, when no execution is allowed without one.

References

[1] J. D. Ichbiah, B. Krieg-Brueckner, B. A. Wichmann, J. G. P. Barnes, O. Roubine, and J.-C. Heliard,
“Rationale for the design of the Ada programming language,”SIGPLAN Not., vol. 14, no. 6b, pp. 1–261,
1979.

[2] J. Gosling, B. Joy, G. Steele, and G. Bracha,The Java Language Specification, 2000.
[3] SGS-THOMPSON Microelectronics Limited,occamR© 2.1 Reference Manual, 1995.
[4] J. Armstrong and R. Virding, “ERLANG – an experimental telephony programming language,”Switching

Symposium, 1990. XIII International, vol. 3, 1990.
[5] G. Berry and G. Gonthier, “The ESTEREL synchronous programming language: design, semantics, im-

plementation,”Sci. Comput. Program., vol. 19, no. 2, pp. 87–152, 1992.
[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “LUSTRE: A declarative language for programming

synchronous systems,”Conference Record of the 14th Annual ACM Symp. on Principlesof Programming
Languages, 1987.

[7] C. A. R. Hoare, “Communicating sequential processes,”Communications of the ACM, vol. 21, pp. 666–
677, 1978.

[8] S. Schneider,Concurrent and Real Time Systems: The CSP Approach. New York, NY, USA: John Wiley
& Sons, Inc., 1999.

[9] D. Q. Z. C. Cecati and E. Chiricozzi, “Some practical issues of the transputer based real-time systems,”
Industrial Electronics, Control, Instrumentation, and Automation, 1992. Power Electronics and Motion
Control., Proceedings of the 1992 International Conference on, pp. 1403–1407 vol.3, 9-13 Nov 1992.

[10] C. J. Fidge, “A formal definition of priority in CSP,”ACM Trans. Program. Lang. Syst., vol. 15, no. 4,
pp. 681–705, 1993.

[11] P. Welch and F. Barnes, “Communicating mobile processes: introducing occam-pi,” in25 Years of CSP
(A. Abdallah, C. Jones, and J. Sanders, eds.), vol. 3525 ofLecture Notes in Computer Science, pp. 175–
210, Springer Verlag, Apr. 2005.

[12] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the use of the Ada Ravenscar Profile in high integrity
systems,”ACM SIGAda Ada Letters, vol. 24, no. 2, pp. 1–74, 2004.

[13] R. Heckmann and C. Ferdinand, “Worst case execution time prediction by static program analysis,”Paral-
lel and Distributed Processing Symposium, 2004. Proceedings. 18th International, pp. 125–, 26-30 April
2004.

[14] J. Souyris, E. L. Pavec, G. Himbert, V. Jégu, G. Borios, and R. Heckmann, “Computing the worst-case
execution time of an avionics program by abstract interpretation,” in Proceedings of the 5th Intl Workshop
on Worst-Case Execution Time (WCET) analysis, pp. 21–24, 2005.

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment,”Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[16] J. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic, real-time tasks,”
Performance Evaluation, vol. 2, no. 4, pp. 237–250, 1982.

[17] G. C. Buttazzo, “Rate monotonic vs. EDF: Judgment day,”Real-Time Syst., vol. 29, no. 1, pp. 5–26, 2005.
[18] A. Cervin, J. Eker, B. Bernhardsson, and K.-E.Årzén, “Feedback-feedforward scheduling of control

tasks,”Real-Time Systems, no. 23, pp. 25–53, 2002.

66 M. Korsgaard and S. Hendseth / The Toc Programming Language

[19] M. Korsgaard, “Introducing time driven programming using CSP/occam and WCET estimates,” Master’s
thesis, Norwegian University of Science and Technology, 2007.

[20] D. Cornhilll, L. Sha, and J. P. Lehoczky, “Limitations of Ada for real-time scheduling,”Ada Lett., vol. VII,
no. 6, pp. 33–39, 1987.

[21] V. Yodaiken, “Against priority inheritance,” tech. rep., FSMLabs, 2002.
[22] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: an approach to real-time syn-

chronization,”IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175–1185, Sep 1990.
[23] T. Baker, “A stack-based resource allocation policy for realtime processes,”Real-Time Systems Sympo-

sium, 1990. Proceedings., 11th, pp. 191–200, Dec 1990.
[24] A. Burns and A. Wellings,Real-Time Systems and Programming Languages. Essex, England: Pearson

Education Limited, third ed., 2001.
[25] A. Burns and A. J. Wellings, “Programming execution-time servers in Ada 2005,”Real-Time Systems

Symposium, 2006. RTSS ’06. 27th IEEE International, pp. 47–56, Dec 2006.
[26] M. Pellauer, M. Forsberg, and A. Ranta, “BNF converter:Multilingual front-end generation from labelled

BNF grammars,” tech. rep., 2004.

