Santa’s
Groovy Parallel
Helper

Jon Kerridge

NAPIER UNIVERSITY
EDINBURGH

to CPA2008

Motivation

 Matt Pedersen’s and Jason Hurt’'s submitted paper

A

NAPIER UNIVERSITY
EDINBURGH

Critique k

e Their JCSP solution did not use two available
synchronisation techniques

— Bucket

» A component into which one or more processes can fallinto thereby
pre-empting themselves, becoming idle, until another process flush es
all the processes thereby enabling their re-scheduling

— Alting Barrier

» A Barrier enables processes to synchronise such that the set of
processes synchronising on the Barrier wait until they have all reached
that point in their execution.

* An Alting Barrier is one that can be used as part of a non-deterministic
choice (Alternative)

* Provides the CSP multi-way synchronisation primitive

* Further simplification by using Groovy Parallel Helper
Classes

NAPIER UNIVERSITY
EDINBURGH

Bucket - methods k

e falllnto()

— The calling process is pre-empted

— Process becomes idle consuming no processor
resource and is associated with the Bucket

— Any number of processes can fall into a bucket

« flush()

— Must be called by a process that is never pre-empted Iin
a Bucket

— All the processes associated with the Bucket are
rescheduled for execution
 They may not execute immediately

NAPIER UNIVERSITY
EDINBURGH

Alting Barrier k

* A possibly dynamic number of processes agree to
synchronise on the Alting Barrier

« They do this either
— absolutely by calling the AltingBarrier’s sync() method
— Process cannot withdraw from the synchronisation
e Or
— They access the Alting Barrier by means of a guard in an
Alternative (ALT)
* Only if the previously agreed number of processes have
synchronised or are waiting on an ALT is the Alting Barrier
selected as part of a non-deterministic choice

NAPIER UNIVERSITY
EDINBURGH

Reindeer Synchronisation k

« Alting Barrier comprising
— Santa Claus
— Nine Reindeer

e Whenever Santa Claus and the nine reindeer have
synchronised on the Alting Barrier

— Given priority to deliver toys

— Solely determined when all the reindeer synchronise
because Santa checks for this possibility on each
iteration

— Minimal overhead is incurred by Santa
 Implemented as the stable Alting Barrier

NAPIER UNIVERSITY
EDINBURGH

Vestibule k

« Contains four groups, each implemented by a
Bucket which can each hold up to three elves

* An EIf can tell the Vestibule they need to consult
Santa

 The Vestibule then tells the EIlf which group
(Bucket) to join
 The EIf then fallsinto() the indicated Bucket

e The EIf then walts, idle in the Bucket until it is
flush ed by the Vestibule.

NAPIER UNIVERSITY
EDINBURGH

Elf Synchronisation k

e \Whenever Santa finishes an elvin consultation he
Informs the Vestibule

— The vestibule can then flush() the next group of elves, if
any, so they can consult with Santa
o |f Santa is idle and a third elf joins a group the
Vestibule will flush() the group enabling them to
consult with Santa Claus

— Santa Claus does not have to check to see if there is a
waiting group of elves

NAPIER UNIVERSITY
EDINBURGH

A

Architecture - Synchronisation

S
) (¢D)
5 pd2 S
-) S
0 0 c
c S o
O w0 = O
G e g E§
@) R > g =
5Q 4 2 G
| mrm _ =
o 2 = H S 5
“ ! O N
! = @
X _ m c A
| nnuV C)
| E_ | E_ L L E_ MM\C =
STY I TN IS IS AN —
4 -
_l._u IIIIIIIII _ |||||||| |_|.|n IIIII ﬁ |||||||||| _ IIIIIII m
d—
L L L LLl LLl S0
2 S
8
o
..... _IR .“l.l.l.l.l4l.l4|.l — . —p
——m
| Dn+ |||||||||||||||||||||||| >
o
_ R“| ||||||||||||||||||||| »
— —
_ R+ ||||||||||||||||||||||||||||| »
o
i _l ||||||||||||||||||||| »
Lo DR -
i co
et SN » 5
| I -”
..... - e S
_ -~ @
_ R|“I |||||||||||||||||||||| M| O B
— e ._% o
_ R+ ||||||||||||||||||||||||||||| » m

Santa

P
=
v
a2
n
=
Z
-,
o
(o
A
<
Z

EDINBURGH

Reindeer k

def AltingBarrier stable

while (true) {
println "Reindeer ${number}: on holiday ... wish you were here, :)"
timer.sleep (holidayTime + rng.nextint(holidayTime))

printin "Reindeer ${number}: back from holiday ... ready for work, :("
stable.sync()

harness.write(number)

harnessed.read()

println "Reindeer ${number}: delivering toys . la-di-da-di-da-di-da, :)"
returned.read()

println "Reindeer ${number}: all toys delivered ... want a holiday, :(*
unharness.read()

NAPIER UNIVERSITY
EDINBURGH

Elf k
while (true){

printin "EIf ${number}: working, :)"

timer.sleep (workingTime + rng.nextint(workingTime))
needToConsult.write(1)

def group = joinGroup.read()

groups|group].fallinto()

// idle in Bucket awaiting flush()

consult.write(number)

printin "EIf ${number}: need to consult Santa, :("
consulting.read()

printin "EIf ${number}. about these toys ... ??7?"
negotiating.write(1)

consulted.read()

printin "EIf ${number}: OK ... we will build it, bye, :("

}

NAPIER UNIVERSITY
EDINBURGH

Consult Channel - Elves to Santa k

 Any to One
— Each elf can write to Santa

e However
— At any one time only three elves are flushed
— Hence Santa can expect exactly three communications
— It does not matter which elf communicates first
— Provided the other two elf communications are read

o Similarly for the Vestibule channel communications
— needToConsult (Any20ne)
— JoinGroup (One2Any)

NAPIER UNIVERSITY
EDINBURGH

Vestibule — Set Up k

def flush = new Skip()

def VAIt = new ALT ([needToConsult, consultationOver, flush])
def int index = -1

def int filling =0

def int removing =0

def counter =[O, O, O, O]

def NEED =0

def OVER =1

def FLUSH =2

def preCon = new boolean[3]
preCon[NEED] = true
preCon[OVER] = true
preCon[FLUSH] = false
openForBusiness.read()

NAPIER UNIVERSITY
EDINBURGH

while (true)f Vestibule — Main Loop k

index = VAlt.select(preCon)

switch (index) { Elf

case NEED:
needToConsult.read()
joinGroup.write(filling) «
counter [filling] = counter [filling] + 1
if (counter [filling] == 3) filling = (filling + 1) % 4
break

case OVER: v

consultationOver.read()]

removing = (removing + 1) % 4 m m m m

case FLUbSr,I?I?k Yestibule
groups [removing].flush()
counter [removing] =0
break

} Santa

preCon [FLUSH] = (counter [removing] == 3)

v

v

}

NAPIER UNIVERSITY
EDINBURGH

Santa — Set Up k

def AltingBarrier stable
def Channelinput consult

def REINDEER =0

def ELVES =1

def rng = new Random()
def timer = new CSTimer()

def santaAlt = new ALT([stable, consult])
openForBusiness.write(1)

NAPIER UNIVERSITY
EDINBURGH

while @rue) Danta — Reindeer Choice k

index = santaAlt.priSelect()
switch (index) {
case REINDEER :

defid =]
println "Santa: ho-ho-ho ... the reindeer are back"
for (1in 0 .. 8{

id[i] = harness.read()
println "Santa: harnessing reindeer ${id[i]} ..."
}
printin "Santa: mush mush ..."
for (1in 0 .. 8) harnessed.write(1)
timer.sleep (deliveryTime + rng.nextint(deliveryTi me))
println "Santa: woah ... we are back home"
for (1in 0 .. 8) returned.write(1)
for (iin0..8){
printin "Santa: unharnessing reindeer ${id[i]}"
unharnessList[id[i]].write(1)

}
break

NAPIER UNIVERSITY
EDINBURGH

Santa — EIf Choice

case ELVES:
defid =]
Id[0] = consult.read()

printin "Santa: ho-ho-ho ... some elves are here!"
for (1in0 .. 21
consulting[id[i]].write(1)
println "Santa: hello elf ${id[i]} ..."
}
for (1in 0 .. 2) negotiating.read()
println "Santa: consulting with elves ..."
timer.sleep (consultationTime + rng.nextint(consul
println "Santa: OK, all done - thanks!"
for (1in 0 .. 2{
consulted[id[i]].write(1)
printin "Santa: goodbye elf ${id[i]} ..."
}
consultationOver.write(1)
break

for (1in1..2)id[i] = consult.read() // expecting precisely 2 more reads

tationTime))

A

NAPIER UNIVERSITY
EDINBURGH

Result k

o Shared Memory (Thread based models)
— C# - 642 lines
- C - 420 lines
— Java -564 lines
— Groovy - 322 lines
e Distributed Memory
— MPlI -352lines

 Process Oriented
— JCSP -315lines

e Groovy Parallel — 215 lines
— 32% reduction over JCSP !l

NAPIER UNIVERSITY
EDINBURGH

Conclusion for Management at the North Pole k

Santa
Should Use
Groovy
Parallel !

NAPIER UNIVERSITY
EDINBURGH

