
Solving the Santa Claus
Problem

A Comparison of Various
Concurrent Programming

Techniques

Jason L. Hurt & Matt Pedersen, University of Nevada, Las Vegas

2

What did we do?

• Implemented ‘The Santa Claus
Problem’ in a number of different
programming paradigms.

3

Why did we do that?

• Investigate a number of concurrent
programming techniques in order to
better understand issues related to
 Readability
 Writability
 Reliability
 Error Handling

4

How did we do it?

• Write code…
 Consider

 Readability/Writability
• What adds/detracts to/from the readability/writability
• How does error handling affect this

 Reliability
• How do we know it works
• Model checking possibilities

 Count lines and compare

5

The Santa Claus Problem
[Originally by John Trono]

• Santa Claus sleeps at the North Pole until
awakened by either all of the nine reindeer, or by
a group of three out of ten elves.

• If awakened by the group of reindeer, Santa
harnesses them to a sleigh, delivers toys, and
finally unharnesses the reindeer who then go on
vacation.

• If awakened by a group of elves, Santa shows
them into his office, consults with them on toy
R&D, and finally shows them out so they can
return to work constructing toys.

6

Additional Constraints

• A waiting group of reindeer must be served
by Santa before a waiting group of elves.

• Since Santa’s time is extremely valuable,
marshaling the reindeer or elves into a
group must not be done by Santa.

7

Correctness of a Solution

• Message ordering: ensuring that events happen in order
at the right time.

• Priority: ensuring that the group of Reindeer have
priority over any Elf groups that may be waiting at the
time.

• Self-Organization: Santa cannot marshal a group of
Elves or Reindeer, these groups must organize among
themselves without help from a Santa thread or process.

• Synchronization: synchronization between various
processes

• The usual freedom from deadlock, livelock, and
starvation.

8

Example: Elf Message Ordering

1. Elf <id>: need to consult santa, :(
2. Santa: Ho-ho-ho ... some elves are here!
3. Santa: hello elf <id> ...
4. Elf <id>: about these toys ... ???
5. Santa: consulting with elves
6. Santa: OK, all done - thanks!
7. Elf <id>: OK ... we’ll build it, bye ... :(
8. Santa: goodbye elf <id> ...
9. Elf <id>: working, :)

[Note, Reindeer Messages can be interspersed between elf messages]

9

Example: Reindeer Message Ordering

1. Reindeer <id>: on holiday ... wish you were here, :)
2. Reindeer <id>: back from holiday ... ready for work, :
3. Santa: Ho-ho-ho ... the reindeer are back!
4. Santa: harnessing reindeer <id> ...
5. Santa: mush mush ...
6. Reindeer <id>: delivering toys ... la-di-da-di-da-di-da, :)
7. Santa: woah ... we're back home!
8. Reindeer: <id>: all toys delivered ... want a holiday, :(
9. Santa: un-harnessing reindeer <id> ...

10

Process Requirements

• The following processes are required:
 10 elves
 9 reindeer
 1 Santa

• These processes might be needed for
synchronization and self-organization
reasons:
 Processes to implement barriers
 Processes to implement waiting rooms etc.

11

The Paradigms & Models

• Shared Memory (Threads)
 Pthreads in C
 Java and Groovy
 .NET Threading library
 Polyphonic C#

• Message Passing
 MPI

• Process oriented
 JCSP
 Occam (Thanks to Peter Welch/Matt Pedersen)
 Groovy (Thanks to Jon Kerridge)

12

And now for something …

• The next (many) slides will consider a
number of issues dealing with

 synchronization, priority, etc
in the different programming models
 What is the issue
 How does it effect the code

13

C & pthreads

• Issue: Synchronization
 For thread synchronization, we define our own

barrier type using a mutex and a condition variable
from the pthread library.

 Santa code that uses the barriers:
 /* notify elves of “OK” message */

 AwaitBarrier(&elfBarrierTwo);
 /* wait for elves to say “ok we’ll build
it” */
 AwaitBarrier(&elfBarrierThree);

14

C & pthreads

• Issue: Priority
 Mutexes and Condition Variables used for Reindeer

over Elves priority:

 pthread_mutex_lock(&santaMutex);
 pthread_cond_signal(&santaCondition);

 pthread_mutex_unlock(&santaMutex);

 A shared memory counter must be used to keep track
of missed notifications.

15

Java Threads

• Issue: Synchronization/Self organization
 Partial (and full) barrier

 There are no barriers in the standard Java
language

 Solution: CyclicBarrier
• CyclicBarrier [library in Java 1.5] for thread synchronization

eliminates the need for explicit shared state among synchronizing
threads

• Re-entrant - call to reset will allow the barrier to be used again

16

Java Threads

• Issue: Priority
 Priority is achieved via wait/notify.

• The notify method is asynchronous, it will
complete even if a Thread with a corresponding
wait call is not currently ready to receive the
notification:

 synchronized (m_santaLock) {
 m_santaLock.notify();
 notifiedCount++;
 }

[corresponding code exists on the Santa side]

17

Java Threads

• Issue: Spurious Wakeups.
 Due to spurious wakeups, JVM is permitted to remove threads

from wait sets without explicit instructions,which causes extra
logic around calls to wait:

 while (!<some condition>) {
 try {

obj.wait();
 }
 catch(InterruptedException ie) { }

 }

 Where <some condition> is set by notifying thread.

18

.NET Thread library

• Issue: Synchronization
 Very similar to mutex and condition variable

programming with pthreads. We build our own
Barrier type that can be used for synchronization
around Monitors.

 Same problem as Java threads and pthreads, the
notification method, Monitor.pulse, is
asynchronous, so threads must share state for the
Santa thread to check for lost notifications

19

Polyphonic C# (Chords)

• Issue: Synchronization
 Associates a code body with a set of method headers.

The body of a chord can only run once all of the methods
in the set have been called.
int f(int n) & async g(int m) {
 …
}

 A wait/notify mechanism that can prioritize notifications
can be implemented with shared memory if chords are
available to the programmer.

20

C & MPI

• Issue: Synchronization
 Groups, or subsets of processes, can be formed at

runtime, so we create a group that consists of Santa and
all of the Reindeer:

 MPI_Group_incl(groupWorld, TOTAL_REINDEER+1,
 santaReindeer, &groupSantaReindeer);

 //create communicator based on subgroup
 MPI_Comm_create(MPI_COMM_WORLD, groupSantaReindeer,
 &commSantaReindeer);

21

C & MPI

• Issue: Synchronization (continued)
 MPI_Barrier:

 // wait for all reindeer to say “delivering toys”
 mpiReturnValue = MPI_Barrier(commSantaReindeer);
 CHECK_MPI_ERROR(globalRank, mpiReturnValue);
 printf("Santa: woah . . . we’re back home!\n");

 Indirect synchronization using MPI_Send/MPI_Recv:

 mpiReturnValue = MPI_Recv(&recv, 1, MPI_INT,
 MPI_ANY_SOURCE,
 elfTag, MPI_COMM_WORLD,

 &status);

22

C & MPI

• Issue: Priority
 Santa probes to see if the reindeer are ready

before servicing a group of elves or reindeer
with an asynchronous MPI_Iprobe:

 int checkReindeerFlag = 0;
 mpiReturnValue = MPI_Iprobe(REINDEER_QUEUE_PROC,

 santaNotifyTag, MPI_COMM_WORLD,
 &checkReindeerFlag, &status);

 We use separate processes to gather the 9
deer or the 3 of 10 elves
 REINDEER_QUEUE_PROC, ELF_QUEUE_PROC

23

JCSP

• Issue: Synchronization
 Barriers with Channels (JCSP). Implemented barriers for

synchronizing Santa and a group of 3 Elves or Santa and the
Reindeer using 2 shared channels.
 MyBarrier holds the reading end of the channels and Sync

holds the writing end of the channels, only when all members of
the barrier have sent their first message will a process start to
send its second message to the reading end of the barrier:

 // wait for Elves to say “about these toys”
 new Sync(outSantaElvesA, outSantaElvesB).run();
 outReport.write("Santa: consulting with Elves . . .\n");

24

JCSP

• Issue: Synchronization (Continued)
 Santa and the Reindeer use an array of
One2OneChannelInt types for synchronization.
 Santa code:

 //unharness a Reindeer
 channelsSantaReindeer[id - 1].out().write(0);

 Reindeer code:

 //wait to be unharnessed
 inFromSanta.read();

25

JCSP

• Issue: Priority
 For priority, the JCSP version uses an

alternation which waits for guarded events
which can be prioritized:

 final Guard[] altChans = { inFromReindeer, inKnock };
 final Alternative alt = new Alternative(altChans);

 switch (alt.priSelect()) {
 //...santa logic here

 }

26

So Far … So Good

• We have seen examples of how to
deal with
 Synchronization

 Full Barrier
 Partial Barrier

 Priority
 Language Specific Curiosities

 Lost notifications
 Spurious wakeups

27

Readability/Writability Factors

• Readability and Writability are impacted by
 Code to deal with undesirable concurrency behavior

 Spurious wakeups, lost notifications
 Code Coupling

 Shared state
 Message tagging

 Error handling
 More to come about that ….

 Code to implement prioritized notifications
 PriALT
 MPI_Iprobe

28

Error Handling (Java)

• Checked exceptions in Java often require code that is
quite verbose, even for simple logging of the
exception. So a call to CyclicBarrier.await()
looks like this:

 //notify elves of “OK” message
 try {

 m_elfBarrierTwo.await();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 catch (BrokenBarrierException e) {
 e.printStackTrace();

 }

29

Error Handling (Groovy)

• Use closures for exception handling logic
and thread related operations and a separate
method takes the thread library call logic and
wraps it in the exception handling logic:

 //notify santa of "ok" message
 performOperation(barrierAwait(m_elfBarrierThree))

30

Error Handling (C#/pthreads)

• Both the .NET threading library and the
pthread library support errors, the
languages do not force handling of the
errors so the code is less verbose.

• In C# all exceptions are unchecked and
the pthread library call return error codes
which we (can) silently ignore.

31

Error Handling (MPI)

• The MPI library does not force error handling, but due
to the distributed nature of MPI it is good practice to
check for errors to MPI library calls. We define a
macro CHECK_MPI_ERROR that will handle the errors:

 #define CHECK_MPI_ERROR(rank, errorId) { \
 if(errorId != MPI_SUCCESS) { \

 printf("Global Rank #%d exiting, mpi error code: %d\n",
 rank, errorId); \
 MPI_Finalize(); \
 return -1; \
 } \

 }

[Note, Errors always imply termination, which can put the machine in an undesirable
state]

32

Error Handling (JCSP)

• The parts of the JCSP library that we
used did not declare any checked
exceptions, so there is no error handling
code here.

• Occam/JCSP error handling on
concurrency errors: poison

33

Error Handling (General)

• Seems that most error handling is
language specific (try/catch etc)

• Concurrency errors often just
terminates the program
 Poison in process oriented language
 Ctrl+c & “clean the virtual parallel

machine” with MPI
 Crash the program in Java/C etc.

34

Readability/Writability Results

• Shared state increases coupling and makes
re-factoring more challenging

• JVM spurious wakeups are nasty
• Java Thread.notify, pthread condition

variable, and .NET Monitor.pulse may
cause lost notifications, which forces shared
state to be used among threads

• MPI synchronous receives are nicer for
synchronizing than notify since the sent
message does not get lost.

35

Readability/Writability Results

• JCSP channels increase modularization and
message integrity over MPI, must have
explicit reading or writing end of a channel.

• Error handling is non-trivial in all cases.

36

Reliability

• Hard to reason about concurrent
code.

• We could model check the code
 CSP & FDR
 SPIN
 …

37

Model Checking

• JCSP/occam maps to CSP which can be
model checked.
 Might turn into machine assisted

verification.
• MPI-Spin can be used to check various

aspects of MPI.
 Has less of a correspondence to MPI than CSP

has to occam and JCSP

38

Line Count Comparison

39

So what did we learn?

• Code that requires heavy
synchronization can be done better in
MPI and even better in occam or JCSP
than with threads.

• Prioritization is made easier with the
prioritized alternation construct.

• Error handling is non-trivial in all
cases.

40

More Santa

• Jon Kerridge’s Groovy Fringe
presentation

• Peter Welch’s occam-π mobile
processes Fringe presentation

• www.santaclausproblem.net
for all the code

41

Future Work

• Different problems
• More models/languages, Shared

Transactional Memory
• Feasibility/ease of model checking for

the various models

42

Questions

