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Abstract. Most motion control systems for mechatronic systems aréeimented on
digital computers. In this paper we present an FPGA basedisolimplemented on
a low cost Xilinx Spartan Ill FPGA. A Production Cell setuptivimultiple parallel
operating units is chosen as a test case. The embedded cfitware for this system
is designed in gCSP using a reusable layered CSP based msofttnacture. gCSP is
extended with automatic Handel-C code generation for corifig the FPGA. Many
motion control systems use floating point calculations far foop controllers. Low
cost general purpose FPGAs do not implement hardware-iesdihg point units.
The loop controllers for this system are converted from iimppoint to integer based
calculations using a stepwise refinement approach. Thét iesai complete FPGA
based motion control system with better performance figilnas previous CPU based
implementations.
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Introduction

Nowadays, most motion controllers are implemented on mgnable logic controllers
(PLCs) or PCs. Typical features of motion controllers aeetiard real-time timing require-
ments (loop frequencies of up to 10 kHz). Running multipletoallers in parallel on a single
PC can result in missing deadlines when the system load mntiag too high. This paper
describes the results of a feasibility study on using a XilBpartan Il 3s1500 FPGA for
motion control together with a CSP based software framework

FPGAs are programmable devices that can be used to impldmesttonality that is
normally implemented in dedicated electronic hardwarechn also be used to execute tasks
that run normally on CPU based systems. Having a generabpaPGA as motion control
platform compared to CPU based implementations has seadvahtages:

e Parallel execution: no Von Neumann bottleneck and no pedioce degradation un-
der high system load due to large scale parallelism;

e Implementation flexibility: from simple glue-logic to sedbre CPUs;

e Timing: FPGAs can give the exact timing necessary for motamtrollers;

e High speed: directly implementing the motion controllegaithms in hardware al-
lows for high speed calculations and fast response timahoAgh not directly re-
quired for the chosen system this can, for example, be béalefiic hardware-in-
the-loopsimulation systems. Typical PC based solutions can reac¢b @p-40 kHz
sampling frequencies, while FPGA based solutions can readh-MHz sampling
frequencies.
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A main disadvantage is that a general purpose FPGA is naotehattapable of doing
floating point calculations, which are commonly used in mottontrol systems. For more
information on FPGAs and their internal structure, see [1].

One of our industrial partners in embedded control systesnmsaving from their stan-
dardised CPU + FPGA platform towards an FPGA-only platfofnsoft-core CPU imple-
mented on the FPGA is used to execute the motion controlléais.approach however still
suffers from the Von Neumann bottleneck and the implememtaif a soft-core CPU re-
quires a large FPGA.

The target for this feasibility study is a mock-up of a Prasut Cell system (see figure
1) based on an industrial plastic molding machine. Thisesystonsists of 6 moving robots
that are each controlled by a motion controller. The previmuplementation of the system
software was running on an embedded PC. The motion comnsaliethis implementation
suffer from performance degradation when the system isrumdé load (when all moving
robots are active at the same time). The Production CekBysatready contains an FPGA. It
is currently only used as an I/O board (PWM generators, giady encoder interfaces and
digital I/0), to interface the embedded PC with the hardware

The problems with the software implementation, the possiehefits of using an FPGA
and the move towards FPGA-only platforms resulted in thesitality study in which we
wanted to implement a motion control system inside an FPGAmwit using a soft-core CPU.

We have used a model based design approach to realize the B&@&4 motion control
implementation for this setup. The tools 20-sim [2] and gC3Rre used to design the loop-
controllers and the embedded control software. The CSRepsaalgebra and the Handel-C
hardware description language [4] are used in combinatitnaede-generation from 20-sim
and gCSP for the design and implementation of the embeddedtsoftware.

Section 1 gives more background information on the produatell setup, our previous
experiments, motion control and our model based designadetBection 2 describes the
designed software framework and section 3 describes theeqoences for the design of
the loop controllers when running them on an FPGA. This papecludes with the results
(section 4) and conclusions of this feasibility study andife work.

1. Background
1.1. Production Cell

An industrial Production Cell system is a production linetsyn consisting of a series of
actors that are coordinated to fulfill together a producstep in a factory. The production
cell system that is used for this feasibility study is a mogkeesigned to resemble a plas-
tics molding machine that creates buckets from plastictsates The system consists of sev-
eral devices that operate in parallel [5]. Its purpose isaives as a demonstrator for CSP
based software, distributed control and to prototype emibedoftware architectures. Figure
1 shows an overview of the setup.

The setup is a circular system that consists of 6 robots {hatate simultaneously and
need to synchronize to pass along metal blocks. In this peguer of these robots is called
a Production Cell Unit, or PCU. Each PCU is named after itfion in the system (see
also figure 1). The operation sequence begins by insertingtal imlock (real system: plastic
substrate) at théeeder belt This causes the feeder belt to transport the block tddebder
which, in turn, pushes the block against the clossalder door At this point, the actual
molding (real system: creating a bucket from the plasticstale) takes place. The feeder
retracts and the molder door opens. Téraction robotcan now extract the block (real
system: bucket) from the molder. The block is placed orettteaction beltwhich transports
it to therotation robot The rotation robot picks up the block from the extractioh &ded puts
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feeder

Figure 1. The Production Cell setup

it again on the feeder belt to get a loop in this demonstrat&inp. This loop can also result
in a nice (for teaching purposes) deadlock when 8 or morekblace in the system. This
deadlock occurs when all sensor positions are occupiedoltiks, resulting in the situation
that all robots are waiting for a free position (at the nextsse), in order to move their block
forward.

The belts allow for multiple blocks to be buffered so thatrgv@CU can be provided
with a block at all times, allowing all PCUs to operate sirankously. The blocks are picked
up using electromagnets mounted on the extraction robottltadotation robot. Infrared
detectors (sensors in figure 1) are used for detection of ltek® in the system. They are
positioned before and after each PCU.

1.2. Previous Experiments

Several other software based solutions have been made jpagé¢o control the Production
Cell setup. The first implementation [6] is made using gCSH £ombination with our
CTC++ library [8] and RTAI (real-time) Linux. 20-sim [2] issed to model the system dy-
namics and to derive the control laws needed for the movesrierthe system. Its purpose
was to evaluate gCSP/CTC++ for controlling a complex meoh#t setup. This software
implementation operates correctly when the system is ne@aded with too many blocks.
When all 6 PCUs are active and many sensors are triggered atthe time, the CPU load
reaches 100%, resulting in a serious degradation of sys&farmance, unsafe operation,
and sometimes even in a completely malfunctioning systemotifer implementation [9] is
made using the Parallel Object Oriented Specification LaggPOOSL [10], based on Mil-
ner’s CCS [11]). The main focus for this implementation waglee combination of discrete
event and continuous time software, the design method adigvable code generation. The
properties (e.g. timing, order of execution) of the sofevarodel should be preserved during
the transformation from model to code. This implementa#tso could not guarantee meet-
ing deadlines for control loops under high system load.tf&rmore, neither implementation
incorporates safety features in its design.

1.3. gCSP

gCSP is our graphical CSP tool [7] based on the graphicaltioatéor CSP proposed by
Hilderink [12]. gCSP diagrams contain information aboungmsitional relationships (SEQ,
PAR, PRI-PAR, ALT and PRI-ALT) and communication relatibiss (rendezvous channels).
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An example of a gCSP diagram with channels, processes andh8&QAR compositions is
given in figure 3. From these diagrams gCSP is able to gené&®en code (for deadlock and
livelock checking with FDR2/ProBE), occam code and CTC+dec{8]. Recent additions
to gCSP are the Handel-C code generation feature (seersd¢tand animation/simulation
facilities [13].

1.4. Handel-C

Handel-C [4] is an ANSI C based hardware description languagyn out of the idea to
create a way to map occam programs onto an FPGA. Handel-Causasset of ANSI C,
extended with CSP concepts like channels and construstbullt-in support for massive
parallelism and the timing semantics (single clock tickgraments) are the strongest features
of Handel-C. The close resemblance with the C programminguage makes it a suitable
target for tools with C based code generation facilitiegsTas one of the reasons that Rem
et al. [14] used Handel-C as a code generation languagehtgeith MATLAB/Simulink

to design an FPGA based motion controller. While Simulink ba used to generate FPGA
optimized motion controller code by using Handel-C tengsdor each library block, it does
not support the design of a software framework with multipdeallel processes containing
these motion controllers (targeted for FPGA usage). gC8&®re suited for this purpose.

1.5. Motion Control

Typical motion control systems consist of motion profilége(trajectory to follow) and loop
controllers. Their purpose is to control precisely the posj velocity and acceleration of
rotational or translational moving devices, resulting sn@oth movement. The control laws
for the loop controllers require a periodic time schedulevinich jitter and latency are un-
desired. Hard real-time behaviour is required for the safenmplementation, to assure pre-
dictable timing behaviour with low latency and jitter. Miisg deadlines may result in a catas-
trophic system failure. The embedded control software obaon control system often con-
tains a layered structure [15] as shown in Fig. 2 .

Supervisory Control | /

Sequencg Control
Figure 2. Embedded control system software structure
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The typical software layers in motion control systems are:

Man-machine/user interface;
Supervisory control;
Sequence control;

Loop control;

Data analysis;

Measurements and actuation.

Besides a functional division in layers from a control erginng point of view, a di-
vision can also be made between hard real-time and softirmalbehaviour: the closer the
software layer is to the machine or plant, the more strictitheng must be. Hence, the su-
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pervisory control and parts of the sequence control aresalfttime, and mostly run at lower
sampling frequencies. In the case of the Production Celéaat loop controllers (including
motion profiles) and sequence controllers (to determinetter of actions) are needed.

1.6. Design Method

To structure the design process for these kind of systemsisedhe following design ap-
proach:

e Abstraction;
e Top-down design;
e Model-based design;
e Stepwise refinement, local and predictable, aspect odente

For the system software this means that we start with a tegd-&bstraction of the sys-
tem that is refined towards the final implementation. Durimese stepwise refinements we
focus on different aspects (e.g. concurrency, interastioetween models of computation,
timing, predictable code generation) of the system. Togietfie loop controller, we follow
a similar stepwise refinement approach. The first stgghisical system modellingnodel
and understand the plant dynamics. The second stegnigol law designdesign a proper
control law for the required plant movements. The third sgetfhe embedded control sys-
tem implementatiophase in which relevant details about the target are incated in the
model. These include the non-idealness of the interfac#stive outside world (sampling,
discretization, signal delays, scaling), target det&ilBJ, FPGA). This step ends with code
generation and integration of the loop controllers intodpstems embedded software. Veri-
fications by simulation are used after the first three stepkdation and testing are done on
the last stepealization

In the following two sections, the above design method idiegmn the production cell
FPGA design.

2. Structure and Communication

This section describes the design and implementation o & based structural and com-
munication (S&C) framework in which the loop controllerseambedded. First, require-
ments are formulated, after which the design is construatadop-down way.

2.1. Requirements

To focus the experiments and tests, the following requirégmare formulated:

e Decentralised design to allow distribution across mutiplPGAs (or CPUSs) if
needed. This means that each PCU must be able to operateimbayly and that a
central supervisory controller is missing.

e CSP based. Exploit parallelism. The setup consists of lehogderating robots, so the
natural parallelism of the set up will be exploited.

e Generic. It should be usable for both a software and hardingrkementation and for
other mechatronic setups.

e Layered structure. This setup should be representativenftustrial-sized machine
control. Support for hierarchy using the layered structsiiaevitable.

e Safety software distinguished from the normal operaticemdiing faults can best be
separated from the normal operation. This better strustilve software, so that parts
can be tested individually. Furthermore, design patteoosiefault handling strategies
can be used here.
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Figure 3. Top-level gCSP diagram

2.2. Top Level Design

We have chosen to implement the 'software’ in a layered &ire¢taking into account the
above requirements. The resulting top-level design is shiaviigure 3. It shows an abstract
view of the Production Cell system with PCUs implemented aslgel running CSP pro-
cesses. Each PCU is connected to its neighbours using rendezhannels. No central su-
pervisory process exists and the PCUs are designed sudindlyadre self sustaining. Since
the production cell setup has a fixed direction for the bldé&eder belt- feeder> molder
door > extractor> extraction belt- rotation), normal communication is only necessary with
the next PCU. The communication is a handshake (CSP rend&yzfay transporting a block.
This normal communication will be called tm®rmal-flowof the system. When a failure
occurs, communication with both neighbours is required. ifstance, when the feeder is
stuck, not only should the molder door be opened, but alstettder belt should be stopped
in order to stop the flow of blocks. The next sections deschbealesign of the PCUs in more
detail.

2.3. Production Cell Unit Design

A PCU is designed such that most of its operation is indep@nalethe other PCUs. Each
PCU can be seen as an independent motion control system. Qaication with its neigh-
bours is only needed for delivering a block to the next PCUnarase of local failures that
need to be communicated to both neighbours. Based on thethgucture described in sec-
tion 1.5 and other implementations [16,15,17] a generic @8Bel is made for all 6 PCUs.
Figure 4 shows this PCU model, containing three parallehinopprocesses. The controller
process implements the motion controller intelligencearsequence controller and a loop
controller. Section 2.5 describes the controller in moraitleThe command process imple-
ments the Man-machine interface for controlling a PCU frofG (e.g. to request status
info or to command the controller). The safety process ¢ongatdata analysis intelligence to
detect failures and unsafe commands. All communicatiowden the setup, the command
interface and the controller is inspected for exceptiooalditions. The safety layer will be
explained in more detail in the next section. The low-levaidware process contains the
measurement and actuation part. Quadrature encoderaicegsrfor position measurement of
the motors, digital /0O for the magnets and the block senandsPWM generators to steer
the DC motors are implemented here.
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2.4. Safety

The safety process implements a safety layer following #regal architecture of protection
systems [18] and the work of Wijbrans [19]. The safety cdssa$three stages: thexception
catcher the exception handleand thestate handler(see figure 5). Thexception catcher
process catches exceptions (hardwaredntroller errors) as well as sanity check failures
(controller to hardware errors). It sends an error message t@tbeption handlerwhich
converts the error message into three state change messages

e Its own (safe) controller state via tleerStatechannel,
e A safe controller state for the previous PCU in the chain;
e A safe controller state for the next PCU in the chain.

The state handleiprocess controls the states in a PCU and is the link betwesemotih
mal flowand the error flow. Here the decision is made what state igyls®nt to the con-
troller process (figure 4). It receives state informatiaomirtheException handleprocess,
the Controller process and theser interface

The highest priority channel is therrStatestate channel from the exception handler.
This channel transports the ‘safe’ state from the excepigordler to the state handler when a
failure has occurred. Once this channel is activated, thte svill always be sent to théon-
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Figure 6. Production Cell Unit — Controller operation

2.5. Controller

Figure 6 shows the internals of the controller process. Tmgroller process consists of a
sequence controllea setpoint generatoand aloop controller. The sequence controller acts
on the block sensor inputs and the rendezvous messagesteoprdavious PCU. It deter-
mines which movement the PCU should make. It controls#tpoint generatothat contains
setpoints for stationary positions and it is able to gemenabtion profiles for movements
between these stationary positions. Tax controllerreceives setpoints from the generator.
Dependent on the mode set by getpoint generatothe loop controller is able to:

e Run a homing profile;
e Execute a regulator control algorithm (to maintain a sty position);
e Execute a servo control algorithm (to track motion profiles)

The homing profile mode is needed to initialize the quadeatncoder position sensors on
the motor at start-up. The design of the loop controller algm is explained in section 3.

2.6. Communication Sequence

The process framework is now almost complete. The framewgar&w capable of communi-
cating with other PCUs and it can safely control a single PThis section briefly describes
the interactions between the PCUs: the startup phase, in@kidg and communication.

2.6.1. Normal Flow

When the hardware setup is turned on, all PCUs execute tbening action for sensor
initialization and as a startup test. After the homing ph#se system is idle until a block is
introduced and triggers a sensor. Figure 7 shows an exarhffie oommunication between
the PCUs when a single block makes one round starting déduer belt

2.6.2. Error Flow

In case a failure occurs, for example a block is stuck atebder the localexception catcher
andexception handlewill put the feederin a safe state and communicate to the neighbours
(the feeder belt and the molder door) that it has a problere.nidider doorwill open and
thefeeder belwill stop supplying new blocks.
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Figure 7. Production Cell — Normal operation sequence diagram

3. Loop Controller Design

An important part of this feasibility study is the implematdn of loop-controllers in an
FPGA. The control laws for these loop-controller are destaia step-wise refinement in
20-sim using a model of the plant behaviour. The designh feheop-controllers was orig-
inally done for software implementations. The resultingcdéte-time PIBloop controllers
and motion profiles used floating point calculations. The Bdbtroller [20] is based on a
computer algorithm that relies on the floating point datatfgee listing 1 for the algorithm).
Its purpose is to minimize therror between the current position and the desired position.
This error is typically a small value (for the PCUs at mostO®4m) so some calculation
accuracy is needed here. The chosen FPGA has no on-boaiddlpaint unit (FPU), so
another solution is needed here.

3.1. Floating Point to Integer

Table 1 shows some alternatives to using a floating-poirat tygte.

Table 1. Alternatives to using the floating point data type on an FPGA

Alternative Benefit Drawback

1. Floating point High precision; re-use existing Very high logic utilization because each cal-
library controller culation gets its own hardware

2. Fixed point li- Acceptable precision High logic utilization because eaaltua-
brary tion gets its own hardware

3. External FPU High precision; re-use existingdnly available on high end FPGAs; expensive

controller
4. Soft-core High precision; re-use existing High logic utilization unless stripped

CPU+FPU controller

5. Soft-core FPU High precision; re-use existingcheduling / resource manager required
controller

6. Integer Native datatype Low precision in small rangesipaation of
the controllers needed

The numerical precision is coupled to the logic cell utifi@a, resulting in a design
trade-off between numerical precision and FPGA utiliza{i®1]. Agility, a provider of em-

Proportional, Integral, Derivative.
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factor = 1 / (sanpletinme + tauD x beta);

ubD = factor * (tauD *x previous(uD) x beta + tauD x kp * (error —
previous(error)) + sanpletime x kp % error);

ul = previous(ul) + sanpletine x uD / taul ;

output = ul + uD;

Listing 1. The PID loop-controller algorithm

bedded systems solutions formed from the merger of Catdtyti and Celoxica’s ESL busi-
ness, delivers Handel-C libraries for both floating poind &imed point calculation. A main
drawback of the first two options is that the resulting FPGAlementations have very high
logic utilization because each calculation gets its owrml¥vare. This is not a viable alterna-
tive for the chosen FPGA (a small test with 1 PID controllesuleed in a completely filled
FPGA for floating point). The third option requires a highddfPGA with DSP facilities.
The fourth option to use a soft-core CPU with a floating pomit (e.g. a Xilinx Microblaze
CPU with single precision FPU which costs around 1800 L3)TEhe advantage is that we
still can use our existing loop controllers (from the prexdsoftware version). The drawback
is that the design becomes more complicated, due to the oatidm of Handel-C hardware
and soft-core CPU software. Furthermore, we need a sclratiales P1D controllers should
run on the same soft-core CPU. The soft-core CPU solutiordsssive for just a PID con-
troller. An FPU-only soft-core is a better choice here, billtsome scheduling is needed. The
last option, integer based calculation, is the most swetailefficient FPGA usage. However,
this requires a redesign of the PID controllers. Despitedibadvantages of switching to an
integer based PID controller, we have chosen this solutemaise the first three options are
unfeasible for our FPGA and our goal was to not use a soft-Cé¥d.

To make the PID algorithm suitable for integer based conteding into account the
needed numerical precision, the following conversionmacessary:

e Integer based parameters;
e Integer based mathematics;
e Proper scaling to reduce the significance of fractional nensib
e Take into account the quantization effects of neglectirgftactional. numbers

The original controllers used Sl-units for 1/0O and paramsgteesulting in many frac-
tional numbers. All signals and parameters are now proparéled, matching the value
ranges of the I/O hardware (PWM, encoder). The conversiargioned earlier are executed
via step-wise refinement in 20-sim using simulations ande-by-side comparison with the
original floating point controllers. The new integer basedtmllers are validated on the real
setup using the CPU based solution, to make sure that thiimgdeP GA based integer PID
controllers have a similar behaviour compared to the oaigiloating-point version. Some
accuracy is lost due to the switch to integer mathematissilitiag in a slightly larger error
(0.00046m).

4. Realization and Results

The embedded control software structure for the produatelhsetup from section 2 was
first checked for deadlocks using a separate gCSP modelopHe\tel structure in figure 3
is extended with an extra block inserter process. An FDRXtesvs indeed a deadlock with
8 blocks or more in the system as described in section 1.1.

For the Handel-C implementation, the gCSP model of figurer8fined in a systematic
way to a version suitable for automatic code generation.ufpert automatic code gener-

2Look-Up Table, and a measure of FPGA size/utilization, witle LUT for each logic block in the FPGA.
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void Rotation(chanx eb2ro_err, chanx ro2eb_err, chanx fb2ro_err, chanx ro2fb_err,
chanx eb2ro, chanx ro2fb)
{

/« Declarations x/

chan int cntO0_w encoder _in;
chan int 12 pwm out ;

chan int 2 endsw_.in;

chan int 1 magnet_out ;
chan int state w setState;
chan int state_w currentState;
chan int state_w saf2ctrl ;
chan int state_w override;
chan int 12 ctrl 2hw;

chan int state_w ctrl 2saf ;
chan int cnt0_w hw2ctrl ;
chan int 1 magnet_saf ;

/« Process Bodyx/

par {
LowLevel _hw(&encoder _in, &pwm out , &endsw_i n, &magnet_out );
seq {
Init(&encoder _in, &magnet _out, &pwm out );
par {

Command(&set State, &currentState);

Saf ety(&eb2ro_err, &saf2ctrl, & o02eb_err, &override, &encoder_in,
&f b2ro_err, &wmout, &setState, & o02fb_err, &ctrl 2hw,
&current State, &ctrl2saf, &w2ctrl );

Control |l er(&saf2ctrl , &override, &ehb2ro, &ctrl 2hw, &ctrl 2saf ,

&ro2fb, &w2ctrl , &ragnet _saf );

Ter mi nat e(&encoder _i n, &magnet _out , &pwm out );
}
}
}

Listing 2. Generated Handel-C code for the Rotation PCU

ation, gCSP is extended with Handel-C code generation dédjgesh Due to the CSP foun-
dation of gCSP, mapping the gCSP diagrams to Handel-C codeatlaer straightforward.
Because Handel-C does not support the ALT and PRI-PAR agtst(only PRI-ALT and
PAR are supported) some drawing restrictions were addethéfmore, gCSP was extended
with the possibilities to add non-standard datatypes tolbe t® use integer datatypes of a
specific width. Listing 2 shows an example of the gCSP geedrkitandel-C code for the
rotation PCU. This PCU is implemented in gCSP using the design shownefig (thelnit
andTerminateblocks for the hardware are not shown in this figure).

The loop-controllers are implemented using a manually tdbyersion of the code that
20-sim has generated. Currently, 20-sim generates onlylANfating-point based code.
The Handel-C integer PID controller is first tested starahalin a one-to-one comparison
with an integer PID running on the PC containing our FPGA card

To be able to see what is happening inside the FPGA and tcd&&iD controllers and
the Commandorocess, we have implemented a PCI bus interface processal&efigure 4)
to communicate between our development PC and the FPGAh&@kiproved to be a useful
debugging tool during the implementation phase. Currem#yare using the PCI debugging
interface in cooperation with a Linux GUI program to show thiernal status of the PCUs
and to manually send commands to the FPGA.

Table 2 shows some characteristics of the realized FPGAeimghtation to get an idea
of the estimated FPGA usage for this system. The total FP@i&ation for the Spartan 11|
1500 is 43% (measured in slices).

The behaviour of the Production Cell setup is similar to tkisteng software imple-
mentations. Compared to the existing CPU based solutibas;RGA implementation shows
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Table 2. Estimated FPGA usage for the Production Cell Motion Colgrol

Element LUTs (amount) Flipflops (amount) Memory
PID controllers 13.5% (4038) 0.4% (126) 0.0%
Motion profiles 0.9% (278) 0.2% (72) 0.0%
I/0 + PCI 3.6% (1090) 1.6% (471) 2.3%
S&C Framework 10.3% (3089) 8.7% (2616) 0.6%
Available 71.7% (21457) 89.1% (26667) 97.1%

perfect performance results under high system load (magkblin the system) and all hard
real-time constraints are met. The controller calculatiare finished long before the dead-
line. Usage of the Handel-C timing semantics to reach oudldess is not needed with a
deadline of 1 ms (sampling frequency of 1 kHz). The PID alhoni itself requires only
464 ns (maximum frequency 2.1 MHz).

The performance of the FPGA based loop controllers is coatgarto the CPU based
versions. No visible differences in the PCU movements asenied and the measured posi-
tion tracking errors remain well within limits. An additiahfeature of the FPGA solution is
the implementation of a safety layer, which was missing endbftware solutions.

5. Conclusions and Future work

The result of this feasibility study is a running producticgll setup where the embedded
control software is completely and successfully impleradni a low-cost Xilinx Spartan 11|
XC3s1500 FPGA, using Handel-C as a hardware descriptiagukage. The resulting soft-
ware framework is designed such that it is generic and rblesaother FPGA based or CPU
based motion control applications. An FPGA only motion colgolution is feasible, with-
out using a soft-core CPU solution. The switch from CPU basgdementations towards an
FPGA based solution resulted in a much better performantterespect to the timing and
the system load. However, the design process for the loopaltans requires more design
iterations to ensure that a switch from floating-point cidttans to integer based calculations
results in correct behaviour.

The potential for FPGA based motion control systems runmmuifiple parallel con-
trollers is not limited to our production cell system. It is@a suitable alternative for our
humanoid (walking) soccer robot that contains 12 contreléd a stereo vision system [22].

Although not needed for this setup, the implemented PIDrodlat can reach frequen-
cies of up to 2.1 MHz, which is impossible to achieve on a PCx{mam 40 kHz). This
means that other applications requiring high controllegérencies can benefit from an FPGA
based controllers.

While this feasibility study shows the potential of usingoaicost FPGA for complex
motion control systems, there is still room for improvemand further investigation.

Table 2 shows that the PID controllers take almost half ofréeriired FPGA cells. We
have now implemented 6 dedicated PID controllers. A possiptimization would be to im-
plement one PID process and schedule the calculations. Veesmaugh time left to serialise
the calculations. However, this conflicts with our goal oplkeiting parallelism within the
FPGA.

The process for designing integer based motion contralessild be simplified. 20-sim
currently has too little support for assisting in the desidgmteger based motion controllers.
Research on the topic of integer based control systems potaahtially result in better design
methods. Besides this, it would also be a good idea to ewklinat other implementation
possibilities from table 1 (especially the soft-core witdUFoption), to compare and explore
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these design space choices. In this way we can better advisbat to use for FPGA based
motion control systems in which situations.

Integer based control systems need further research freroathtrol engineering point
of view. Especially with respect to accuracy and scalingaff. This is not only needed for
FPGA based designs but also for microcontroller targetsaftecore CPUs without an FPU.

While the software framework was successfully designetigugilCSP and its new
Handel-C code generation output, there are opportunitieshiprovement in order to fa-
cilitate the future design of production cell-like systenibe structure and communication
framework can be re-used, so having the option of usingrifdsbocks or gCSP design tem-
plates would speed-up the design process. Furthermorng assuibset of the Handel-C and
the gCSP language (GML) is supported by the code-generatamule. This should be ex-
tended.
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