
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

347

CSPBuilder – CSP based Scientific
Workflow Modelling

Rune Mølleg̊ard FRIBORG and Brian VINTER

Department of Computer Science, University of Copenhagen,
DK-2100 Copenhagen, Denmark

{runef , vinter} @diku.dk

Abstract. This paper introduces a framework for building CSP based applications,
targeted for clusters and next generation CPU designs. CPUsare produced with sev-
eral cores today and every future CPU generation will feature increasingly more cores,
resulting in a requirement for concurrency that has not previously been called for. The
framework is CSP presented as a scientific workflow model, specialized for scientific
computing applications. The purpose of the framework is to enable scientists to ex-
ploit large parallel computation resources, which has previously been hard due of the
difficulty of concurrent programming using threads and locks.

Keywords. CSP, Python, eScience, computational science, workflow, parallel,
concurrency, SMP.

Introduction

This paper presents a software development framework targeted for clusters and tomorrow’s
CPU designs. CPUs are produced with multiple cores today andevery future CPU generation
will feature increasingly more cores. To fully exploit thisincreasingly parallel hardware,
more concurrency is required in developed applications.

The framework is presented as a scientific workflow model, specialized for scientific
computing. The purpose of the framework is to enable scientists to gain access to large com-
putation resources, which have previously been off limits,because of the difficulty of con-
current programming — thethreads-and-locksapproach does not scale well.

The major challenges faced in this work include creating a graphical user interface to
create and edit CSP [1] networks, design a component system that works well with CSP and
Python, create an execution model of the designed CSP networks and run experiments on the
framework to find the possibilities and limitations. CSPBuilder can be downloaded from [2].

1. Background

Over the past few decades, companies producing CPUs have consistently increased processor
speeds in each new edition by decreasing the size of transistors and increasing the complexity
of the processor. The number of transistors on a chip have doubled every 2 years over the last
40 years, as declared by Moore’s Law [3]. However, doubling the number of transistors does
not automatically lead to faster CPU speeds, and requires additional control logic to manage
these. Speed and throughput have typically been increased by adding more control logic and
memory logic, in addition to increasing the length of the processor pipeline. Unfortunately
more pipelines mean more branch-prediction logic, with theeffect that it becomes very ex-

348 R.M. Friborg and B. Vinter / CSPBuilder

pensive to flush the pipeline when a branch is wrongly predicted. Many other extensions and
complexities, e.g. SIMD pipelines, have been added to the CPU design during the past 40
years to increase CPU performance.

Today, numerouswalls have been hit. The amount of transistors is still doubled every
two years, so Moore’s Law still applies. However, three problems have been raised: thepower
wall, the frequency walland thememory wall. According to Intel [4], heat dissipation and
power consumption increase by 3 percent for every 1 percent increase in processor perfor-
mance. Intel also explain that because of bigger relative difference between memory access
and CPU speeds, memory also becomes a bottleneck. Furthermore, the pipeline has become
too long, so the cost of flushing outweighs the performance gained by increasing the pipeline
length. All of these mean that we can go no further with current designs, and Intel suggest in
[4] that the next step is parallel computation.

With several processing units, thepower wall, frequency walland memory wallare
avoided, since there is no longer a need to increase the processor performance for a single
unit. Instead you must be aware of communication and synchronisation between threads,
which can cause overhead, deadlocks, livelocks and starvation if used wrongly.

Computers of tomorrow are getting more and more processing units, which can be uti-
lized by creating concurrent applications that will scale towards many processors. We are
already at 128+ cores in graphic processors, 9 cores in the CELL-BE processor from IBM,
SONY and TOSHIBA and recently Intel announced that they are experimenting with an 80-
core CPU [5].

1.1. Motivation

Many scientists (chemists, physicists, etc.) are not experienced programmers, but are able
to do scientific computing by programming sequential applications. So far they have been
relying on the hardware manufactures to produce hardware which has improved the perfor-
mance of their applications — allowing for more sophisticated and computationally intensive
science.

Due to the limitations of sequential computing already discussed, scientists must now
developconcurrentapplications, in order to take advantage of parallel hardware and to ad-
vance the science. The amount of difficulty involved in creating concurrent applications, de-
pends on the programming language and methodology. Traditional concurrent programming,
with threadsandlocks, makes it difficult to program even simple applications — adding more
parallelism to an already threaded program tends to result in problems, not solutions. As a di-
rect result, concurrent programming is seen ashard, and is generally avoided by the majority
of programmers.

We want to encourage scientists to develop concurrent programs using a CSP [6] based
approach, where applications are built as layered networksof communicating processes. Such
an approach isreliable, no unexpected surprises;scalable, to different numbers of processes
and processors; andcompositional, enabling processes to be ‘glued’ together to build increas-
ingly complex functionality.

A feature of CSP based designs is that every process can be completely isolated from the
global namespace, only interacting with other processes through well-defined mechanisms
such as channel inputs and outputs — processes arenotcontext sensitive. This in turn permits
a high level of code reuse within scientific communities, as previously built components can
be connected in different ways, corresponding to the data-flow of a particular computation.

Recent reports of using the GPU1 and CELL-BE for scientific computing, have reported
performance increases of up to 100-fold for some scientific algorithms. However, the diffi-

1Graphics Processing Unit– general-purpose graphics hardware found in high-end workstations, e.g. the
NVidia GeForce2.

R.M. Friborg and B. Vinter / CSPBuilder 349

culty of programming on a GPU or the CELL-BE is evident, and wedesire a high level of
code reuse — i.e. algorithms written should be able to run on anumber of different archi-
tectures, without a significant porting effort. This includes within a single-processor system,
heterogeneous multi-core systems, and distributed over networks of machines. A CSP based
design, of communicating processes, allows us to mix and match processing architectures —
selecting the best performing implementations of processes for particular architectures.

While architectures have differing performance characteristics, programming in different
languages can also affect performance. Development in a high-level language such as Python
is usually faster, but produces code that runs slower than a similar implementation in a low-
level language, such as C. By programming the computation intensive parts in C, and using
Python as the ‘glue’, we optimize the execution time and avoid having to program the entire
application in C, saving development time.

When doing scientific work, which often relies on particularmathematics libraries to do
the “number crunching”, the functions provided are not necessarily all implemented in the
same language. By using tools such as SWIG [7] and F2PY [8] we hope to address this issue,
making it possible to use code from C, C++ and Fortran in a single scientific application.

Our solution is to provide a framework, written in Python, that assists scientists in cre-
ating concurrent applications based on a CSP design. The framework uses a graphical user
interface similar to otherflow-basedprogramming environments already available, and as
such, we hope that scientists will find our framework useful and accessible.

1.2. PyCSP

PyCSP [9] is the CSP [1] library for Python used in this paper.It is a new implementation and
is currently evolving into a stable library. At the moment itsupports four different channel
types, that can be used for connecting parallel processes:one-to-one, one-to-any, any-to-one
andany-to-any. Similar to occam, support for guarded choices is only available on the reading
ends ofone-to-oneandany-to-onechannels. When more than one process is attached to the
any end of a channel, only one process at that end is involved in the communication, and
queue in a FIFO. Communication on channels is synchronous — achannel output will not
complete until the inputting process has accepted the data.In the future, we hope to support
all types of guards for channel communication, as well as having full support for networked
channels, and the easy distribution of CSPBuilder applications across computer networks.

The syntax of PyCSP is fairly simple and works well in Python.When executing a CSP
network using PyCSP, all processes are created as kernel threads, though performance on
shared-memoryarchitectures is limited by theGlobal Interpreter Lock(see section 3.1.4).

1.3. Scientific Workflow Modelling and CSP

The purpose of a scientific application is usually to calculate a result based on input data. This
data flows through the application and is the basis of sub-problems and sub-solutions until
eventually a result, or several results, are found. With this in mind we use the term “workflow”
for the data-flow of a scientific application. We use the term “scientific workflow” for the
workflow of eScience applications, where “eScience” is usedto describe computationally
intensive science applications, normally run on shared-memory multi-processor hardware or
in distributed network environments.

A typical eScience application might be anything from complex climate modelling to a
simple n-body simulation. Generally, any application thatdoes a large number of computa-
tions to produce a result within a particular scientific field.

Only a few [10,11] have previously looked at CSP and thought that this might be a good
description for scientific workflows. In this paper we will produce an application that uses
some of the ideas from CSP algebra and the projects mentionedabove, combined in a frame-

350 R.M. Friborg and B. Vinter / CSPBuilder

work that allows CSP based applications to be designed in a visual tool, and executed in a
variety of ways (depending on the hardware available). We stipulate that CSP is ideal for rea-
soning about the dataflow of eScience applications, particularly when the target environment
is concurrent execution. The compositional structure of a CSP network enables application
developers to reuse networks of components as top-level components themselves.

In section 5 we cover some of the other frameworks available.Some of these are very
popular today, and at the PARA ’08 event there was an entire day of workshops devoted to
scientific workflow modelling. The scientists there argued that they are able to understand
flow-based programming environments, and use them to develop scientific applications. The
future users of CSPBuilder are the same as for other frameworks, and by making CSPBuilder
operate in a similar fashion, we expect that those users willbe able to use the CSPBuilder
framework to construct applications.

One of the reasons for working with scientific workflows is to enable access to large
computation resources. The model presented in this paper, in addition to support for remote
channels, will make it possible to divide scientific workflowapplications from a small number
of CPU cores, to hundreds of nodes on different LANs — provided that the application is
designed in a way that supports this; a design method that is promoted by the CSPBuilder
framework.

1.4. Summary of Contributions

A new framework is implemented, tested and benchmarked in this paper. This framework
consists of a visual tool to build applications and a tool to execute the constructed applica-
tions. The framework is implemented in Python and supports to use C, C++ and Fortran code
by providing ‘wizards’ to access these languages. The framework is called CSPBuilder and
incorporates extensive use of the CSP algebra.

The visual tool provides an “easy to use” graphical user interface, enabling users to
construct applications using the ideas of flow-based programming [12] to produce a CSP [1]
network. In our experiments we show that the visual tool is capable of handling large and
complex applications.

Applications that are constructed with CSPBuilder can be executed successfully on a
single computer, combining routines from a number of different programming languages.
With the future introduction of remote channels in PyCSP it will be possible to execute the
applications on any number of hosts.

The framework encourages code reuse by constructing applications from reusable com-
ponents. This has proven very useful during the experimentation phase.

The primary advantages of this framework lie in code reuse and constructing complex
scientific applications focusing on the workflow. CSP ideas underpin the concurrency mecha-
nisms employed in constructed applications, enabling the automatic deconstruction of whole
systems into individual concurrent components.

2. The Visual Tool

This section describes a user-friendly application that can model a CSP network using a
layout similar to flow-based programming [12]. This layout is required to resemble the CSP
network for a scientific workflow model. Figure 1 shows an application modelled using our
visual tool.

In CSPBuilder every application starts with a blank canvas,where processes and chan-
nels can be inserted. Processes appear as named boxes, with their external connections la-
belled. Channels are shown as lines connecting the processes. To simplify things, any in-

R.M. Friborg and B. Vinter / CSPBuilder 351

Figure 1. A CSPBuilder application that generates incrementing natural numbers.

bound or outbound connection will only accept one channel going in or out, depending on
the connection type.

A number of connected processes are known as a process network, as shown in figure 1.
This network could be used as a component in another application, described in section 2.1.

The remainder of this section describes the component system, connecting components
with channels and connection points. Saving and loading CSPapplications to and from files
are then described, followed by details on component configuration and replication. These
parts are necessary to construct an application, and are parts of the framework that make it
possible to build CSP networks that can be run efficiently in adistributed environment.

2.1. Component System

The design of the component system is based on the following requirements:

• We need to be able to link the Python code of each process in an easy to understand
framework, to make it simple to add or remove components.

• The organisation of the process network needs to be scalable, which means that the
user should be able to handle large and complex applications, without losing control
or an overview of the whole system.

• The user should quickly and easily be able to group parts of the process network into
components, that appears and function like other processes.

• Components should be stored in a library for reuse.
• An application built with CSPBuilder must be targetable to different hardware, and

have a performance better than or equal to an equivalent application written entirely in
Python.

These requirements are examined in more detail in the following sections.

2.1.1. Scalable Organisation

Consider a network of 2000 processes. To handle this many processes, and even more chan-
nels, it is necessary to group parts of the network into smaller compositional processes. This
can be done by allowing the user to select a group of connectedprocesses and condense them
into a single component. If this new component has unconnected inbound or outbound con-
nections, these are added to its interface, in addition to channels that already cross the group
boundary. From an external perspective, this new componentlooks like any other component
in the system.

Collecting together components in groups, and using these to form other components,
leads naturally to a tree structure, whose leaves are component implementations. Each level
of the tree is assigned an increasingranknumber, with leaf processes having a rank of 1. This
is used to prevent cyclic structures.

352 R.M. Friborg and B. Vinter / CSPBuilder

2.1.2. Components

Components are the most important part of CSPBuilder. A component is a CSPBuilder appli-
cation that has been stored in the component library. These stored components are available
for use in other applications, and come in two different forms:

1. The component is a process network consisting entirely ofprocess instances of other
components and includes no actual code implementations.

2. The component includes at least one process that containsa process implementation.
This process implementation has a link to a Python function that implements the
process. A simple example of a process in CSPBuilder is “IDProcess”, shown in
listing 1, that simply forwards data received on its input channel to its output channel.

1 from common import *
2
3 def CSP_IdProcessFunc(cin, cout):
4 while 1:
5 t = cin()
6 cout(t)

Listing 1. Example CSP process implementation – the IDProcess

To make it as easy as possible for the user to create components, we specify that to cre-
ate a component, you just have to copy or move your CSPBuilderapplication to a “Compo-
nents” directory. When the CSPBuilder application reloadsthe library, it discovers this new
component and makes it available for use in new applications.

Functions specific to building components are also incorporated. These include naming
unconnected channel-ends and naming the main application.When creating components, the
application name is used for the new component. Unconnectedchannel-ends for the compo-
nent’s input and output are named in similar ways.

2.1.3. Component Library

To aid in component management, each component requires a package name. This is to make
it easier to find the desired component, for example, a “statistics” package containing relevant
statistical components. For CSPBuilder to be an effective tool, it will need a wide variety of
components, offering a range of different functionalities.

2.1.4. A Wizard for Building Components

A developer should be able to reuse code made by others, or reude code made earlier in
another application. Reusing older code is made easier withcomponents and the component
library, so to increase the ease of creating new components a‘wizard’ has been implemented
that guides the developer through the process of creating a component.

A quick search on the Internet will show that large online archives of scientific code
are available for free use. It is desirable to be able to easily use a function written in any
language, and currently it could be argued that it is possible just by having the components
implemented in Python. The developer can use SWIG [7] to import code from C or C++, and
most programming languages are able to build libraries thatcan be used from C or C++. This
therefore makes it possible to extend Python with code written in all kinds of languages. A
project named F2PY [8] can import Fortran 77 and Fortran 90 code into Python.

The wizard guides the user through the process of creating components written in
Python, C, C++, Fortran 77 and Fortran 90. These languages were chosen because of the
numerous scientific libraries that use these. As mentioned earlier, most languages can build a
library that is accessible from C or C++.

R.M. Friborg and B. Vinter / CSPBuilder 353

Figure 2. One2AnyChannel formed by connecting three processes to a single connection point, single out-
putting process, multiple inputters.

Figure 3. Any2OneChannel formed by connecting three processes to a single connection point, single inputting
process, multiple outputters.

Figure 4. Any2AnyChannel formed by connecting four processes to a single connection point, multiple in-
putting and outputting processes.

The inclusion of other programming languages is expected tohave a positive effect on
application performance in CSPBuilder. Python uses theGlobal Interpreter Lock(see sec-
tion 3.1.4) to access Python objects. This means that only one Python thread is allowed to
access Python objects at any one time, limiting any advantage of running threads that are not
dependent on each other in parallel. This lock can be freed when executing external code im-
ported into Python, making it efficient to have certain partswritten in other languages. Also,
compiled languages are typically faster than interpreted languages, which further improves
performance.

2.2. Channels and Connection Points

Processes connected by channels form a process network. Thedifferent types of channels
available and how they work in PyCSP were introduced earlier. The types of channels are
One2OneChannel, One2AnyChannel, Any2OneChannel and Any2AnyChannel.

The One2OneChannel is simple, because it can be representedby a single line going
from one process to another. Representing the other types ofchannel is more complex. To
address this issue, we introduce connection points. These can have any number of inbound
and outbound connections, to processes or other connectionpoints, enabling visualisation
of all channel types and for the ‘bending’ of channels. Examples of these can be seen in
figures 1, 2, 3 and 4.

Before any code can be generated, or process networks constructed, the connection graph
for each channel is reduced to contain at most one connectionpoint. Starting with each con-
nection point, or node, that node’s neighbours are examined. If that neighbour is another
node, as opposed to a process, the connections there are moved to the current node. This is

354 R.M. Friborg and B. Vinter / CSPBuilder

done recursively, until only single connection points remain, and runs inO(n) time, wheren
is the number of connection points.

The visual tool does not currently indicate the type of data carried on a channel, but the
channels are typed (in Python). When trying to execute a mis-connected network, the tool
will generate an error.

2.3. Configuring a Component

When working with the visual tool some components will need to be configured. These com-
ponents should have their individual configuration functionality specialised for their specific
purpose. A method is provided for the user to configure the component and save this set-
ting in the.csp file, for later execution. A typical example of component configuration is
something that allows the user to specify the name of a data file. To handle this, a structure is
defined that a component has to implement in order to provide aconfiguration functionality.

We will now focus on the three issues of configuring a component:

1. Activate the configuration process.
2. Save the new configuration.
3. Load saved or default configuration on execution.

As mentioned in section 2.1.2, the Python implementation ofa component is a file that
we import, with its own name-space. If this name-space has a function namedsetup(),
we call this function when the user configures the component.If the function does not exist,
the user will not be able to configure the component. To save the configuration, any structure
returned by thissetup() function is serialized and saved in the component’s.csp file.
When executed, the component’s top-level function is provided with the previously saved
unserialized data structure. An example of a small configurable component is shown in list-
ing 2.

It is left to the individual component programmer to decide what user interface will be
used to configure the component. In the example shown in listing 2, awxWindows file dialog
is used to acquire input from the user.

The configuration data may be saved on several levels. When working with CSPBuilder a
configuration can be saved on the working level or on any lowerlevel, down to the rank where
the process implementation is located. As standard all saved information from setting up
components is saved in the working process and not in the process with the implementation.
This gives the possibility for different setups for every application, and necessary to create
components that are as general as possible. Saved configurations are attached to the process
instance.

Configuration data with a higher rank will override any configuration data with a lower
rank. This has the desired effect: that any configured process instance of a component will
use the most recent configuration, as long as it is activated in the main application, and not as
part of any other component.

2.4. Process Replication

When building applications for concurrent scientific computing, a common way to organize
the calculations, if the algorithms allow it, is to divide the calculation into different jobs and
process these concurrently with workers. An application that use 50 workers would quickly
become cumbersome in CSPBuilder because of the 50 process instances in the visual tool.
To address this issue, a process multiplier is created. Whenenabling the process multiplier
on a process instance, the user must enter the desired numberof replications.

R.M. Friborg and B. Vinter / CSPBuilder 355

1 configurable = True
2 from common import *
3 import pylab
4
5 default_data = None
6
7 # Configuration (called from builder.py)
8 def setup(data = default_data):
9 import wx

10 import os
11 wildcard = "PNG (*.png)|*.png|" \
12 "All files (*.*)|*.*"
13
14 saveDir = os.getcwd()
15
16 dlg = wx.FileDialog(
17 None, message="Choose an image file, containing the data",
18 defaultDir=os.getcwd(),
19 defaultFile="",
20 wildcard=wildcard,
21 style=wx.OPEN | wx.CHANGE_DIR
22)
23
24 if dlg.ShowModal() == wx.ID_OK:
25 paths = dlg.GetPaths()
26 data = paths[0].replace(saveDir + ’/’, ’’)
27
28 os.chdir(saveDir)
29 dlg.Destroy()
30 return data
31
32 # CSP Process (called from execute.py)
33 def ReadFileFunc(out0 , data = default_data):
34 img = pylab.imread(str(data))
35 out0(img)

Listing 2. An example of a component that has configuration enabled

Any channels connected to a process instance where a multiplier has been set, can be
thought of as being multiplied by the corresponding amount.The addition of extra channels
and processes is handled in the execution step.

On execution, a multiplierx will cause the specified process instance to be created inx

exact copies. If the process instance is an instance of a process network this network will be
multiplied in x exact copies, creatingx times the number of processes and channels in the
process network. When a process is multiplied, all connections are multiplied as well and
will be turned into One2AnyChannels, Any2OneChannels or Any2AnyChannels.

3. Concurrent Execution

In this section we describe how a data structure, constructed by the visual tool and saved to
.csp files, is executed successfully. This is done by converting the data structure into a struc-
ture resembling a CSP process network. The PyCSP library is used to construct processes
and their connections, and finally to execute those processes.

All functionality presented by the visual tool in section 2 must be handled in the execu-
tion step. Here we will focus on the requirements relevant when executing on a single system.
The non-trivial functionalities required include: channel poisoning; multiplication of com-
ponents and their connections; importing external code; and releasing theGlobal Interpreter
Lock.

356 R.M. Friborg and B. Vinter / CSPBuilder

3.1. Building and Executing a Process Network

The overall goal is to build a network that will have a performance similar to a network im-
plemented entirely in Python using PyCSP. This means that all parsing and network building
needs to be done before execution and cannot be done on demand. To improve performance,
the tree data-structure describing processes is first flattened, as shown in figure 5.

Figure 5. Data structures. In the left figure the tree data-structure is illustrated, which represents the structure of
the CSP network when the.csp files are parsed. The black dots are a process structure and the lines represent
any number of connection structures. This data-structure is converted into the flat data-structure illustrated in
the right figure. This is a one-way conversion and can not be reversed.

An important feature in the construction of CSPBuilder has been to resemble the CSP
algebra in the visual tool. During execution it is equally important to execute the CSPBuilder
application exactly as it was built, and to ensure that everything is executed correctly. Here
we focus on guards, channel poisoning, importing external code and releasing theGlobal
Interpreter Lock, which comprise the difficult parts of executing a CSPBuilder application.

3.1.1. Multiplying Processes

Multiplying a process only makes sense in cases where a computation is embarrassingly
parallel, meaning that the problem state can be sent to a process and the process can compute
a result using this state data, with no dependencies, and send the partial result to a process that
collects all partial results into a final result. This designis usually called a producer-worker or
a producer-worker-collector setup and works best with embarrassingly parallel problems. A
dynamic orchestration of processes is used where the amountof workers can be varied easily
and you can have many more jobs than workers, making it easierto utilize all processes. If a
computation can not be done in a dynamic orchestration design, then it does not make sense
to use this multiplier flag. Instead a static design can be built with specialized components
for doing a parallel computation with2, 4, 8, ... processes.

Another design where multiplying processes will be applicable is in process networks
handling streams. Imagine 4 processes connected in serial,doing different actions on a
stream. If one of these steps is more time-consuming than anyof the others, it will slow down
the entire process. Multiplying this process is simple and if hardware is available for the extra
process, it improves the overall performance of the processnetwork.

3.1.2. Channel Poisoning

In CSP, without channel poisoning, a process can only terminate once it has fulfilled its
task. This creates a problem when a process does not know whenit has fulfilled its task.
When constructing a network of communicating processes most of the processes will be
the kind that will never know when they have fulfilled their task. They will read from their

R.M. Friborg and B. Vinter / CSPBuilder 357

input channels, compute and send the resulting data to theiroutput channels. These processes
combined will compute advanced problems and loop forever. One might add a limit saying
that a process will do 500 loops and it can consider its task fulfilled. In some applications this
is possible, but most applications can not define the needed loops prior to execution. Also
one might construct an extra set of channels that will communicate a signal to the processes
letting them know that their task is fulfilled, and initiate ashut-down. Channel poisoning is a
clever method to do just that, but uses communication the channels that already exist. PyCSP
has support for channel poisoning, which is based on channelpoisoning in JCSP [13,14].

Channel poisoning is implemented in PyCSP by raising an exception in process execu-
tion, when a channel connected to this process is poisoned. The exception is caught by the
PyCSP library and poisons all other channels connected to this process. After poisoning all
channels connected to the process, the process terminates.This will eventually terminate all
processes and cause the entire application to exit as desired.

If a process is currently waiting on a non-poisoned channel,then nothing will happen in
the process until it reads or writes from one of its poisoned channels. This might happen if a
process is waiting for an action and it is another process that has poisoned the network and
desires that the application terminates. The application will stall until the action happens and
the process writes or reads to the poisoned network.

For this reason when constructing CSPBuilder applicationsit is important to consider
how an application is poisoned if the user wants the application to terminate at some point.

3.1.3. Importing External Code

The wizard for CSPBuilder described in section 2.1.4 provides an easy method for building
a component that calls into C, C++ or Fortran code. In this section the framework for using
external code in CSPBuilder is described.

Using the import statement in Python it is possible to importmodules. A module can be
a Python script, package or it can be a binary shared library,as in this case where we want to
use code from other programming languages.

For importing Fortran code the F2PY [8] project is used, which is capable of compiling
Fortran 77/90/95 code to a binary shared library, making it accessible for Python. To import
C or C++ code the SWIG [7] project is used to compile to binary shared libraries, similar
to F2PY. Both projects are wrappers that make it relatively easy to handle data conversion
between Python and other languages.

All external code will reside in theExternal folder in the CSPBuilder directory. A
module name specifies a sub-directory inExternal, where all source and interface files
are located. When compiled, the generated module will be saved as a ‘.so’ file with the
module name as its file name in theExternal directory. AMakefileis created for every
component and for the entireExternal directory, so that all modules can be compiled by
executingmake in theExternal directory. This is necessary when applications are moved
to different machines, where the architecture and shared library dependencies may vary.

3.1.4. Releasing the GIL

PyCSP [9] uses the Pythontreading.Threadclass to handle the execution of processes in
a CSP network. This class uses kernel threads to implement multi-threading which should
enable PyCSP to run concurrently on SMP systems. Unfortunately concurrent execution of
threads is prohibited by the GIL. The GIL (Global Interpreter Lock) is a lock that protects ac-
cess to Python objects. It is described in the documentationof Python threads [15]. Accessing
Python objects is not thread-safe and as such cannot be done concurrently.

To be able to utilize the processors in an SMP system we will release the GIL while
doing computations outside the domain of Python. In section3.1.3 it was explained how
external code can be imported into Python. When calling intoFortran code using F2PY the

358 R.M. Friborg and B. Vinter / CSPBuilder

GIL is released automatically and acquired again when returning to Python. With C and C++
the situation is different, because here it is possible to access Python objects by using the
API declared inpython.h. It is the responsibility of the component developer to not access
Python objects while the GIL is released. Releasing and acquiring is done with the following
macros defined inpython.h:

// Release GIL
Py_BEGIN_ALLOW_THREADS

// Acquire GIL
Py_END_ALLOW_THREADS

The effects of releasing the GIL can be seen in section 4.1 where experiments are carried
out on an SMP system. We have now covered relevant issues in the building and execution of
a process network and can construct a CSP network from the.csp files created in the visual
tool.

3.2. Performance Evaluation

A classic performance test for CSP implementations includes the Commstime [16] test, which
is commonly used for benchmarking CSP frameworks. This computes the time spent on a
single channel communication. In this test we will compare the performance of the Comm-
stime test written in “Python with PyCSP”, with the CSPBuilder created “Commstime” ap-
plication shown in figure 6. The CSPBuilder Commstime creates a CSP network in PyCSP
and should perform the same, with perhaps only a slight overhead of having to create the ex-
tra DataValueprocess. In table 1 the result of the tests are shown. When comparing, there is
a slight difference where theDataValueprocess is concerned, but this process is necessary to
initialise the network and cannot be removed from the application. In “Python with PyCSP”
this data-value is a simple integer.

Figure 6. Commstime. A CSPBuilder application that resembles the Commstime performance test.

Table 1. CSPBuilder Commstime. A comparison of the channel communication time when using CSPBuilder
vs. only Python and PyCSP. The Commstime tests were executedon a Pentium 4 2Ghz CPU.

Test Avg. time per. chan (µs)

Python and PyCSP 91.43

CSPBuilder 96.30

R.M. Friborg and B. Vinter / CSPBuilder 359

The results of CSPBuilder are as expected. The performance of Python and PyCSP are
not competitive to many other CSP implementations, especially compilable languages. How-
ever, Python has many other advantages that in our case outweigh the poor performance:

• Easy to use and very flexible.
• Can interact with most languages.
• Many scientists already know Python.
• Faster development cycle.
• Encourages programmers to write readable code.
• Compute intensive parts can be written in compilable languages.

4. Experiments

In this section we test the performance of CSPBuilder using asimplePrime Factorisation
experiment. The tests will be performed with a varied amountof workers in the application.
Workers are the processes that, because of the design of the process network, are meant to be
identical, run concurrently and compute sub-problems of a larger problem.

The experiments show that CSPBuilder is capable of executing applications on an 8 core
SMP system. On the 8 core SMP system the GIL is released to be able to utilize all cores
successfully.

4.1. Prime Factorisation

As a test case for executing applications in CSPBuilder,Prime Factorisationwas chosen.
It is simple and the computation problem can easily be changed to run for varying times.
In the book by Donald Knuth [17], 5 different algorithms for doing prime factorisation are
explained. The simple one is the least effective and is basedon doingtrial division2. Trial
division is used in thedirect search factorisation3 algorithm. The simple prime factorisation
algorithm was chosen for the following reasons:

• Parts of the algorithm can to be written in both C and Python. The simplicity of the
algorithm is an advantage here.

• The nature of the algorithm makes it possible to use themultiplier functionality in
CSPBuilder. The algorithm is easy to divide into jobs that can be computed by workers.

• With a simple algorithm it will be easier to identify the aspects that do not perform
well.

• The algorithm has limited communication, but still enough to test various cases,
e.g. distributed vs. one machine.

A serialized Python implementation of thedirect search factorisationalgorithm can be
found at PLEAC4 (the Programming Language Examples Alike Cookbook). This implemen-
tation is extended and adapted to a parallel version that we implement in the CSPBuilder
framework.

4.1.1. Implementation Details

The prime factorisationproblem is built as a component reading a number as input and
outputting a result. Sincedirect search factorisationis an embarrassingly parallel problem,
the processing can be divided into jobs and handed over to a set of workers as illustrated in
figure 7.

2Trial division:http://mathworld.wolfram.com/TrialDivision.html
3Direct search factorisation:http://mathworld.wolfram.com/DirectSearchFactorization.html
4PLEAC:http://pleac.sourceforge.net/pleac python/numbers.html

360 R.M. Friborg and B. Vinter / CSPBuilder

Figure 7. PrimeFac Component, consisting of a controller and a workermultiplied 6 times.

On initialisation, the worker process sends an empty resultto the controller, to indicate
that it is ready for more work. The controller loops until allprimes have been found, sending
jobs to and collecting results from workers. If a non-empty result is received, the controller
waits for all workers to finish and, if any other workers also had a non-empty result, the best
result is picked and the computation resumes.

If n is the number we are factorizing into primes, then all primeshave been found when
d >=

√
n, where[2 . . . d] are the divisors tested. All the prime factorisations ofn can be

found in[2 . . .
√

n].
Numbers that are particularly interesting to factorize into primes are those larger than

the representation available generally in compilers (e.g.32-bit and 64-bit). To work with
unsigned integers larger than18446744073709551615, which is the limit for64bit registers,
some special operations are needed. Numbers larger than this need software routines for
doing basic operations such as addition, subtraction, multiplication and division.

Python has internal support for large numbers which makes the task of implementing
prime factorisation in Python much simpler. Creating the C version is a bit more tricky. An
external component is created using the wizard described insection 2.1.4. To test the imple-
mentation, a version working with numbers less than64bits is created. All basic mathemati-
cal operations are then replaced with function calls to the library “LibTomMath”5, which han-
dles large numbers. For transferring large numbers betweenPython and C a decimal string
format is used.

Finally we add a release for the GIL as described in section 3.1.4, which enables us to
maximize concurrent execution in the application.

4.1.2. Performance Evaluation

For our experiments the Mersenne6 number2222 − 1 is used. This number was picked by
trial and error, with the purpose to find a number where the prime factorisations could be
computed within 30 minutes for the least effective run. All tests have solved the problem:

n = 2222 − 1

= 6739986666787659948666753771754907668409286105635143120275902562303

= 32 ∗ 7 ∗ 223 ∗ 1777 ∗ 3331 ∗ 17539 ∗ 321679 ∗ 25781083

∗ 26295457 ∗ 319020217 ∗ 616318177 ∗ 107775231312019

In the performance test we compare the two implementations,one with the worker writ-
ten in Python and one with the worker as an external componentwritten in C which also
releases the GIL. In the C implementation we use the large number library LibTomMath.
This large number implementation is actually slower than the large number implementation

5LibTomMath:http://math.libtomcrypt.com/
6Mersenne number:http://mathworld.wolfram.com/MersenneNumber.html

R.M. Friborg and B. Vinter / CSPBuilder 361

in Python, shown in the tests where the “Python only” versionoutperforms the “Python and
C” version for the case with only one worker. We base this conclusion on the fact that the
sequential test for “Python and C” finishes in 1547 minutes, while the “Python only” version
finishes in 1005 minutes. Both implementations spend all of the execution time in the worker
loop with very little communication between processes.

To compare the effects of adding more workers we examine tests with 1, 2, 4, 6 and 8
workers, shown in figure 8. The “Python and C” version performs well, and by looking at the
speedup in figure 9, we see that performance scales almost linearly. This means that adding
double the amount of workers on a system with double the capacity doubles the performance
and halves the run-time. The speedup shown in figure 9 is not quite linear. The drop in
performance is caused by having to flush the workers every time a result is found. Time is
then spent sending new jobs to workers. This overhead increases with the number of workers,
but is largely acceptable given the advantages and benefits of this approach. All benchmarks
were run on an 8 core SMP system.

The increase in run-time, when adding workers to the “Pythononly” version in figure 8,
is caused by the unnecessary context-switching and communication, since the added workers
will only steal CPU time from the first worker. The reason thatthe run-time only increases
by a little even though many workers are added, is that the other workers are starved and
therefore will never ask for a job to compute.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10

R
un

tim
e

s

Workers

1 worker (serial), Python and C
1-8 workers (parallel), Python and C

1-8 workers (parallel), Python

Figure 8. Prime factorisation of the Mersenne number2
222 − 1.

The sequential benchmark is based on single worker execution. This is arranged by set-
ting the job size to1016 iterations, which causes only one job to be sent to the singleworker
waiting. This benchmark provides a baseline reference for sequential execution speed in CSP-
Builder, and is used as the basis when calculating the speedup of the parallel benchmark
shown in figure 9.

These results show us that when constructing a scientific workflow in CSPBuilder, it
is possible to get a reasonable performance and avoid the GIL, by programming the com-
putationally intensive components in compilable languages. CSPBuilder is usable for both
coarse-grained and fine-grained construction of whole systems. With a coarse-grained pro-
cess network, we require the computation intensive components to execute concurrently in-
ternally, if a reasonable performance is desired. With a fine-grained process network, internal
concurrency in the components is not necessary. Theprime factorisationimplementation is
somewhere in between a coarse-grained and fine-grained network.

362 R.M. Friborg and B. Vinter / CSPBuilder

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

S
pe

ed
up

Workers

1-8 workers (parallel), Python and C
linear speedup

Figure 9. Speedup of prime factorisation of the Mersenne number2
222 − 1.

5. Related Work

Several different frameworks exist that can handle scientific workflows in different ways. To
mention some of the more common, there areThe Kepler Project7 [18], Knime8, LabVIEW9,
FlowDesigner10 andTaverna11. The graphical tool of CSPBuilder is a quite similar to these
frameworks, though currently less functionality is available in CSPBuilder. CSPBuilder dif-
fers by having a basic graphical tool, that assists in constructing a CSP network and manages
a component library. The power of the CSPBuilder framework lies in the communication
model based on CSP.

On the CSP side, Hilderink [19] has created a graphical modelling language, GML, in
which CSP networks can be defined.

6. Conclusions and Future Work

In this paper we have presented a graphical framework for designing and building concurrent
applications based on CSP. Ideally suited to current and future multi-processor and multi-
core machines, CSPBuilder provides a simple and intuitive means for designing concurrent
applications. The graphical tool compiles directly to Python using PyCSP, and supports trans-
parent integration of C, C++ and Fortran functions. Experiments have shown that near linear
speedup can be obtained on embarrassingly parallel applications, which demonstrates that
the CSPBuilder tool dos not impose any significant overheads.

This paper has hinted at the distribution of CSPBuilder applications on networks of
workstations and other distributed memory architectures.Although PyCSP does support net-
worked channels, some modifications to the basic channel code in PyCSP have been made as
part of the work presented here. Similar changes will need tobe made to the network channel
code in PyCSP before CSPBuilder is able to target these architectures.

It might also be interesting and useful to add more descriptive visual representations of
channels, inspired by Hilderink, such as identifying guarded choice on channel inputs to a
process.

7The Kepler Project:http://www.kepler-project.org/
8Knime:http://www.knime.org/
9LabVIEW: http://www.ni.com/labview/
10FlowDesigner:http://flowdesigner.sourceforge.net/
11Taverna:http://taverna.sourceforge.net/

R.M. Friborg and B. Vinter / CSPBuilder 363

Although CSPBuilder is at a relatively early stage of development, we hope that it will
grow and flourish, eventually becoming a useful tool to aid scientists in constructing scientific
workflows, as well as for the programming of CSP based concurrent applications generally.

References

[1] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall International, june 21, 2004 edition,
2004.

[2] The CSPBuilder Framework. http://www.migrid.org/vgrid/CSPBuilder/.
[3] Description of Moores Law. http://www.intel.com/technology/mooreslaw/. Viewed Online January 2008.
[4] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and J. Rattner. Platform 2015: Intel

Processor and Platform Evolution for the Next Decade.Intel White Paper, 2005.
[5] Annoncement: 80 core CPU. http://www.intel.com/pressroom/archive/releases/20070204comp.htm.

Viewed online september 2007.
[6] C. A. R. Hoare. Communicating sequential processes.Commun. ACM, 21(8):666–677, 1978.
[7] Simplified Wrapper and Interface Generator (SWIG). http://www.swig.org. Viewed online january 2007.
[8] F2PY - Fortran to Python interface generator. http://www.scipy.org/F2py. Viewed online January 2008.
[9] Otto J. Anshus, John Markus Bjørndalen, and Brian Vinter. PyCSP - Communicating Sequential Processes

for Python. In Alistair A. McEwan, Wilson Ifill, and Peter H. Welch, editors,Communicating Process
Architectures 2007, pages 229–248, jul 2007.

[10] Peter Y. H. Wong and Jeremy Gibbons. A Process-Algebraic Approach to Workflow Specification and
Refinement. InProceedings of 6th International Symposium on Software Composition, March 2007.

[11] Peter Y. H. Wong. Towards A Unified Model for Workflow Processes. In1st Service-Oriented Software
Research Network (SOSoRNet) Workshop, Manchester, United Kingdom, June 2006.

[12] Flow-Based Programming. http://en.wikipedia.org/wiki/Flow-basedprogramming. Viewed online
september 2007.

[13] Communicating Sequential Processes for Java. http://www.cs.kent.ac.uk/projects/ofa/jcsp/. Viewed online
january 2008.

[14] Berhnard H.C Sputh and Alastair R. Allan. JCSP-Poison:Safe Termination of CSP Process Networks.
Communicating Process Architectures 2005, pages 71–107, 2005.

[15] Thread State and the Global Interpreter Lock. http://docs.python.org/api/threads.html. Viewed online
january 2008.

[16] Neil C. Brown and Peter H. Welch. An Introduction to the Kent C++CSP Library. In Jan F. Broenink and
Gerald H. Hilderink, editors,Communicating Process Architectures 2003, pages 139–156, sep 2003.

[17] Donald E. Knuth.The Art of Computer Programming - Volume 2 - Seminumerical Algorithms. Addison-
Wesley, third edition, 1998.

[18] Bertram Lud̈ascher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones, Edward A.
Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the Kepler system: Research Articles.
Concurr. Comput. : Pract. Exper., 18(10):1039–1065, 2006.

[19] G.H. Hilderink. Graphical Modelling Language for Specifying Concurrency Based on CSP.IEE Proceed-
ings - Software, 150(2):108–120, 2003.

