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Abstract.  The Trebuchet is a hardware architecture for machines implemented 
from conventional software source programs.  It is pseudo-asynchronous in that it 
decouples the system clock from the computational logic, reducing 
electromagnetic interference, smoothing current draw, and reducing pipeline 
latency, key benefits of asynchronous designs.  Performance of example programs 
is given.   

1.   Introduction 

This paper discusses the design of the Trebuchet, a pseudo-asynchronous micropipeline, 
and proposes a new architecture for high performance reconfigurable computing.  It 
grows out of an earlier Trebuchet effort we called SMAL [1].      

This version of the Trebuchet consists of a linear pipeline of configurable computing 
elements. Each element (composed of one or more FPGAs (Field Programmable Gate 
arrays)) executes in succession and is then reconfigured.  The number of required 
computing elements depends on the length of time required to finish one “step” and the 
time required to reconfigure an element. The system is composed of many interacting 
state machines  (Fig. 1.)  Each state machine, while entirely synchronous, behaves 
asynchronously in the sense that stage latency depends on the complexity of the 
computation performed rather than on the clock period.  The clock period, rather than 
being dependent on the longest logic chain, is set by the time required to exchange 
handshaking signals with immediate neighbors [2].   

On the global scale, the Trebuchet resembles Sutherland’s asynchronous 
Micropipelines [3], inheriting many of their behavioral characteristics, despite being 
completely synchronous in the details.  Hence we describe the Trebuchet as Pseudo-
Asynchronous.  We claim that pseudo-asynchronism allows the flexibility required to 
implement software as a cohesive hardware machine, and that the benefits normally 
ascribed to asynchronous machinery [4] may be achievable.  Specifically, throughput 
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should depend, as in conventional asynchronous circuitry, on the average stage latency 
rather than the longest logic chain.  Likewise, current draw should be smoothed with 
attendant reductions in radiated EMI (Electromagnetic Interference). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  A Trebuchet pipeline consisting of FSM-controlled stages. 
 

The thrust of our research has been to develop a methodology for seamless 
implementation of hardware and software functionality.  It has applications in both the 
fields of embedded systems and reconfigurable computing engines. The first (embedded 
systems) is concerned with dividing functionality between software and hardware 
(generally application specific integrated circuits (ASICs)), whereas the latter seeks to 
off-load time-critical functions to temporary circuits configured into FPGAs. 

In contrast to conventional projects where software is prepared in an environment of 
existing and stable hardware, embedded computer systems typically require parallel 
development of hardware and software components [5].  Because the respective 
disciplines of hardware and software development are commonly conceived of as quite 
different, early decisions about task allocation are made which have profound and 
irreversible consequences on the ultimate cost and performance of the system.  
Consequently, much of the research in embedded system technology is devoted to 
blending the development methodologies by deriving both hardware and software from 
high-level descriptions so that decisions can be delayed as long as possible and are 
demonstrably correct when made [6]. 

Because conventional hardware design is tedious and foreign to most software 
practitioners, generating hardware from software has been an important research goal [6].  
Generally speaking, these approaches target reconfigurable machinery hosted on FPGAs.  
However, reconfigurable co-processors tend to execute their functions rapidly and then 
remain idle for long periods of time.  Consequently, the question of how to dynamically 
reconfigure the co-processor has also become important [7], [8]. 

Our overall goal has been to develop a methodology in which the use of CPUs, 
reconfigurable logic implemented in FPGAs, and permanently configured logic in an 
ASIC are all parameters in a scheduling problem.  But because available chip real estate 
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allows implementation of only small portions of a program in hardware, it seems 
desirable to develop an approach that deals with multiple chips and the consequences of 
chip and board boundaries.   

We seek a methodology that automatically allocates portions of a program to a 
network of execution resources based on single-threaded software execution profiles.  A 
methodology that constructs systems using both hardware and software can best take 
advantage of the available execution resources.  Code written in a high level language 
(e.g. Java) may execute as machine instructions or directly as hardware.  The decision 
should depend on the needs of the work to be done and the resources available to do it.   

In [9] we presented a theory of hierarchical network domains and applied it to systolic 
networks being optimized for maximal throughput.  This research expands that work to 
address virtual networks of reconfigurable components, allowing a uniform treatment of 
devices with quite different reconfiguration characteristics (i.e. dynamically and statically 
reconfigurable FPGAs, ASICs, and CPUs).  

We chose Java as the application language because the Java Virtual Machine (JVM) 
has a simple and regular addressing scheme without registers [10], and because the 
interpreter makes it easy to gather execution statistics that may be used in mapping 
experiments.  Our research [11] indicated that Java execution is predictable enough that 
transformation of portions of an application to hardware is possible.   

Fleischmann and Buchenrieder [12] are also using Java to study reconfigurable 
hardware systems, but do not generate hardware automatically, as our system does.  
Hutchings et al. [13] are doing low-level hardware design with Java-based JHDL, but 
their tool is not aimed at high performance pipeline systems.  Handel-C is a similar 
system based on the C language; this approach associates assignment operations with 
latches [14], whereas we associate assignments with wires and latch much larger 
aggregates. 

2.  The Trebuchet System 

The Trebuchet runs hardware compiled from Java source code. We modified Jikes [15], 
an open source java compiler originally from IBM, to include extra information we 
needed for the conversion to hardware.  The output of Jikes is a standard Java class file.  
We obtain profile information from a modified JVM (Java_g, part of the Sun Java JDK).  
The profile also includes segmentation of the Java byte-codes into basic blocks and 
descriptors for the structure of for loops, if statements, etc. 

There is considerable opportunity for fine-grained parallelism.  While parallelism is, in 
principal, possible to detect automatically, we added the keyword par to the syntax 
parsed by Jikes.  Par signifies to the VHDL translator that a for loop is vectorizable. 

The Java byte-codes are translated to VHDL by analyzing the basic block contents.  
Stack and Memory references become accesses to wires (thus being essentially compiled 
out) and successive op-codes become, for the most part, cascaded blocks of 
combinational logic.  Array accesses become accesses to RAM.  Since each array resides 
in its own RAM, concurrent access to different arrays is supported.  Concurrent access to 
the same array must be arbitrated across the program. 
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We targeted our hardware at the Xilinx V800 FPGA.  With capacity of 800,000 gates, 
there is room for moderate sized software experiments.  In the future we will address 
designs involving multiple chips so that programs of arbitrary size may be executed.  
Hardware configuration files are generated by standard Xilinx tools [16]. 

2.1   Modifications to the Jikes Java Compiler 

The Java code is compiled by a modified version of the Java compiler Jikes.  We added 
keywords to the otherwise standard Java syntax recognized by Jikes.  As noted above, in 
principle the compiler could have been modified to recognize parallelizable and 
systolizable loops [17].  At some point in the future, we intend to do this. 

In addition to the par, we also included the keywords netstart, netend, and expose.   
Netstart and netend indicate respectively the beginning and end of the code to be 
analyzed for hardware mapping.  Expose designates variables that are required as output 
from the execution engine.  All of these are expediencies that could, in principal, be 
automatically recognized by a compiler. 

The structures which may be inserted into the Java class files include start tags, stop 
tags, and parallel loop descriptor tags. The latter designate for loops for vectorization.  
The byte code interpreter has special code added to it to detect this extra information in 
the execution stream of the program.  Because it is desirable that code thusly modified 
also be executable by conventional JVM platforms, the tags are structured so that a 
conventional JVM will simply jump around them.   

We needed to format the tags so that they could be unambiguously recognized in the 
JVM execution stream.  Since the compiler never generates a jump-to-self instruction, we 
can use this instruction as our tag: these are constructed as a jump followed by a jump-to-
self, followed by tag specific information.  Fig. 2 illustrates this format.  

 
 
 
 
 
 
 
 
 

 
Fig. 2.   Format of description tags embedded in Java execution stream. 

 

2.2   Modifications to the Java Virtual Machine 

One of the purposes of the Trebuchet is to experiment with mapping of regions of 
software onto hardware regions. The theory of this mapping [9] depends on profile 
information on the number of times communication arcs are utilized, rather than the 
number of times nodes are visited – a standard profile.  Consequently the JVM was 
altered to collect transfer of control statistics.  Java_g was tailored to output a file of 
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bytecodes segmented into basic blocks (basic blocks are sequences of code which 
terminate at program jumps). 

2.3   Bytecode Translation to VHDL 

Trebuchet, written in Common Lisp, translates the basic block and profile information 
provided by the modified JVM.  Trebuchet symbolically traverses each basic block, 
generating combinational logic corresponding to the sequence of instructions.  Some 
instructions (e.g. multiplication) are impractical to configure as purely combinational 
logic and necessitate further segmentation.  Trebuchet also constructs hierarchical 
components, such as for loops, that consist of a controlling FSM (finite state machine) 
and other subcomponents. 

A basic block is a sequence of code unbroken by changes in sequential flow (except at 
the terminus).  Thus there are not multiple paths of execution within a basic block.  
Trebuchet traverses a basic block, examining each instruction. Bytecodes that manipulate 
memory (either stack or variable store) such as IPUSH rearrange the set of working 
wires.  Operations that produce values (e.g. IADD) take their inputs from the set of 
working wires (deleting them from the set) and introduce new wires with the outputs.  
Trebuchet translates each basic block to a combinational net of logic.  Fig. 3 shows an 
example basic block in source code and as hardware logic. 

Many compilers manipulate stacks internally and map stack locations to registers.  
Pushing an object on the stack, while conceptually moving the entire stack, in reality only 
changes the association between register names and stack offsets.  Trebuchet does this 
with the set of wires representing program memory and the stack. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Example translation of a fragment of Java code. 
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2.4   Vectorized Loops 

Because the algorithms we want to investigate with Trebuchet manipulate programs that 
stream data through operators, we needed a way to generate code that could execute 
systolicly.  Java does not have a parallel operator, so we added one. 

Conceptually, our par for loops have four parts.  These include the 
initialization_clause, the end_test, and the step_clause that conventional Java and C 
share.  The loop_body is run overlapped.  As Fig. 4 shows, a par for loop is organized 
with a tight loop that repetitively steps the loop variable, tests the termination condition, 
and initiates an entry into the pipeline.  All three of these operations are executed in 
parallel to minimize the latency between subsequent pipeline entries.   

Pipeline initiation may be thought of as a thread that executes a particular loop 
iteration.  This construction is not far removed from loop vectorization, a well-studied 
topic in computer science [17] and could, in principle, have been accomplished 
automatically.  But for our purposes, it is enough to use the par keyword to designate 
code that can be validly overlapped in execution.  

Trebuchet generates a vectorized loop from the body of the Java for loop and the 
control clauses specified with it.  It rearranges the controls and forms a pipeline from the 
succession of basic blocks in the body of the loop.  The test condition, the stepping of 
loop variables, and the first stage of the pipe are all initiated in parallel. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4.   Vectorized for loop. 
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Each iteration depends on the ‘current’ loop variables, as does the end test.  Since 
these are all executed in parallel, the loop is unrolled to precompute the data.  
Additionally, each iteration carries forward a flag that signals the final iteration of the 
loop.  The loop test, in Java, is intended as a condition for breaking out of the loop, and 
thus signals on completion of the final iteration.   

The end condition must be propagated down the pipe because of the behavior of the 
last pipeline stage.  It consumes each thread until signaled that the last iteration has 
arrived.  In this special case, it handshakes its results out to whatever follows the loop. 

Since each iteration propagates an end test value corresponding to the next iteration, 
and the test itself depends on stepped variables, each cycle must precompute index 
variables that are two iterations ahead and a test value that is one iteration ahead.  The 
control loop is unrolled to obtain these phase relationships.  One consequence of this is 
that, like old style FORTRAN do loops, par for loops must be guaranteed to execute 
once.  Another restriction on valid par for loops is that step and test clauses not have side 
effects or access arrays.  

2.5   Conditional Code 

The Java compiler handles conditionally executed code by jumping around it.  In 
vectorized code, successive executions (threads) must not be allowed to overtake and 
pass prior threads.  Consequently, Trebuchet threads propagate from stage to stage, even 
where execution is suppressed. The boolean test result propagates through the range of 
the conditional execution.  At each stage, it suppresses update of the values passed to the 
next stage by switching a multiplexer.  Fig. 5 illustrates this operation.  Similar measures 
have been taken by makers of vector processing units for conventional computers [17].  
Note that even though pipeline threads must traverse stages for which execution is 
suppressed, such traversal is rapid because the controller FSM immediately transitions to 
output states without waiting for the logic to propagate through the computational logic. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 5.   Conditionally utilized results are switched with a multiplexer. 
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2.6   Array References 

Java arrays are dynamic in the sense that they may be created at any time, moved around 
as needed to optimize garbage collection, and reclaimed by the garbage collector when 
abandoned.  We did not want to subject the hardware generated by Trebuchet to the 
performance penalties inherent in such manipulation, so we chose to map array creations 
to static arrays created in the FPGA at configuration time.   

If, during the course of symbolic modeling of stack and variable store, a reference is 
made to a location identified with a particular array, the mechanism to access that array is 
constructed.  If the array reference cannot be ascertained, the module is marked as not 
being compatible with realization as hardware, and would necessarily be limited to 
bytecode execution by the JVM. 

3.   Pseudo-Asynchronous Execution 

Trebuchet, when generating VHDL, calculates the length of the logic path for each 
pipeline stage and generates a FSM controller with enough wait states to allow signals to 
propagate.  In order to decouple the clock period from this path, Trebuchet generates 
multi-cycle clock specifications for the Xilinx tools [18].  This allows the clock period to 
be driven by the exchange of handshaking signals rather than by the critical path through 
the combinational logic.  This means that for lightly loaded conditions, the average stage 
delay dominates the pipe transit time, instead of the worst-case stage delay.  This is one 
of the advantages touted for the asynchronous Micropipeline [4]. 

Another desirable trait of asynchronous circuitry is that, without a synchronizing 
clock, logic transitions are very well distributed in time.  This minimizes current draw on 
the power supply and reduces the level of radiated EMI (electromagnetic interference) 
[4].  The tendency of synchronous logic is to have a well-defined signature of successive 
gates transitioning (and drawing power).  It is expected that heavy usage of multi-cycle 
logic paths will have the effect of smearing these signatures, thus obtaining some of the 
advantage of purely asynchronous circuitry.   

Drawbacks of asynchronous circuits include sensitivity to signal noise, performance 
dependent on temperature and process variations, and incompatibility with conventional 
FPGA tools [4].  The Trebuchet avoids these difficulties by being, at heart, synchronous.  
It combines the best aspects of both worlds. 

4.0 Trebuchet Performance 

The example programs [19] are derived from the well-known Hail-Stone Algorithm.  
The Hail-Stone applies the following algorithm: 

 Given Ni,  
 If Ni is even,   Ni+1= ½ Ni  
 If Ni is odd,   Ni+1=3Ni+1 
The name “Hail Stone” derives from its characteristic of unpredictably increasing and 

decreasing in magnitude, the way a meteorological hailstone repeatedly rises and falls 
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during its formation.  The test program given in Fig. 6 computes the first 10 iterations 
when N0 is set to 37. 

The parallel bulk hailstone program is given in Fig. 7.  It utilizes the nonstandard 
keyword par to direct the vectorized execution of the for loop, thus causing each of the 
computational steps to become stages in a 10-step pipeline.  The loop limit was increased 
to 40 to keep the pipeline full longer during its execution.  Test results for Simple_hail 
and Bulk_hail_par are shown in Table 1.  There is an increase of almost 19-fold in 
throughput associated with the parallel version, attributable to pipelining effects.  

5.0   Conclusions 

The Trebuchet is an on-going effort.  The project has already provided insight into the 
nature of hardware/software systems, and promises to provide some of the benefits 
commonly associated with asynchronous hardware design.  Executing as hardware, code 
written in a traditional software language offers to finally join the disparate fields of 
hardware and software system design.  The medieval Trebuchet was a marvelous 
example of technology used to loft heavy stones and hurl them at enemy fortresses.  Our 
Trebuchet is, we hope, a tool for assaulting the bastions of complex system design. 

 

Fig. 6.   Simple_hail.java source code. 
 
 

Table 1. Test Results 
 

 Simple_Hail Bulk_Hail_Par 
JVM Instructions 424 8,044 
Equivalent Gates 18590 76,332 
Fraction of XCV800 
FPGA Utilized 

9% 41% 

Clock Frequency 36 Mhz 39 Mhz 
Execution Time 11.36 µs 15.8 µs 
Equivalent JVM MIPS 27 509 

public class simple_hail { 
        public static void main(String args[]){ 
         netstart; 
  int i,x; 
  x=37; 
  for(i=0;i<10;i++){ 
      if(((x>>1)<<1)==x) x=x>>1; 
      else x+=x+x+1; 
  } 
  expose {x=x+1;} 
  netend; 
  System.out.println("\n hail(37,10):"+x); 
 } 
} 
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Fig. 7.   Source code for bulk_hail_par.java. 
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