
Communicating Process Architectures – 2003
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

Distributed Shared Memory in Global Area
Networks

H. H. HAPPE and B. VINTER
Department of Mathematics and Computer Science, University of Southern Denmark

Abstract. Distributed Shared Memory (DSM) has many advantages in heterogeneous
environments, such as geographically distant clusters or The Grid. These includes:
locality utilization and replication transparency. The fact that processes communicate
indirectly through memory rather than directly, is giving DSM these advantages.

This paper presents the design of Global PastSet (GPS) which is a DSM system
targeted at global area networks. GPS is based on the DSM system PastSet [1] that has
been very effective in homogeneous cluster environments. GPS utilizes consistency
control migration and replication to scale in heterogeneous environments. This has
resulted in a token-based mutual exclusion algorithm that considers locality and an
algorithm for locating replicas. GPS has been simulated in multi-cluster environments
with up to 2048 nodes with very promising results.

1 Introduction

Message passing systems (e.g. the Message Passing Interface1 – MPI) have been very suc-
cessful in homogeneous cluster environments because of good performance and the rather
simple programming model. The good performance stems from the fact that the developer
explicitly states which processes that should communicate. This means that if the developer
has done it right, there will be no unnecessary communication.

When moving to more heterogeneous and dynamic environments message passing appli-
cations must be custom made to address the nature of a specific environment. Also, message
passing systems rely on node availability and in case of errors the application must handle
its recovery. It is not possible to make message passing systems automatically adapt in these
dynamic environments because message destinations are explicitly stated and are part of the
application’s logic.

In DSM systems processes do not communicate directly with each other, but indirectly
through memory. This makes it possible for a DSM system to solve several problems trans-
parently.

• Replication: The indirect communication makes transparent replication possible be-
cause data is addressable.

• Fault-tolerance: By using active replication to maintain some level of redundancy
transparent fault-tolerance can be achieved.

• Locality: Because the reading processes do not have to be known at the time of writing
it is possible to prioritize local read requests higher than remote. For example, if many
processes were competing to read from a distributed bounded buffer, those processes
that are close to the actual location of the next entry could be served first. This makes

1http://www-unix.mcs.anl.gov/mpi

49

50 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

the system unfair and introduces the possibility of starvation, but still might increase
performance considerably for some applications. Also, it is possible to make a DSM
system fair and without starvation, if needed.

• Focus on functionality: The developer can focus on the functionality of an applica-
tion instead of the environment that it has to be deployed in. This is not much of a
problem in homogeneous environments where every process can be viewed as equal
and communication between processes has the same cost (if each node only runs one
process), but in heterogeneous environments such as the Grid this becomes very com-
plex. Also, heterogeneous environments could dynamically change over time, which
would be very hard for a developer to address using message passing. DSM systems
can adapt in such a dynamic environment because the choice of destination process
can be postponed until there is a requesting one. This can be the responsibility of the
system so that the developer can concentrate on functionality.

Most research in DSM has been targeted at homogeneous clusters, but some work has
gone into making DSM work in a global context. Unify [2] is a shared virtual memory
system made to scale beyond clusters. Apart from accessing the virtual address space as
conventional random access memory, it can also be accessed as sequential access memory
and associative access memory. These other types of memory access makes it possible to
weaken consistency. Globe [3] is a distributed object system where method invocation can
be done as a remote procedure call or by migrating the target object to the calling node. This,
together with various consistency models, can be utilized to make Globe scale in a global
context. In Global Arrays [4, 5] an extra level of remote memory is introduced to make it
scale in multiple distant cluster environments. From a node’s viewpoint this gives three levels
of memory; local memory, remote memory at a node in the local cluster and remote memory
at a node in a remote cluster.

2 PastSet

In PastSet [1], interprocess communication (IPC) is done through what is called an element.
Basically an element is an infinite virtual array of indexed data-blocks that can vary in size
(see Fig. 1). A data-block is denoted a tuple, because of PastSet’s resemblance to systems
based on an abstract tuple space. In the original version of PastSet, tuples had a fixed size for
each element, but this is not required.

2.1 The Element

The way one reads and writes an element is like a bounded FIFO-buffer, but it is also possible
to read a specific index in the array. There are three variables that control the state of the
bounded buffer. first points to the index first written but not yet read, and last points to the
index that should be written next. delta is a value that defines the size of the buffer and thus
the maximum distance between first and last. Tuples with an index that is lower than the first
pointer is not necessarily disposable, it depends on the element’s ”garbage” policy.

2.2 Operations

PastSet preserves a sequential consistency among all operations on an element. This makes
it very user friendly for the developer. There are three main operations that a process can
invoke on an element.

H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

0

1

2

3

5

6

7

8

10

4

9

first

last
Past

N
ot observed

Future
de

lta

Figure 1: The PastSet ’element’.

• move(tuple)writes a tuple to the element at the index referenced by the last pointer.
The last pointer is then incremented by one. If the distance (last− first) between the
first and last pointer is equal to the delta value the operation blocks until the distance
becomes smaller.

• observe reads the tuple referenced by the first pointer and the pointer is then incre-
mented by one. If the first pointer is equal to the last pointer the operation blocks until
the last pointer becomes greater than the first pointer.

• observe(index) reads the tuple referenced by the index. If the index has not been
written yet, the operation blocks until it becomes available. This operation does not
change the first and last pointer.

Tuples are immutable when first written because no operation makes it possible to update
an existing tuple.

3 Global PastSet

This section describes the design of Global PastSet (GPS). To see if DSM makes sense in a
global context performance is the objective of this design.

In the original version of PastSet described in [1], an element where located and con-
trolled at one node. Therefore, all communication with an element had to go through this
single node. This simple approach worked very well in homogeneous clusters, but the higher
latencies imposed by a global environment makes it inefficient.

To avoid the impact of high latencies, GPS distributes elements to the involved nodes.
This is done by changing the way an element is controlled and stored:

• Element control migration: When a node executes an operation on an element the
control of the element is migrated to this node, which then can carry out the operation
locally. Also, the node could execute multiple operations while it has the control. This
way many operations can be executed at one location (e.g. a cluster) before control is
migrated to a remote location.

51

52 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

• Replication: When a node receives or writes a tuple it stores a local copy of the tuple.
This way the tuples are scattered across all involved nodes and get implicitly repli-
cated when a node reads a tuple. Active replication could also be introduced to address
availability and fault-tolerance issues. This excessive form of replication gives no co-
herence problems because tuples are immutable. The only problem that needs to be
addressed, is that of locating the nearest replica.

To gain control of an element a node has to have exclusive access to the state of the
element. The state of an element consists of the first and last pointers together with the
delta value. A custom made distributed mutual exclusion algorithm has been developed to
address this problem. This algorithm utilizes locality by favoring local requests and hereby
minimizing the traffic through high latency lines.

3.1 Mutual Exclusion

The algorithm is token-based, meaning that the node holding the token has exclusive access
to an element’s state. Because an element’s state consists of a rather small amount of bytes
it is stored in the token. This way an element’s state is always available at the node that has
exclusive access to it.

The nodes that are using an element are part of a tree topology where the root node holds
the token (Fig. 2.a). Each node has a reference to a parent node except the root node. This
ensures that there exists a path from each node to the root node and therefore to the token.
Also, it makes it very easy to join the group of nodes that are using an element by finding
one of the others through some kind of naming service.

When a node executes an operation that needs to update the element’s state it most get
hold of the token. If it does not already have it, it sends a request to its parent.

When a node receives a token request it forwards the request to its own parent, unless
it has a pending request itself. In the latter case the token will eventually arrive at the node
and the request is therefore added to a local queue. If the receiving node holds the token the
request is added to a queue in the token.

After the root node is done updating the element’s state the token must be passed on to
the next waiting node, if any. This is done by finding the nearest node in the token request
queue and send the token to this new root node. The old root makes the new root its parent.
This implies that every node must have a way to decide the cost of communicating with
other nodes (e.g. IP addresses, geographical distance, performance monitoring). This way of
passing the token shortens the path that the token has to travel to reach all requesting nodes.

When the token arrives at a node, this node’s local queue is added to the token queue.
Then the pending operations allocates indexes to observes and/or moves, after which the
token can be passed on.

Allocating the needed indexes take little time and therefore if there are many pending
requests in the system the token will move from node to node rather quickly. The result can
be that new requests are chasing the token, which creates a long tail of requests behind the
token. Forwarding these requests impose a rather big load on the involved nodes and also
on the network. In order to avoid this, a node records the source of the last request it has
forwarded. Now when it receives another request it can forward it to this last seen node. This
node either has a pending request for the token or may already have seen the token in which
case the request is just forwarded as described above. If the last seen node has not seen the
token when the request arrives a distributed queue of requesting nodes will be build in front
of the token path. Otherwise, the request will take a shortcut to the token. Though this is
very effective, it introduces a locality problem.

H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

cluster

A

B D

C

[D,B]

[C]

cluster

A

B D

C

[D,C]

A

B D

C

cluster cluster

A

B D

C

[D,B]

a) b)

c) d)

Figure 2: Tree topology. The root holds the token.

In most cases a node will have a local community (LAN, cluster, etc.) and requests from
this community should not be forwarded to nodes on the outside, unless it is absolutely nec-
essary. While a node does not know its local community, the cost of communicating with the
last seen node defines a community in this context. In Fig. 3.a node D (last seen) defines
node B’s local community, by including all those nodes with a lower cost of communication.
Now all requests coming from nodes with a higher or equal cost of communication are for-
warded to D, because D’s request is likely to be served before. Requests from nodes with an
equal cost of communication are also forwarded to D because those are likely to be part of
D’s real local community. In Fig. 3.b C is inside B’s community and therefore the request is
forwarded to the parent. This is because rC should not be added to a remote queue (D might
be located on the other side of the world). It should rather exploit the locality in the token
tree.

Fig. 3.c shows a scenario that could break locality. If C and A are local to each other
and remote to the rest, the token might take a detour because rC is queued at D. This will
not always be true, because it is not certain that rC can catch up with D’s request if rC is just
forwarded to B’s parent. It would have to be able to do this in order for A to make the right
locality decision, when passing on the token. On the other hand, if local communities share
the same subtree in the token tree, this would not happen.

3.1.1 Example

Fig. 2 shows an example of how the algorithm works. Fig. 2.a shows the initial configuration
of the tree. Nodes A, B and C are part of a cluster and node D is remote to this cluster.

In Fig. 2.b A has received a request first from D and then from B, which both have been
added to the token request queue.

53

54 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

rC
B

C

D

A

rC

rC

b)a) c)

B

D

A

C

B

D

A
C

Figure 3: Request forwarding. The dashed circle defines B’s local community bounded by the cost of B com-
municating with D - the last seen node indicated by the dashed arrow. a) The request r C is forwarded to D
because C is outside B’s local community. b) The request rC is forwarded to A because C is inside B’s local
community. c) A scenario that could send the token on a detour, if C and the node that holds the token (A) are
local to each other.

In Fig. 2.c C has send a request to its parent B which has added the request to its local
queue, because it already has a pending request.

In Fig. 2.d A has passed the token to B even though D’s request arrived first at A. This is
because B is closer to A than D. At B the local queue has been added to the token queue.

3.1.2 Starvation and Fairness

In most scientific applications starvation and fairness in IPC are not an issue because the main
priority is to keep the nodes calculating. If CPU utilization is high all nodes will eventually
be served. On the other hand if an application has a high communication overhead, it might
as well be carried out by nodes local to each other if possible.

The mutual exclusion algorithm introduced above is not fair and starvation could occur.
Fairness could be introduced by removing the utilization of locality and starvation could be
avoided by forcing a request to be served if it has been postponed too long (with a counter or
some kind of timeout).

3.2 Move and Observe

This section describes how the custom made mutual exclusion algorithm is utilized to imple-
ment the move and observe operations.

The move and observe operations can only be carried out when the conditions last −
first < delta and first < last holds respectively. Therefore, should the token only be
passed on to a node that can complete a pending operation (the condition holds).

To distinguish between moves and observes a node explicitly requests a move or an ob-
serve, instead of just requesting the token. Nodes also distinguish between pending moves
and pending observes when queuing requests locally to avoid dead-locks. A node must also
distinguish between move and observe requests when saving a reference to the source of the
last seen request.

The fact that the request states which operation to execute also makes it possible for
other nodes holding the token to carry out the operation on behalf of the requesting node.
Therefore, it is possible to constrain the token to certain nodes for security or dependability
reasons.

With these additions the operations can now be specified:

H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

index references local
3 true
4 n2, n5 false
6 n4, n9, n12 true

10 n4, n10 false

Table 1: Tuple table example.

• move(tuple): The issuing node gets hold of the token. Then it inserts the tuple with
last as index, given that the move condition holds, and increments last by one.

• observe: The issuing node gets hold of the token. Then it records first as the tuple
index to read, given that the observe condition holds, and increments first by one.

When the root node is ready to pass on the token, it is passed to the closest node in the
token request queue that has a pending request which can be carried out (the condition holds).
Also, observes are served before moves if their sources are equally close to the forwarding
node. This makes it more probable that the observing node gets a reference to the node with
the tuple it needs, because the distance between the first and last pointer is minimized (see
section 3.3).

3.3 Locating replicas

To guarantee that a node can locate a tuple with a given index there will have to be a deter-
ministic path from each node to each tuple. This section describes what information a node
must maintain to ensure that this path exists and how this information is used to locate a
tuple.

3.3.1 Tuple Table

A node should maintain a tuple table (see Tab. 1). For each index that the node has informa-
tion about, there is an entry in the table. An entry holds a list of references to nodes that have
the tuple and it tells whether the node has the tuple locally.

In the example there are no references to other nodes at index three, but the node has the
tuple locally. For index six the node holds the tuple locally, but it also has references to other
nodes that hold the tuple. This could seem redundant but it makes it possible for the node to
flush the local copy while still being able to find it again.

To ensure that there exists a deterministic path from each node to each tuple a constraint
is imposed on tuple tables. This constraint must ensure that a node that has a copy of a tuple
with index i must also know where to find the tuple with the index i − 1. For i = 0 this is
obviously not required.

All that are needed to uphold this constraint is that the token holds a reference to a node
holding the last written tuple. Then the next node that moves a tuple can store this reference
in its tuple table.

How this constraint together with the token tree is utilized to locate tuples is explained
below.

55

56 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

a) b)

2

3

4

A B C D

0

1

A D

B

C

Figure 4: Tuple request paths. a) Logical tree for mutual exclusion for nodes A-D. b) Tuple tables for the four
nodes. Dark squares indicate that the node has a copy of the tuple locally and an arrow indicates where it can
find it. If there is no square the node does not know anything about the tuple.

3.4 Tuple back-trace

The tuple table constraint described above ensures that for each tuple with index i that a node
holds locally there exists a path to the location of each tuple with index j < i (see Fig. 4).

If a node needs a tuple with index i it sends a request to the node that has the tuple with
index j, where j is the smallest index so that j ≥ i. When a node receives a request for a
tuple that it does not hold locally it forwards the request in the same manner.

Fig. 4.b illustrates how these paths work. If node C wants the tuple with index i = 0,
it sends a request to node B because the tuple with index j = 1 is the nearest tuple, so that
i ≤ j, that C can find. The request is again forwarded from B to A following the same rule
and A has a copy of the requested tuple. If B ceased to exist there would still be a path to the
copy at D.

If there are multiple nodes to choose from when forwarding a request (as in the example)
the nearest node is chosen.

3.5 Parent forwarding

Fig. 4.b shows that there is not necessarily a path from all nodes to all tuples, but if the logical
tree for mutual exclusion is used together with tuple back-tracing, this path exists. This is
easy to prove. Following the path to the tree’s root a request can find the token, which has
a reference to the location of the last written tuple. Now it is possible to back-trace to the
required tuple. If for example node C in Fig. 4 wants the tuple with index i = 3 it sends a
request to its parent B which starts the back-tracing to D.

In many situations the request will be able to start the tuple back-tracing on its way toward
the root. This will relieve the root node and make the path shorter.

3.6 Non-existing tuples

In the case of an indexed observe of a tuple that has not been written yet, a process should
block until it becomes available. Therefore, all nodes with a pending request for a non-
existing tuple should receive a copy of the tuple after it is written, but how is this achieved
efficiently?

A tuple request for a non-existing tuple will eventually reach the root node where it dis-
covers that the tuple does not exist. These requests could simply be recorded in the token
and be served when the tuple becomes available. When a node writes the tuple it would

H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

have to send copies to all waiting nodes listed in the token. For some applications this would
result in a huge token payload caused by too many tuple requests, which would slow down
token forwarding. Also, the time used for sending copies to waiting nodes would increase
proportionally to the number of pending requests.

This problem is solved by parallelizing the copying so that nodes receiving the first copy,
forwards it to other waiting nodes and so forth. To accomplish this a tree of waiting nodes is
build for each requested non-existing index. In this tree each requesting node knows its child
nodes (if any) and the root of the tree is maintained in the token. The token and each node
can have an individual fixed number of children and this number defines the max number of
copies a node wants to forward. This also helps distribution of existing tuples.

Now how is the tree created? When a node receives a tuple request it checks if it has
already got a pending request itself, in which case it adds the requesting node as a child. If
it cannot have more children it forwards the request to one of the children it already has.
The choice of child to forward to is based on locality, meaning that the closest child will be
chosen. If there is a choice of equally close children, requests are forwarded to these in a
round-robin fashion. If it does not have a pending request it will forward the request to its
parent.

The root of the distribution tree is handled a bit differently. If there is room in the token a
request is just added like described above. If not, the existing requests are searched to see if
one originates from a node further away from the token’s current position, compared to the
source of the new request. If such a request exists it is replaced with the new request and
sent to the source of the new request. Otherwise the new request is forwarded to one of the
nodes in the token. This will build subtrees with nodes that are local to each other, because
the token is not forwarded to remote nodes unless it is absolutely necessary. For example
when a distribution tree has been build in a cluster where the token exists and the token is
transfered to another cluster, local requests in this other cluster will replace the requests in
the token. This will have the effect that there will be few edges between the two clusters in
the distribution tree.

When a requested tuple is written the writing node has the token and can therefore send
copies of the tuple to the children of that index (if any). The tree ceases to exist when the tuple
it represents becomes available and it is automatically removed as each node has received a
copy of the tuple and forwarded it to its children.

The optimal configuration of a tree would naturally be one that exploited the network’s
topology to achieve a minimal tuple distribution time, but the information to do this is not
available. First of all it is not known which node will write the tuple while the tree is created,
secondly the set of nodes requesting the tuple is not predetermined.

3.6.1 Piggybacking

To minimize the number of hops required to locate tuples the tuple tables are filled with extra
tuple information. This is accomplished by piggybacking tuple information when sending
messages. This redundant information is justified by the fact that bandwidth is increasing ev-
ery day, while latency improvements are rare and bounded by the speed of light. Therefore, if
redundant information can lower the number of hops that requests have to take, performance
should be improved considerably.

The information that is piggybacked is small tuples and references to nodes holding larger
tuples. Small tuples are sent fully, because they are comparable to references in size. The
type of message that piggyback information is attached to dictates in some cases the contents
of this information. For example when the token is passed on to a node that needs it for an
observe operation, information about tuples with indexes from first and up follows the token.
For other messages there is no way to connect helpful information in regards to the message

57

58 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

psfs

beobab
bandwidth = 0.5 MB/s

delay = 0.017 s

bandwidth = 0.5 MB/s

delay = 0.020 s

roadrunner

bandwidth = 3 MB/s

delay = 0.0032 s

Figure 5: Simulation environment.

itself. Information about the last known tuple is always piggybacked, which helps to find
other tuples as described in section 3.4.

It has not been investigated what effect, the number of small tuples and/or tuple references
that are piggybacked with each message, has. More piggyback information should lower the
number of hops a tuple request has to take. On the other hand, the added payload of more
piggyback information would increase the load and take up storage resources.

4 Simulation Results

The performance of the design have been tested by simulating an environment of three clus-
ters from the real world. The simulation has been implemented in the Ptolemy II [6] modeling
system. The choice of simulation instead of a real implementation is based on two facts; First
of all it has not been possible to get exclusive access to thousands of nodes. Secondly the
heterogeneous nature of the environment makes it difficult to compare results.

4.1 The simulated environment

The clusters that the simulation has been based on are roadrunner and beobab which are
located in two different cities in Denmark, together with psfs located in Norway.

Fig. 5 shows the three clusters. Also, the bandwidths and one-way null byte latencies
(delay) between them are displayed. These numbers have been benchmarked in the real
environment.

The real setup of the real clusters have not been simulated. Instead each simulated cluster
consists of a number of nodes connected with one 100 Mbit/s switch that has a backplane with
infinite bandwidth. The delay from node to node through this switch is 100 µs (benchmarked
with a real 100 Mbit/s switch).

4.2 Test Programs and Initial Setups

The performance of GPS has been tested with a variety of communication patterns, instead
of actual parallel applications. This is obviously because these applications require too many
system resources to be run on a single workstation with Ptolemy. Therefore, a set of commu-
nication patterns, that are often used in parallel applications, have been chosen. These are as
follows:

• One-to-one: This is simply communication between two nodes. This will show how
fast a node can communicate with another node, which is not as trivial in DSM systems

H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

binary
subtree

b) c)a)

Figure 6: Initial tree configurations.

as it is in message passing systems where nodes explicitly define what node they want
to communicate with.

• One-to-many: This resembles a broadcast from one node to all nodes.

• Many-to-one: All nodes sent data to one node.

• Many-to-many: All nodes sent data to all other nodes. This is the same as if all nodes
broadcast a message.

• Global reduction: This is often used in parallel applications to make a global sum,
minimum, maximum, etc. out of local values from each process. When the result is
ready it has to be distributed to all involved nodes.

Patterns based on indexed and unindexed observes have been tested. All these patterns
have been tested with different numbers of nodes and various configurations defined by these
properties:

• Node configuration. Each program has been run with a various number of nodes to
show how well GPS scales. One, two (roadrunner and beobab) and three cluster setups
have been tested. The clusters has been given an equal amount of nodes.

• Initial token tree configuration. Fig. 6 shows the initial token tree configurations that
have been tested. In the binary configuration each cluster has a binary subtree as in
Fig. 6.a. In the linear configuration each node has only one child and there is only one
edge between clusters (see Fig. 6.b). In the star configuration all nodes has the root as
their parent (see Fig. 6.c).

• Tuple size. The programs has been tested with a tuple size of one byte and 10000 bytes.

4.3 Results

All programs with all the various configurations have been run. This amounts to hundreds of
results, which would be to comprehensive to discus in this paper. The general picture is that
GPS scales linearly in most runs.

The following will elaborate on some of the outstanding results that illustrates parts of
the system that needs improvements.

59

60 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

0

5

10

15

20

25

30

35

40

45

64128 256 512 1024 2048

tim
e/

se
co

nd
s

nodes

many-to-one-indexed

binary
linear

star

Figure 7: 3 clusters, tuple size=10000.

4.3.1 Many-to-one Indexed

In this program all nodes move a tuple, while one node in the roadrunner cluster makes n
(the number of nodes) indexed observes. Fig. 7 shows the results for three clusters and a
tuple size of 10000 bytes.

Though the results scale very well for all three tree configurations the performance is
not ideal. The bandwidth between roadrunner and psfs sets a lower bound of what can be
achieved. For n = 2048, 2048/3 = 683 tuples must be transfered from psfs to roadrunner,
which with a bandwidth of 0.5 MB/s takes 13.0 seconds. These poor results are caused by
the fact that the observe operation is blocking. The extra time is spend locating tuples before
they can be downloaded. This is all done sequentially because only one observe is executed
at a time.

A solution to this problem would be to find many tuples in parallel. This could be done
by introducing a prefetch operation that requests many tuples at a time.

4.3.2 Many-to-many Indexed

In this program all nodes move a tuple after which they make n indexed observes. Fig. 8
shows the results for three clusters and a tuple size of 10000 bytes.

The performance is very bad because many requests for a tuple arrive simultaneously at
the node that has moved it. The node will send the tuple to all requesting nodes, instead of
forwarding the requests to other nodes that might have or will get the tuple. This is because
the design of GPS dictates that a node having a tuple locally must send it directly to a re-
questing node. Together with blocking observes this results in a very serial distribution of
tuples.

Again a prefetch operation would improve considerably on these results, because tuple
distribution trees could be build before tuples are moved. Also, a node that has a tuple transfer
in progress could forward a consecutive request for the same tuple to other nodes that hold, or
will hold the tuple in the future. This could be combined with wormhole routing to improve

H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

0

200

400

600

800

1000

1200

1400

64 128 256 512

tim
e/

se
co

nd
s

nodes

many-to-many-indexed

binary
linear

star

Figure 8: 3 clusters, tuple size=10000.

performance even further.

4.4 Global Reduction

To make a global reduction with GPS one node moves the first result. All other nodes makes
an unindexed observe, reduces the received value with the local value and moves the result.
All nodes observes the index n − 1 to get the result of the global reduction. Fig. 9 shows
the results for three clusters and a tuple size of one byte. The results for one and two clusters
look almost the same except for slightly better performance, as one would have expected.

Though a global reduction can be made to scale logarithmically, the GPS reduction will
at best scale linearly. This is because the token has to visit all nodes. Having this in mind
the linear and star configurations are performing ideally. The reduction is carried out locally
in one cluster before it is continued in the next. For a tuple size of one byte there is a lower
time limit of 2047× 100µs = 0.2047s (n = 2048), which is the minimum time for the token
to travel to all nodes in a single cluster. This is close to the actual results. Also, all the results
show that broadcasting the result does not add much to this time, thus it is done in parallel.

The binary configuration has a problem because the token grows very large as it travels
from node to node. Each parent receives one observe request from each child which they
queue locally because they have a pending request of their own. When the token arrives at
a parent, one observe request is removed from the token, but two are added from the local
queue. As a result the token costs more and more to forward until it arrives at the leaf nodes
where no new requests are added.

This problem is not easily solved, but a solution could be to set an upper limit on how
many requests the token can queue. When the queue is full, remaining requests should simply
follow behind the token. The problem with this solution is that the set of nodes to choose
from, when picking the next token destination, is smaller.

61

62 H. H. Happe and B. Vinter / Distributed Shared Memory in Global Area Networks

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

64128 256 512 1024 2048

tim
e/

se
co

nd
s

nodes

reduction

binary
linear

star

Figure 9: 3 clusters, tuple size=1.

5 Conclusion

This paper has described the design of a DSM system for global environments. The system
is based on PastSet [1], a DSM system for cluster environments. The design has been tested
in a simulated environment of multiple geographically distant clusters, with up to thousands
of nodes.

The design has shown that there are two main problems that need to be addressed, when
moving PastSet to this new environment; Some means of upholding consistency and an algo-
rithm for locating near replicas.

The test results have shown that GPS scales linearly, with some exceptions. The problems
of these exceptions have been identified and solutions to address them have been suggested.

References

[1] Brian Vinter. PastSet: A Structured Distributed Shared Memory System. PhD thesis, Department of Com-
puter Science, Faculty of Science, University of Troms, Norway, 1999.

[2] James Griffioen, Rajendra Yavatkar, and Raphael Finkel. Unify: A scalable, loosely-coupled, distributed
shared memory multicomputer.

[3] Philip Homburg. The Architecture of a Worldwide Distributed System. PhD thesis, 2001.

[4] Jarek Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global arrays: a portable programming
model for distributed memory computers. In Supercomputing, pages 340–349, 1994.

[5] J. Nieplocha and R. J. Harrison. Shared memory NUMA programming on I-WAY. In Proc. of the Fifth
IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-5), 1996.

[6] Ptolemy. http://ptolemy.eecs.berkeley.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

