
Communicating Process Architectures 2003 1
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

A Comparison of High Performance,
Parallel Computing Java Packages

Nan C. SCHALLER and Sidney W. MARSHALL
Computer Science Dept., Rochester Institute of Technology

102 Lomb Memorial Drive, Rochester, NY 14623-5608, USA
ncs@cs.rit.edu, swm@cs.rit.edu

Yu-Fong CHO

R&D Group, Askey Computer Corp.
10F, NO 119, Chien-Kang Road, Chung-Ho, Taipei 235, Taiwan

yfcho@askey.com.tw

Abstract. The high-performance computing community has developed numerous
Java packages that support parallel and distributed computing. Most of these
packages are designed for the typical parallel message passing and shared memory
architectural paradigms. This paper presents the results of a recent study that
included a web search for such packages, describes the paradigms implemented in
them, and evaluates their performance on a parallel, 4-processor SMP machine using
three benchmark programs that represent a mix of typical parallel applications,
chosen from The Java Grande Benchmark Suite. A brief description of each package
and a discussion its ease of installation and use are also provided.

1 Introduction

Today, the high-performance computing (HPC) community is more interested than ever in
the possibility of using Java. It is becoming more viable to do so. As Pancake and Lengauer
recently reported: “Previous Java implementations focused mainly on the portability and
interoperability aspects required for Internet-centric client/server computing. Because Java
was originally interpreted, it is commonly perceived as being execution inefficient. Recent
developments in compiler technology and instruction-level optimisations have done away
with many of the sources of this inefficiency. Java’s recent execution efficiency
improvement is due to static analysis, just-in-time compilation and optimization of the Java
Virtual Machine (JVM). Software scientists are also making efforts to improve Java’s
performance of remote method invocation (RMI), numeric capabilities, and communication
mechanisms. These days, Java is competitive with C and C++ for some applications on
some platforms, and it is considerably safer to execute and easier to program.” [1]

This paper reports on a study that evaluated several publicly available Java packages for
HPC with respect to ease of installation, ease of use, and performance. Some of these
packages were sponsored by the Java Grande Forum [2], a major consortium representing
the interests of the Java high-performance computing community. The Forum’s benchmark
software was used to measure and compare the performance of these packages.

2 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

2 Background

Parallel computing platforms are usually either single computers with multiple internal
processors or multiple interconnected computers. Two methods for communicating
between such processors use message passing or shared memory. In message passing
systems, memory is distributed among the processors, each processor having its own
address space. In this case, a processor can only directly access its own memory and an
interconnection network is necessary for processors to be able to send messages to other
processors. Shared memory multiprocessors use a single address space. Here, each location
in memory has a unique address that may be used by each processor to access that location.
[3]

The HPC community has developed several Java packages that are suitable for these
architectural paradigms. For example, for message passing, there are packages based on the
Communicating Sequential Processes (CSP) [4], Message Passing Interface (MPI) [5], and
Parallel Virtual Machine (PVM) [6] models and for shared memory, there are packages
based on the Open Multi Processing (OpenMP) [7] and Linda [8] models. Brief
descriptions of these models are provided below.

• Message Passing using CSP

“Communicating Sequential Processes (CSP) is a mathematical theory for specifying
and verifying the complex patterns of behavior arising from interactions between
concurrent objects. CSP has a formal, and compositional semantics that …
encapsulates fundamental principles of processes, networks and communication.” [9]
CSP programs are written using processes, networks of processes and various forms
of synchronization and communication between them.

• Message Passing using MPI
“MPI (Message Passing Interface) is a library specification for message passing,
proposed as a standard by a broadly based committee of vendors, implementers, and
users. The message-passing application programmer interface (API) is combined
with protocol and semantic specifications for how its features must behave in any
implementation. MPI includes point-to-point message passing and collective
operations.” [5]

• Message Passing using PVM
“PVM (Parallel Virtual Machine) is an integrated set of software tools and libraries
that permits a heterogeneous collection of computers hooked together by a network
to be used as a parallel computer.” [6][10][11]

• Shared Memory using OpenMP
“OpenMP (Open Multi Processing) is a specification for a set of compiler directives,
library routines, and environment variables that can be used to specify shared
memory parallelism. The OpenMP Application Program Interface supports multi-
platform shared-memory parallel programming on all architectures...” [7]

• Shared Memory using Linda
Linda is a concurrent programming model whose primary concept is that of a
tuple-space, an abstraction via which cooperating processes communicate ...
Linda … provides a shared-memory abstraction for process communication without
requiring the underlying hardware to physically share memory.” [8][12]

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 3

3 A Survey of Packages Found

The purpose of this study was to locate HPC Java packages on the Web, and evaluate their
ease of installation, their ease of use, and their performance. After locating many such
packages, the study was narrowed to those packages that

• Supported either the message passing or shared memory programming models.
• Were publicly available, i.e., not commercial software.
• Worked with the standard Java Development Kit (JDK).
• Were up-to-date. (For the purposes of this study, JDK 1.4.0 was considered up-to-

date.)

The Web search was performed in April 2002 with the evaluation process continuing

through September 2002. Packages found under these narrowed criteria are listed below
along with a brief description taken from each web site, and are summarized in Table 1.

3.1 Message Passing using CSP

Two Java packages were found that use the CSP model: Communicating Threads for Java
(CTJ) [13] and Communication Sequential Processes for Java (JCSP)[14]. As both CTJ and
JCSP were implemented using the CSP model, they have many concepts in common[15].
An important difference between them is their process scheduling systems.

CTJ’s process scheduling kernel is specially designed for programming small, real-time
embedded systems. [16][17] “The prototype CTJ package provides the thread/CSP model
of processes, channels, and composition constructs for Java… It implements the CSP model
for the standard Java monitor/threads operations, and enables any Java threaded system to
be analyzed in CSP terms.” [16]

JCSP also implements the CSP model, but relies on the Java Virtual Machine (JVM) for
its thread scheduling. “JCSP is a 100% Java class library providing a base range of CSP
primitives. It also includes a package providing CSP process wrappers giving a channel
interface to all Java AWT widgets and graphics operations.” [14]

3.2 Message Passing using MPI

Two packages were found that use the MPI model: JavaMPI [18] and mpiJava [19].
“JavaMPI is a Java binding for MPI... The JavaMPI library contains an MPI library that

is dynamically linked to the JVM during program execution.” [20]
“mpiJava is an object-oriented Java interface to standard MPI. mpiJava does not assume

any special extensions to the Java language. It can be ported to any platform that provides
compatible Java development and native MPI environments. The mpiJava package is
implemented as a set of Java Native Interface (JNI) wrappers to native MPI packages.
Platforms currently supported include Solaris using MPICH [21] or SunHPC-MPI [22],
Linux using MPICH [21], and Windows NT using WMPI [23].” [19] The mpiJava package
was developed as part of the HPJava project [24] supported by the Northeast Parallel
Architectures Center (NPAC) [25] at Syracuse University.

3.3 Message Passing using PVM

The web search found two Java packages that use the PVM model: jPVM (JavaPVM) [26]
and JPVM [27].

“jPVM is an interface written using the Java native methods capability that allows Java

4 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

applications to use the native Parallel Virtual Machine (PVM) [6] software developed at
Oak Ridge National Laboratory. jPVM extends the capabilities of PVM to the Java
architecture-independent programming language. jPVM allows Java applications and
existing C, C++, and Fortran applications to communicate with one another using the PVM
API. “ [26]

“JPVM is a PVM-like library of object classes implemented in and for use with the Java
programming language. It combines two advantages, ease of programming inherited from
Java and high performance through parallelism inherited from PVM.” [27]

3.4 Shared Memory using OpenMP

The only Java package found using the OpenMP model was JOMP [28].
“JOMP implements the OpenMP Application Program Interface (API) in Java. It

provides OpenMP-like directives and methods consisting of a compiler and runtime library
written entirely in Java. JOMP implements most of the OpenMP specification.

JOMP uses the fork-join model of parallel execution. A program written using the
JOMP API begins execution on a single thread called the master thread. The master thread
executes in a serial region until the first parallel construct is encountered, whereupon the
master thread creates a team of threads, which includes itself. Each thread then executes the
code in the dynamic extent of the parallel region...” [29][30]

3.5 Shared Memory using Linda

Two packages were found that used the Linda model: Jada [31] and JavaSpaces [32].
 “Jada adds operations to access Linda-like multiple tuple-spaces. Jada’s design goal

was simplicity rather than performance. Jada, like Linda, is a minimalist coordination
language. Other Linda-like implementations usually include a pre-processor, necessary
because Linda slightly changes the host language syntax. Jada is based on a set of classes
that are used to access a tuple-space... This allows users to use their standard Java
development tools. Jada is implemented as a set of classes that allow either Java threads or
Java applications to access an associatively shared tuple space using a small set of Linda-
like operations.” [33][31]

“JavaSpaces technology is a simple unified mechanism for dynamic communication,
coordination, and sharing of objects between Java technology-based network resources like
clients and servers. In a distributed application, JavaSpaces technology acts as a virtual
space between providers and requesters of network resources or objects. This allows
participants in a distributed solution to exchange tasks, requests and information in the form
of Java technology-based objects... The design of JavaSpaces was strongly influenced by
Linda. JavaSpaces systems are similar to Linda systems in that they store collections of
information for future computation and are driven by value-based lookup.” [34]
JavaSpaces technology was developed by Sun Microsystems [35] and is included in the Jini
package.

3.6 Others

Other Java solutions for high performance computing were found. Some of them were
replacements for the Java compiler, or the JVM. Furthermore, some of them replaced the
Java language itself, using an extended Java syntax to gain the benefits of Java. These were
not included in the study.

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 5

3.7 Summary of Results

Table 1 provides a summary of the Java packages found during the web search that met the
criteria set forth. It lists the JDK version used for development, the programming paradigm,
the version tested, and the date of latest update at the time of the study.

Package Name JDK Version Programming Paradigm Version tested Latest Update

CTJ Not specified Message passing using CSP 0.9, r18 October 2000
JCSP 1.1.5 or later Message passing using CSP 1.0-rc4 Feb. 2002
JavaMPI Not specified Message passing using MPI 0.4 November 1998
mpiJava 1.2 or later Message passing using MPI 1.2.3 October 2001
jPVM 1.1.5 or later Message passing using PVM 1.1.4 April 1998
JPVM Not specified Message passing using PVM 0.2 Feb. 1999
Jada Not specified Shared memory using Linda 3.0 beta April 2001
JavaSpaces 1.2.2_007 or later Shared memory using Linda 1.2.1 April 2002
JOMP 1.2 or later Shared memory using OpenMP 1.0 beta 2000

Table1: Summary of Java Packages

4 Installation and Usage

For the purpose of this study, all packages were installed and tested on a Sun Microsystems
Enterprise 450 running the Solaris 8 Operating System. This SMP system has four
UltraSPARC II 248 MHz CPUs with 2048 Megabytes system memory, and a system clock
frequency of 83 MHz. As some of the packages were designed for an SMP system and
could not be used on a cluster or distributed systems, testing was limited to this single four-
processor system. All benchmark programs were compiled using the standard JDK
compiler (javac), and were executed using the standard JDK Java virtual machine
(java).

In several cases, all that was needed to set up the package was to download it,
uncompress a file or two, and add the appropriate directory to the CLASSPATH
environment variable. This was the case for CTJ, JCSP, Jada and JOMP. For others, it was
more complicated. And, some packages could not be installed on the system. The following
subsections contain notes regarding installation and programming with these packages.
Table 2 summarizes this information.

4.1 CTJ

Besides needing to understand CSP to program with CTJ, special effort is required to run in
parallel. The terms “Thread” in Java and “Process” in CTJ are closely related, but do not
act the same way. CTJ does not perform time slicing by default, even if a programmer
creates a multi-process program. This means that CTJ does not context-switch between
processes unless those processes engage in an event such as communicating with each other
through a CTJ channel. CTJ does provide a TimeSlicer class to enable time slicing
among a single processor’s subprocesses. CTJ has its own process scheduling kernel, and is
specially designed for small, embedded, real-time systems. In addition, CTJ does not
automatically distribute processes across processors. Therefore, to run in parallel, the user
must manually start a process on each processor. In addition, special channel classes
must be provided to implement communication on a distributed memory system.

6 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

4.2 JCSP

Programming under JCSP is similar to programming using Java threads. Because it is based
on CSP, JCSP purports to provide a superior mechanism to the Java threads mechanism for
handling multi-threaded programming. A program unit is called a process rather than a
thread. Programmers can either simply use the JCSP process mechanism to replace the
Java threads or use the CSP model to implement parallel programs. While, JCSP was
designed to be efficient on any parallel architecture, the public domain JCSP version tested
only runs in parallel on shared memory systems.. The user must implement classes to
provide communication on distributed memory systems or purchase the commercial
version. (JCSP was commercially released by Quickstone Technologies [36] during the
time of our study.)

4.3 mpiJava

A native MPI C interface, such as MPICH [21] or SunHPC MPI [22], is required to use the
mpiJava package. The default interface is MPICH. Our attempts to modify the mpiJava
startup script to work with SunHPC 3.1, the MPI version already installed on the test
system, were not successful. Therefore, MPICH was used instead. It should be noted that
we were successful with SunHPC 4.0 later on a different system.

The installation and usage of mpiJava requires precaution, especially if, as in our case,
the system uses Secure Shell (SSH) services, i.e., telnet services are not available. Such
information must be provided before compiling and installing both MPICH and mpiJava. In
addition, the SSH agent must be set up to automatically log on without requiring a
password before running mpiJava programs.

However, programming under the mpiJava environment is straightforward. mpiJava
provides wrapper classes for the MPI package as extended Java classes, so using an MPI
function is the same using any Java class. And, it is similar to other MPI programming
environments.

4.4 Jada

Programming Jada is straightforward. Jada implements a Linda-like tuplespace called
ObjectSpace. Linda-like programming models use the term worker to represent a
thread/process. Communication takes place between workers by depositing tuples into
and withdrawing tuples from ObjectSpace.

4.5 JavaSpaces

In order to use JavaSpaces, users must install the Jini package from Sun Microsystems, Inc.
[35]. Installation is easy, but starting JavaSpaces is much more complicated, since Jini must
be started first. This requires that the following services be started: an HTTP Server, an
RMI Activation Daemon, an RMI Registry or a Jini Lookup service, a
Transaction Manager, and then finally JavaSpaces. In addition, a Java security
policy must be defined before execution. It is complicated to get everything started
correctly.

JavaSpaces uses an Entry class that acts like a Linda-like tuple, i.e., to be written into
and to be taken out of JavaSpaces. Each field of an entry must be a public object type, and
an Entry cannot store primitive types in its fields. Programmers who are just starting to
program using JavaSpaces technology could easily miss this restriction.

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 7

4.6 JOMP

Programming in the JOMP environment is similar to programming in other OpenMP
programming environments. JOMP provides OpenMP-like syntax and programming style.
It also provides a JOMP pre-compiler that will translate a Java program into a JOMP
parallel program, which helps programmers focus on their parallel algorithm and not JOMP
syntax.

4.7 Packages Not Tested

The JPVM, jPVM and JavaMPI packages, mentioned in the previous section, were not
tested. Research had ended for all three packages and their most recent implementations
would not execute under the JDK specified in our refined criteria. Furthermore, MPI seems
to have, for the most part, replaced PVM as the de facto message passing standard.

Package Name Additional
Required Software Ease of Installation Ease of Use Remark

CTJ None Easy Need knowledge of CSP
JCSP None Easy Need knowledge of CSP

JavaMPI MPI/LAM Not compatible with
hardware Out-of-date Not tested

mpiJava MPICH or SUN HPC Need to compile
both packages Need knowledge of MPI

jPVM PVM Out-of-date Not tested
JPVM None Out-of-date Not tested
Jada None Easy Need knowledge of Linda

JavaSpaces Jini Complicated Need knowledge of Linda
and complicated to set up.

JOMP None Easy Easy

Table 2: Ease of Installation and Use

5 Benchmarks

The purpose of benchmark testing is to provide a means to meaningfully measure and
compare alternative execution environments. Three benchmarks were chosen for this study
out of the five available in The Java Grande Forum Benchmark Suite[37]. “These
algorithms are designed to use large amounts of processing, I/O, network bandwidth, or
memory.” [37] Thus, each algorithm chosen represents a particular type of application
program. “These codes are simple kernels that reflect the type of computation that can be
expected to be found in the most computation intense parts of real numerical
applications”[38]. However, they are not the optimal implementations of these algorithms.
Brief descriptions of the benchmark algorithms chosen follow.

5.1 The Crypt Benchmark

“The Crypt benchmark performs International Data Encryption Algorithm (IDEA)
encryption and decryption of an array of N bytes. This algorithm involves two principal
loops, whose iterations are independent and may be divided between processors in a block
fashion.” [38] The Crypt benchmark represents parallel applications that are both
computation and communication intensive. The parallel version of this benchmark
distributes encryption computation to processors, merges the results of encryption,

8 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

distributes decryption computation to processors, and then collects the results of decryption.
An N byte array must be transmitted between processors whenever communication is
needed. Synchronization is required at the end of the encryption and decryption steps.

5.2 The Series Benchmark

“The Series benchmark computes the first N Fourier coefficients of the function
f(x)=(x+1)x on the interval [0, 2]. The most time consuming component of the benchmark
is the loop over the Fourier coefficients. The calculation of each coefficient is independent
of every other coefficient and the work may be distributed simply between processors.”
[38] The Series benchmark represents the purely computation intensive parallel application.
The parallel version of this benchmark distributes the computation to the processors and
then collects the computed Fourier coefficients. Little communication is required.
Synchronization is required at the beginning and the end of the benchmark.

5.3 The SOR Benchmark

“The SOR benchmark performs 100 iterations of Successive Over-Relaxation (SOR) on an
N x N grid. This benchmark involves an outer loop over iterations and two inner loops, each
looping over the grid. In order to update elements of the principal array during each
iteration, neighbouring elements of the array are required, including elements previously
updated. Hence this benchmark is inherently serial. To allow parallelism to be carried out,
the algorithm has been modified to use a “red-black” ordering mechanism. This allows the
loop over array rows to be parallelised. Hence, the outer loop over elements has been
distributed between processors by columns.” [38]

The SOR Benchmark represents the most communication intensive application of these
three benchmarks. In the parallel version, an N x N grid must be distributed equally to the
participating processors at the beginning of the program, 2N rows of the grid must be
exchanged between processors for each iteration, and the N x N grid must be returned to the
host processor at the end of the program. Synchronization occurs at the beginning of the
program, at the end of each iteration, and at the end of the benchmark.

6 Performance Results

The benchmarks were executed for a variety of dataset sizes on the test platform. It should
be noted that the figures that follow show the results for the largest datasets only for each
benchmark. The raw data is provided as well in tabular form in Appendix A. Other figures
are available from the authors upon request. The execution of the sequential version of the
benchmark was used as the basis for speedup calculations. However, as these sequential
versions are not purported to be the “best” algorithms, it might be appropriate to consider
the speedup measurements below as “relative” rather than “theoretical”. Benchmark results
are expected to improve as the dataset size increases. In addition, communication overhead
is expected degrade performance. However, bigger data sets requiring more computation
can be expected to mitigate some of this degradation.

This study utilized a set of Java timing utility classes, available from The Java Grande
Forum Benchmark Suite [37]. All of the times measured were actual algorithm computation
times in seconds excluding initialization and I/O time. Each benchmark test was executed
ten times to evaluate the variation of the results; there was little variance from test to test.
Thus, an average execution time was used.

Execution time should ideally decrease as the number of processors used increases.

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 9

Speedup is calculated using formula 6.1 and indicates how much faster the parallel version
is than the sequential version. Ideally, speedup should increase linearly as the number of
processors increases. Computation intensive algorithms are expected to perform better, i.e.,
exhibit more speedup, than communication intensive algorithms.

 rsionocessorsVeimeOfMutiExecutionT

onntialVersiimeOfSequeExecutionTSpeedup
Pr

= (6.1)

6.1 Results for the Crypt Benchmark

The Crypt benchmark represents applications that are both computation and communication
intensive. Benchmarks were run using datasets of 3 MB, 20 MB, and 50 MB arrays. Figure
1 shows the execution time of all packages for this benchmark for the 50 MB dataset and
Figure 2 shows the speedup. These figures show that most packages performed well, with
the exceptions of JavaSpaces, mpiJava and CTJ.

JavaSpaces performed worse than any other package for this benchmark. However,
JavaSpaces did show some benefit from a multiprocessor environment. As mentioned
above, Jini services, which consume a lot of system resources, must be started correctly
before starting JavaSpaces. For example, almost 300 MB of system memory was already
consumed before benchmark programs were loaded. Furthermore, JavaSpaces threw an
OutOfMemory exception for the 20 MB or 50 MB datasets. Assigning larger memory to
the JVM did not solve this problem.

0

50

100

150

200

250

300

350

400

1 2 3 4

Number of Processors

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

CTJ
Jada
JavaSpaces **
JCSP
JOMP
mpiJava *
Sequential

* No data for mpiJava on three processors for 20 and 50 MB
** No data at all for JavaSpaces for 20 and 50 MB

Sequential Version

Figure 1. Execution time of Crypt benchmark for 50 MB array dataset

It is interesting to note that the other Linda-like package, Jada, performed well for the

Crypt benchmark. Although both of JavaSpaces and Jada are implemented as Linda-like

10 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

shared memory paradigm, their implementations are different. Jada’s implementation takes
the advantage of the SMP system, but JavaSpaces creates a virtual memory over the
network of computers. JavaSpaces then uses network-based communication even when
shared memory is available. This type of communication is not as fast as but does have
better scalability.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

Number of Processors

Sp
ee

du
p

CTJ
Jada
JavaSpaces **
JCSP
JOMP
mpiJava *

* No data for mpiJava on three processors for 20 and 50 MB
** No data at all for JavaSpaces for 20 and 50 MB

Figure 2. Speedup for Crypt benchmark with 50 Megabyte array dataset

CTJ performed much better than JavaSpaces but not as well as the other packages. It

was slower, particularly when the number of processors used was increased. This is likely
due to the mechanism used to handle communication between individual processors.

We also experienced difficulty with mpiJava when using three processors for the 20 MB
and 50 MB datasets. We have not been able to identify the cause of the problem, but the
MPICH FAQ indicated that it might be due to compiler implementation incompatibility. A
new version of MPICH (1.2.4) was released at end of May 2002. More investigation is
required to see if this problem is resolved with this newer version, or by utilizing SunHPC’s
MPI.

To summarize, the Crypt benchmark represented common applications that are both
computation and communication intensive. All packages showed reasonably good
performance with the exception of JavaSpaces, mpiJava and CTJ. When no other issues
arose, as expected, performance was better the larger the dataset.

6.2 Results for the Series Benchmark

The Series benchmark represents a computation intensive application. Dataset sizes were
limited to 10K and 100K Fourier coefficients as the time to process a 1000K Fourier
coefficient dataset proved prohibitive. Figure 3 shows the execution time of all packages

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 11

for the Series benchmark calculating 100K Fourier coefficients, while Figure 4 shows the
speedup. As is shown in these figures, the performance of all packages was roughly the
same. This is because of the benchmark’s computation intensive nature, i.e., not much
communication is needed. Interestingly, a few of the single processor versions, most
notably JCSP’s, did execute faster than the sequential version.

0

100

200

300

400

500

600

700

800

1 2 3 4

Number of Processors

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

CTJ
Jada
JavaSpaces
JCSP
JOMP
mpiJava
Sequential

Sequential Version

Figure 3. Execution Time of Series benchmark for 100K Fourier coefficients

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

Number of Processors

Sp
ee

du
p

CTJ
Jada
JavaSpaces
JCSP
JOMP
mpiJava

Figure 4. Speedup for Series benchmark for 100K Fourier coefficients

12 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

The results varied most when four processors were used. CTJ, JavaSpaces and Jada all
deviated more from the ideal speedup than other packages in this situation. All other
packages showed near linear speedup. We conjecture that a larger dataset might alleviate
this deviation.

In summary, the Series benchmark represented the purely computation intensive
application. Packages performed most consistently for this benchmark. As expected, the
larger the dataset, the better the performance.

6.3 Results for the SOR Benchmark

The SOR Benchmark was the most communication intensive of the benchmarks used.
Datasets of grid sizes 1000 x 1000, 1500 x 1500, and 2000 x 2000 were used. Figure 5
shows the execution time of all packages for the 2000 x 2000 grid and Figure 6 shows the
speedup. Package performance varied more widely for this benchmark than for the other
two, demonstrating how communication overhead can undermine the benefit of adding
more processors.

The single processor versions were slower than the sequential version for all grid sizes
and packages, but most packages demonstrated some speedup when using more than one
processor. Performance was better for larger datasets for all packages.

0

20

40

60

80

100

120

140

160

180

1 2 3 4

Number of Processors

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

CTJ **
Jada
JavaSpaces
JCSP
JOMP
mpiJava *
Sequential

* No data for mpiJava for 1500X1500 grid on 3 and 4
processors;
 no data at all for 2000X2000 grid
** No data for CTJ for 1500X1500 grid on 4 processors

Sequential Version

Figure 5. Execution Time of SOR benchmark for a 2000 x 2000 grid

While CTJ and JavaSpaces did benefit from the multiprocessor environment with the two
smaller grids, the more processors used, the worse their performance. In fact, all execution
times were slower than that of the sequential version. This is caused by heavy
communication requirements along with the way in which communication is implemented
for these packages. In addition, we unable to run the 1500 x 1500 grid for CTJ with four
processors and have not yet determined the cause.

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 13

The performance of JavaSpaces and CTJ improved with the 2000 x 2000 grid.
JavaSpaces’ execution times were faster, in this case, than for the sequential version. This
shows that, as expected, communication overhead decreases as the problem size increases.

 We were unable to obtain results using mpiJava on three and four processors with the
1500 x 1500 grid and obtained no results at all for the 2000 x 2000 grid. We received error
messages similar to the ones received while running the Crypt benchmark.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

Number of Processors

Sp
ee

du
p

CTJ **
Jada
JavaSpaces
JCSP
JOMP
mpiJava *

* No data for mpiJava for 1500X1500 grid on 3 and 4 processors;
 no data at all for 2000X2000 grid
** No data for CTJ for 1500X1500 grid on 4 processors

 Figure 6. Speedup for SOR benchmark for a 2000 x 2000 grid

Jada performed better when handling larger datasets, but did not show increased speedup
when adding a fourth processor for 1000 x 1000 and 1500 x 1500 grids. However, it did run
faster on four processors than on one processor or two processors, and it performed much
better than the other Linda-like package, JavaSpaces.

In summary, the performance of all packages for the SOR benchmark was, as expected,
not as good as they were for the Crypt and Series benchmarks. The SOR Benchmark
performs more communication operations than either of the other benchmarks, and it
performs many bulk synchronization operations. These two factors account for the
performance differences. However, most of the packages did perform better with larger
dataset sizes.

7 Limitations and Future Work
This study was limited to high-performance Java packages that were up-to-date, non-
commercial, freely available, and able to execute using JDK 1.4.0 on the test platform. The
packages were evaluated on an SMP system only. While JOMP operates only in a shared
memory, the other packages could, with some work, be evaluated on distributed memory
environments as well. In some cases, the modifications necessary to do this are relatively
simple. For example, only the configuration file need be modified for mpiJava. In others,
it is more difficult. For example, the communication mechanism for Jada, CTJ, and JCSP
must be modified or replaced. The commercial version of JCSP from Quickstone[36] does
provide this.

14 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

Future work will focus on
• Extending the study to include the other benchmarks available in The Java Grande

Forum Benchmark Suite [37].
• Examining a wider range of platforms, Java environments, and packages. For

example, the benchmarks for each packages, when appropriate, could be evaluated
on a cluster.

• Evaluating additional packages and newer versions of these packages, i.e., those
updated after April 2002.

• Using a variety of different implementations of the auxiliary software. For example,
evaluating mpiJava with MPICH 1.2.4 and SunHPC MPI 5.0, rather than MPICH
1.2.3.

• Comparing these packages to non-Java packages. For example, running the
benchmarks using C and native threads.

• Further investigating the error messages from the JavaSpaces and mpiJava packages,
and determining why there were no results for CTJ using four processors for the
SOR benchmark.

8 Conclusions

In this study, we evaluated the ease of installation, ease of use, and performance of Java
packages found that might support HPC. Three benchmark programs from The Java
Grande Benchmark Suite [37], representing a mix of typical parallel applications, were
used to evaluate this performance. All benchmark tests were run on a common SMP test
platform.

Generally, packages that assumed or utilized the shared memory properties of the test
system performed better than those that did not. Otherwise, the results from the benchmark
tests were as expected: (a) Computation intensive benchmarks showed performance closer
to the ideal than those that were communication intensive. (b) Performance results from
tests with larger data sets were better than those with smaller data sets.

As a result of this study, we can recommend JOMP for ease of installation, ease of use,
and performance. It is, however, strictly a shared memory package and thus cannot be used
on a cluster or any other distributed memory system. JCSP is the next easiest to use. JCSP
and JOMP were the only packages for which we experienced no difficulty during the entire
evaluation process. Both had performance results that were close to the ideal.

In contrast, JavaSpaces is the most complicated to start and had the worst performance.
To be fair, it was not really designed to support HPC. Programming under JavaSpaces
requires adequate knowledge about its architecture and paradigm, and Jini must be started
up before it can be used, not a simple task.

Although easy to install, CTJ’s special process scheduling management and real-time
kernel are not friendly to the inexperienced programmers. CTJ does not automatically take
advantage of a multiprocessor environment. Furthermore, the current communication
mechanisms do not work well for HPC, but to be fair, that was not its design goal. The
underlying communication mechanisms for both CTJ and JavaSpaces must be improved to
be competitive in the HPC arena.

Further study is needed to determine package scalability and to compare performance
with that of more traditional languages.

 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages 15

References
[1] C. Pancake and C. Lengauer. High-Performance Java. Communications of The ACM. October 2001.
[2] The Java Grande Forum Home Page. http://www.javagrande.org/. 2002.
[3] M. Allen and B. Wilkinson. Parallel Programming. 1999.
[4] The CSP Home Page. http://wotug.ukc.ac.uk/csp.shtml. March 2001.
[5] The MPI Home Page. http://www-unix.mcs.anl.gov/mpi/index.html.
[6] PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/pvm_home.html. April 2002.
[7] The OpenMP Home Page. http://www.openmp.org/. April 2002.
[8] Yale Linda Group. http://www.cs.yale.edu/Linda/linda.html. 2002.
[9] CSP for Java Home Page. http://www.cs.ukc.ac.uk/projects/ofa/jcsp/explain.html.
[10] The PVM system. http://www.netlib.org/pvm3/book/node17.html.
[11] Netlib Repository at UTK and ORNL. http://www.netlib.org.
[12] The Linda System. http://www.netlib.org/pvm3/book/node16.html.
[13] G. Hilderink. Communicating Threads for Java. http://www.rt.el.utwente.nl/javapp. 2000.
[14] P. Welch. The Communication Sequential Processes for Java (JCSP) Home Page.

http://www.cs.ukc.ac.uk/projects/ofa/jcsp. 2002.
[15] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating Java Threads.

http://www.rt.el.utwente.nl/javapp/cjt/CJT-paper.PDF.
[16] G. Hilderink, J. Broenink, A. Bakkers, and N. Schaller. Communicating Threads for Java. 2000.
[17] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating Java Threads. 1997.
[18] The JavaMPI homepage. http://perun.hscs.wmin.ac.uk/CSPE/software.html. 2000.
[19] The mpiJava Home Page. http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html. January 2000.
[20] S. Mintchev. Writing Programs in JavaMPI. 1997.
[21] The MPICH Home Page. http://www-unix.mcs.anl.gov/mpi/mpich/. 2002.
[22] Sun Microsystems – HPTC Home Page. http://www.sun.com/solutions/hpc/index.html. 2002.
[23] The WMPI Home Page. http://www.criticalsoftware.com/wmpi/. September 2001.
[24] Northeast Parallel Architectures Center at Syracuse University. http://www.npac.syr.edu/.
[25] The HPJava Project Home Page. http://www.npac.syr.edu/projects/pcrc/HPJava/index.html. January

2000.
[26] The JavaPVM Home Page. http://www.chmsr.gatech.edu/jPVM/. 1998.
[27] The JPVM Home Page. http://www.cs.virginia.edu/jpvm.html. 1999.
[28] The JOMP Home Page. http://www.epcc.ed.ac.uk/research/jomp/index_1.html. 2001.
[29] J. Bull, M. Westhead, M. Kambites, J. Obdrzalek. Towards OpenMP for Java. 2000.
[30] J. Obdrzalek, M. Bull. JOMP Application Program Interface. August 2000.
[31] D. Rossi. The Jada Home Page. http://www.cs.unibo.it/~rossi/jada/. 2001.
[32] Sun Microsystems. The JavaSpace Techology Home Page. http://java.sun.com/products/javaspaces.

2001.
[33] D. Rossi and P. Ciancarini. Jada: A Coordination Toolkit for Java. 1997.
[34] Sun Microsystems. JavaSpacesTM Service Specification. December 2001.
[35] Jini Network Technology Developer Center for Sun Microsystems, Inc.

http://developer.java.sun.com/developer/products/jini/. April 2002.
[36] Quickstone Technologies. http://www.quickstone.com/.
[37] The JavaG Benchmarking Home Page.

http://www.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html. June 2001.
[38] L. Smith, J. Bull, and J. Obdrzalek. A Parallel Java Grande Benchmark Suite. November 2001

http://www.javagrande.org/
http://wotug.ukc.ac.uk/csp.shtml
http://www-unix.mcs.anl.gov/mpi/index.html
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.openmp.org/
http://www.cs.yale.edu/Linda/linda.html
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/explain.html
http://www.netlib.org/pvm3/book/node17.html
http://www.netlib.org/
http://www.netlib.org/pvm3/book/node16.html
http://www.rt.el.utwente.nl/javapp
http://www.cs.ukc.ac.uk/projects/ofa/jcsp
http://www.rt.el.utwente.nl/javapp/cjt/CJT-paper.PDF
http://perun.hscs.wmin.ac.uk/CSPE/software.html
http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.sun.com/solutions/hpc/index.html
http://www.criticalsoftware.com/wmpi/
http://www.npac.syr.edu/
http://www.npac.syr.edu/projects/pcrc/HPJava/index.html
http://www.chmsr.gatech.edu/jPVM/
http://www.cs.virginia.edu/jpvm.html
http://www.epcc.ed.ac.uk/research/jomp/index_1.html
http://www.cs.unibo.it/~rossi/jada/
http://java.sun.com/products/javaspaces
http://developer.java.sun.com/developer/products/jini/
http://www.quickstone.com/
http://www.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html

16 N.C. Schaller et al. / A Comparison of High Performance Parallel Computing Java Packages

Appendix A – The Raw Data for Figures 1 – 6

 Execution Time (Sec.) Speedup
Package\Proc. 1 2 3 4 1 2 3 4
 CTJ 347.46 188.25 137.96 116.34 0.96 1.78 2.43 2.88
 Jada 334.58 168.25 112.49 85.37 1.00 1.99 2.97 3.92
 JavaSpaces * * * * * * * *
 JCSP 333.66 168.29 112.68 85.74 1.00 1.99 2.97 3.90
 JOMP 332.14 168.80 115.60 86.62 1.01 1.98 2.89 3.86
 mpiJava 340.93 177.04 * 94.20 0.98 1.89 * 3.55
 Sequential 334.66

Table 3. Crypt Benchmark Data

 Execution Time (Sec.) Speedup
Package\Proc. 1 2 3 4 1 2 3 4
 CTJ 709.75 355.43 243.45 196.58 0.99 1.97 2.88 3.57
 Jada 701.07 353.48 242.34 198.22 1.00 1.99 2.90 3.54
 JavaSpaces 724.96 371.73 245.32 194.26 0.97 1.89 2.86 3.61
 JCSP 686.00 345.58 238.72 178.51 1.02 2.03 2.94 3.93
 JOMP 714.54 357.47 246.02 179.69 0.98 1.96 2.85 3.91
 mpiJava 726.98 363.68 246.70 182.36 0.97 1.93 2.85 3.85
 Sequential 701.95

Table 4. Series Benchmark Data

 Execution Time (Sec.) Speedup
Package\Proc. 1 2 3 4 1 2 3 4
 CTJ 144.72 119.31 114.71 113.93 0.80 0.97 1.01 1.02
 Jada 139.10 71.17 48.87 45.58 0.83 1.63 2.37 2.54
 JavaSpaces 154.51 113.01 98.70 106.32 0.75 1.03 1.17 1.09
 JCSP 132.76 67.01 45.11 35.32 0.87 1.73 2.57 3.28
 JOMP 133.58 67.91 47.07 37.31 0.87 1.71 2.46 3.11
 mpiJava 138.50 * * * 0.84 * * *
 Sequential 115.85

Table 5. SOR Benchmark Data

	Introduction
	Background
	A Survey of Packages Found
	Message Passing using CSP
	Message Passing using MPI
	Message Passing using PVM
	Shared Memory using OpenMP
	Shared Memory using Linda
	Others
	Summary of Results

	Installation and Usage
	CTJ
	JCSP
	mpiJava
	Jada
	JavaSpaces
	JOMP
	Packages Not Tested

	Benchmarks
	The Crypt Benchmark
	The Series Benchmark
	The SOR Benchmark

	Performance Results
	Results for the Crypt Benchmark
	Results for the Series Benchmark
	Results for the SOR Benchmark

	Limitations and Future Work
	Conclusions
	References
	Appendix A – The Raw Data for Figures 1 – 6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

