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Abstract. This paper describes an extension to Kent Retargetable occam Com-
piler [1] (KRoC), which enables the execution of a blocking call, without blocking
the occam-kernel. This allows a process to make a blocking system call (eg, ������� ,���	��
�� ), without blocking processes running in parallel with it. Blocking calls are
implemented using Linux clones which communicate using shared memory, and syn-
chronise using kernel level semaphores. The usefulness of this is apparent in server
applications with a need to handle multiple clients simultaneously. An implemen-
tation of an occam web-server is described in section 5, which uses standard TCP
sockets via an occam socket library. The web-server comes with the ability to exe-
cute CGI scripts as well as dispensing static pages, which demonstrates some level of
OS process management from within occam.

However, this mechanism is not limited to blocking in the Linux kernel. On multi-
processor machines, the clones are quite free to be scheduled on different processors,
allowing computationally heavy processing to be performed aside the occam world,
but still with a reasonable level of interaction with it. Using them in this way provides
a coarse-grained level of parallelism from within the fine-grained occam world.

1 Introduction and Motivation

The standard way of communicating with a KRoC occam program is via the use of the
three byte channels passed to the top-level process. These are tied to three simple processes
which provide access to the UNIX �������� , ��������� and ������	��� streams. As these are �������
channels, each communication causes a context switch (light-weight), as well as associated
system call to read or write the byte (heavy-weight).

There are two possible alternatives where more elaborate interaction with the outside
world is required. The first is to use the � ���!��	� and ������ �#" libraries [2]. These provide
enough IO facilities to get jobs done. For example, ���$%��"�& 1 uses these libraries to read and
write files. The second alternative is to write your own in the C world and provide occam
with an interface to call it.

Writing functions in C has advantages, such as access to all the facilities of the operating-
system, in this case Linux. Its usefulness is limited though, as any system call which blocks
in the kernel will suspend the Linux process who made it, in this case, the entire occam
program. A naive solution would be to let each occam process run as a separate Linux
process, communicating via standard kernel mechanisms. Of course, this is unfeasible since
the overheads are colossal when compared to the sub microsecond performance of KRoC. A

1Extended transputer code[3] to Intel 386 ELF object code converter
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multiprocessor KRoC would relax the problem slightly, as one instance of the occam-kernel
could block, while the others (on different CPUs) carried on scheduling occam processes.
This is not feasible either, since there is a limit on the number of simultaneous blocking calls
possible; one less than the number of running kernels.

The solution presented here uses Linux &�'������)(+* s to hand off the blocking call to another
Linux process. If this call does block, then only the clone in which it is running will block;
occam processes running in parallel with the blocking call will continue to be scheduled.
Using this method, the number of simultaneous blocking calls possible is limited only by the
user’s process limits, currently 8192. In actual fact we set the limit to a lower value of 256.
This is mainly because we do not want an awry occam program thrashing Linux. The value
can be increased however, and the run-time system re-compiled if there is a specific need for
more.

Since the occam compiler performs parallel usage checking, any unsafe parallel usage
of a blocking call will be rejected. It does not, however, guarentee deadlock, livelock or
starvation freedom; that is up to the programmer.

2 The occam/C Interface

External functions are introduced to occam by the use of the ��,�����-�.�/�0 compiler directive.
The standard way of calling an external C function is to declare it as a 1�-�2�3 to occam,
then provide the necessary C function by linking it in. Details on how to do this (including
parameter passing mechanisms) are given in [4]. A few example ��,�����-�.�/�0 declarations
might be:

4 1�-�/�576�/8��,�����-�.�/�0:9+1�-;2�3<3>=@?����A(CB�/�0ED�.��<FHGIB�/�0JD!.��8K>GLD�.��8M *ON8PQ94 1�-�/�576�/8��,�����-�.�/�0:9+1�-;2�3<3>=SR�$��T(;UWV��������J$�����KHGXD�.��J'	�%�Y*ZN8PY9
When ���$%��"�& sees a reference to an external function starting with ‘ 3>= ’, it generates a special
calling sequence, using the external function ‘ &7$�'�' 3 ����;�	��? ’. This function is provided
as part of the standard run-time occam system, in this case CCSP [5].

Blocking calls are declared in a similar way, but instead of starting with ‘ 3>= ’, they start
with ‘ �[= ’ or ‘ ��,[= ’. The calls starting with ‘ �\= ’ identify a normal blocking call; those starting
with ‘ ��,[= ’ indicate a blocking call on whose termination occam may /�0�� . Terminatable
blocking calls are discussed in section 3.5. ���$%��"�& has been modified to spot these ‘ �\= ’
and ‘ ��,[= ’ calls, generating similar code to external C calls, but calling the interface functions
‘ &	$�'�' � �#��;�	��? ’ and ‘ &7$�'�' ��, ������	��? ’ respectively. The “ N<P ” on the end of an external
C declaration indicates the number of workspace words required for the external procedure.
As C functions do not use any occam workspace, (except for the parameters they were
passed which has already been accounted for), this is set to zero. External blocking calls on
the other hand need two words of workspace. These are the two words used by the scheduler
when the process is waiting on the run queue (instruction pointer and queue link).

For the above example external declarations ‘ 3>=@?���� ’ and ‘ 3>=SR�$�� ’, the C functions ‘ ?���� ’
and ‘ R�$	� ’ would need to implemented. Blocking versions follow a similar naming scheme in
such a way that one C function can implement all three occam versions. It is quite legitimate,
and often useful, to be able to write:



F.R.M. Barnes / Blocking System Calls in KRoC/Linux 157

4 1�-�/�576�/8��,�����-�.�/�0]9^1�-;2�3<3>=@?_���A(`B�/�0ED�.��<FHGaB�/�0bD�.��<KHGcD�.��<M�*dN<PY94 1�-�/�576�/8��,�����-�.�/�0]9^1�-;2�38�[=@?_���A(`B�/�0ED�.��<FHGaB�/�0bD�.��<KHGcD�.��<M�*dN<eY94 1�-�/�576�/8��,�����-�.�/�0]9^1�-;2�38��,[=W?����f(g3	h�/�.<2	ibD�.��b&jGaB�/�0bD�.��<FHGB�/�0bD�.��<KHGXD�.��<M *kNleY9
Only one C function is required for all of these, ‘ ?_��� ’. The extra parameter in the ‘ ��,[=@?_��� ’
call is used for termination (section 3.5).

3 The Clones

A clone process on Linux is effectively another OS-level process, but can share virtual mem-
ory, file descriptors and/or file-system information with its parent. Clones maintain their
own stack and process context, as it does not make sense to share these. Clones are created
through the use of the &�'������m(^* system call, which takes arguments describing what wants to
be shared, the clone’s stack, the function where the clone starts, and an arbitrary parameter
for that function.

3.1 Starting it all

To communicate between the clones and the occam-kernel process, a number of shared
variables are used. (In actual fact, everything in the heap is shared, but the clones only
read/write certain variables, and carefully at that):

n ‘ R���& ��;����$	�<� ����"�$7 &#�Q����o ’ is used to pass information about the new blocking call
between the occam-kernel and a clone (section 3.3).

n ‘ �#" ' 8� ���#"�$	 &#� '���&!p ’ is the spin-lock used to protect the above structure. It is
locked by the occam-kernel, and released by the clone.

n ‘ "Y��� J&�'������ "Q���_�mU@V ’ holds the process IDs (PIDs) of the clones. The first clone
places it’s PID at index 0, the second clone at index 1, and so on. This is used by the
clones during termination (section 3.5).

n ‘ R���& ��;����$	�bq�&�'������ $	����K\U@V ’ holds a pointer to each clone’s R���& ����;��$	� structure,
as described in the next section. The clones use this array, in conjunction with the ‘tt
clone pid[]’ array, to find themselves during termination.

n ‘ r_�%���sq%t ?	"���HGLq%t R�"��� ’ are the queue pointers on which finished clones place their
occam processes. It is described in section 3.4.

n ‘ ����l����u t7�_�%���	� ’ is a counter indicating how many occam processes are on this
queue.

n ‘ �#" ' <t7���%��� '���&�p ’ is the spin-lock used to protect the three queue and counter vari-
ables above.
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3.2 Creating new clones

Each clone gets created with a stack size of just under 128 kilo-bytes. At the bottom of this
stack is a structure which holds the state of the clone:

�!��	��&�sv%RY��&7v7��;����$	�sw�#��x"Q���Hy z�z<&�'������|{}�O"�����&7�����~D#��#��l�����v%����u\y z�zk�������$��x����u�R��	��(�P>=�=�*�#��Jq!r �7v%"���Hy z�zkr_�%��p ��"�$;&7�x" �;����;�	��#��Jq!r �7v�$	��oHy z�zx$	��o	��u �%�� �k" �;����;�	�� ������(�q!?	����&�*�(+�#���q�*�y z�zZ?	����&�Y�	���~_�x�	F��;&#��;�&���$	�bq!��$	�����Hy z�zZ���7������s$��������;���<�#�J��&�&7$!u�#��l��	�7uQ���_$7;�	�Hy z�zk;�	�7uQ�#��$7;�	�b��#��J&	$%��&7��'my z�z<&7$%��&7�;'�'	�	�b��#��~$����%�����u_�%��>y z�zx$	���%���!	u_�%���?_�%��"_$	��$!u_�	;�	�_�����o��!u�"_v%R���?Eq7�7R���?Hy z�zx�%��u�"8R���?�?;�	�� �����bq#���7����v%"���>y z�zO" ��������	�8_�����#"�$	���|{L��"�$;&7�� ������(�q�&�'���$%����"Q*�( � ���!��q�*�y z�z<&�'	��$%����"�?	����&�Y�	���� y
When KRoC starts up it creates a small pool of clones, currently 3. This appears to be a

sensible default, as the occam web-server (section 5) only needed this many under a sensible
load. Figure 1 shows the startup sequence for two clones.

create clones

clone 0occam kernel clone 1

clone ()

initialise

clone ()

initialise
wait (dsem)

[...]

continue startup wait (dsem)

Figure 1: Clone startup

The clones start by entering the function ‘ &�'����_� �%�����K ’, which gets passed the address
of this structure as a parameter. The parent process sets ‘ ��;� ����u ’, ‘ $����%�����u_�%�� ’ and ‘ �%R���? ’
before setting the clone off. It also stores a pointer to the clone’s R���& ��;����$	� structure in
the ‘ &�'����_� $�����K ’ array. When the clone starts executing, it puts its process ID in the ‘ "Y��� ’
field, and in the ‘ &�'����_� "Q���_� ’ array. Once the clone has initialised, it blocks on a kernel
semaphore claim with all the other non-active clones.
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3.3 Dispatching calls

When an occam program calls an external ‘ �[=@F�F�F ’ procedure, the actual call is mangled in
much the same way as external C calls. This involves the use of some separate glue-code,
namely ‘ &7$�'�' � ����;����? ’. This is a simple assembler routine that jumps into the run-time
kernel (CCSP), in much the same way that kernel calls ( ��� , ���� , �����R�K�;� , etc.) do. This
glue-code handles the workspace much as a normal occam 1�-�2�3 would. The run-time kernel
expects two arguments from the occam world — the address of the function to call, and a
pointer to the arguments. The kernel calls the dispatching function ( R��!K ��&7$�'�'�� � ���#"_$7 &#� ),
then schedules the next occam process.

The dispatching function is where the information relevant to performing a blocking call
is passed to a clone. The following list summarises the jobs performed by the occam-kernel
in the R��%K_��&7$�'�'�� � ���#"�$	 &#� function:

1. The number of available clones is checked for one of two special cases:

(a) There are no clones left. In this case, a new clone is created immediately and a
flag ‘ ���	?��	�����	� ���7r ’ is set to 1. This flag indicates whether or not a new clone
should be created before the function returns.

(b) There is one clone left. In this case, the ‘ ����?��	������� ���7r ’ flag is set to 1, so that
there will definitely be a spare clone if and when the next dispatch occurs.

2. ‘ �#" ' '���&!p �7� ?�$_�	'f(`��� ����"�$7 &#� '���&�p�* ’ is called to lock ‘ � ����"�$7 &#� '���&�p ’. If the
lock cannot be obtained immediately, it is because a previously dispatched job has
not been collected by a clone. In such a case ‘ ��&#���	� K �%�;'%�|(+* ’ is called to yield the
processor in the hope that the clone will be scheduled and the job collected. This will
loop until the lock becomes available.

3. Information about the job is placed in the ‘ � ���#"�$	 &#�Y���;o ’ structure. This is a structure
shared by all, and is the way in which the clones receive information about new jobs.

4. The semaphore on which idle clones wait is notified. This will cause one of the blocked
clones to return from its semaphore claim operation.

5. If the ‘ ���	?��������	� ���	r ’ flag was set, a new clone is created. This ensures that if the last
clone was used this time, then there will be a spare one next time.

From the clone’s point of view, things are slightly simpler. The clone will be blocked in
an OS kernel semaphore claim (wrapped up by ‘ &�'	$_��u �7�!u_$%"�� �%��� ’). When this function
returns, either the semaphore was claimed, or the occam-kernel exited. In the latter case, the
clone also exits if the occam-kernel had not already killed it (which it does do on exit).

The clone, after waking-up, simply copies the relevant fields of ‘ �����#"�$7�&#�Y����o ’ into its
own ‘ R���& ��;����$	� ’ structure, unlocks ‘ � ����"�$7 &#� '���&�p ’, then executes the requested func-
tion. The actual business of executing the call is slightly complicated, as the blocking call
can be terminated while in progress. This is discussed in more detail in section 3.5.

Figure 2 shows the main actions of both the occam-kernel and the receiving clone when
dispatching a call.
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occam kernel

dispatch

get dispatching lock
fill structure
notify on semaphore

clone 0

(blocked on semaphore claim)

(wakeup)

copy structure
release dispatching lock
execute function

schedule next process

Figure 2: Dispatching a clone

3.4 Collecting finished calls

When the clone finishes, it needs to re-schedule the occam process that dispatched it. This is
done by means of a shared queue ( t ?	"��� , t R�"��� ), a spin-lock ( t7�_�%��� '���&�p ) and, if neces-
sary, a signal to the occam-kernel. The clone acquires the spin-lock, adds the process to the
queue, increments ����u t7���%����� , then releases the lock. If ����u t	���%���	� was previously 0, the
occam-kernel process is signalled to collect process(es). If there was already something on
the queue before adding this one, it means that the occam-kernel has already been signalled,
so should not be signalled again. This is safe since the occam-kernel will not be able to
collect the finished calls while the clone holds the lock.

The signal handler on the occam-kernel side sets one of the synchronisation flags, similar
to that set by the keyboard or timer. If the occam-kernel was in �7$�?�� "�$%���7� (where it
idles), it will be awakened [1]. If not, it will pick up the change in the synchronisation
flag on the next reschedule. When the next reschedule happens, the occam-kernel lockst	���%��� '���&!p , moves the processes to the run-queue, adjusts the number of spare clones, then
unlocks t7���%�_� '���&�p . Figure 3 shows this.

3.5 Terminating ( /�0�� ing) blocking calls

It is quite possible that a blocking call in the Linux kernel could block forever, or that a
function executing aside the occam-kernel could get stuck in a loop. For these reasons, a
safe mechanism for terminating them is provided. The implementation of terminating calls is
split into two halves. Section 3.5.1 describes how the occam-kernel goes about terminating
a call, and section 3.5.2 describes how the clone deals with being terminated. The ability to
terminate a blocking call allows, for example, a socket write included as an /�0�� guard. The
occam must, of course, be programmed correctly to avoid deadlock. An example of safe
termination is given in section 3.5.3.

As mentioned earlier, terminatable blocking calls get passed an extra channel parameter
as the first argument. This is internal to the termination mechanism so it is not included in the
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occam kernel

(resumes)
set blocking−sync flag

(interrupted)

reschedule

clone 0

finish executing function
get queue lock

add process to queue
release queue lock

signal occam kernel if necessary
loop and block on semaphore

get queue lock

add queued processes to run queue
release queue lock

schedule next occam process

(scheduling occam processes)

time.
without signalling during this
other finishing clones can add

Figure 3: Collecting a finished call

arguments given to the C function being called. The ‘ $	�;�%����	u �%�� ’ element of the clone’sR���& �������$	� structure is used here to shift the parameters passed one to the left. Before
the clone starts executing the call, it places a pointer to its own R���& �������$	� structure in the
channel word. As this is most certainly not an occam workspace pointer, the occam program
must not attempt direct communication on it. The ‘ &7$%��&7�;' ’ and ‘ ��	�7uQ���_$7;�	� ’ members of
the R���& ����;��$	� structure are used to provide race-free termination, initially being set to zero.

3.5.1 Initiating termination from occam

Once a blocking call (or other computing function) is in progress, an occam process running
in parallel with it is able to terminate it. This is done through the use of a built-in function
declared to the occam world as:

4 1�-�/�5	6�/8��,�����-�.�/�0A9+1�-�2�3l3[=�p��	'�'�&7$�'�'�(g3�h�/�.�2	ibD�.��b&jGcD�.��8�����#� '!�*�N8PY9
An occam process can call this function, passing the same channel parameter as was passed
to the blocking call. The second parameter ‘ D!.��8�;�;�#� '! ’ is used to return the result of the
termination, with the following meanings:

-1 the blocking call had already finished
0 the blocking call was successfully terminated
1 the blocking call had only just finished
2 the blocking call is currently finishing
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The most common case will be the second (terminated successfully). The other three
cases (-1, 1 and 2) indicate various grades of non-successful termination. The following
algorithm implements the occam-kernel side of the termination:

1: ��� contents of channel word
2: if � = null then
3: //call has either not started or has finished
4: ��&����	� K �%��'7�|(+*
5: �x� contents of channel word
6: if � = null then
7: //call has finished
8: return -1
9: end if

10: end if
11: if ��� terminated � then
12: //call has finished, but has not yet cleared channel word
13: return 1
14: end if
15: �<� �
16: //atomically swap contents of T � cancel � with �
17: swap ��� cancel � , �
18: if �~�s� then
19: //call is in the process of terminating
20: return 2
21: end if
22: //send a SIGUSR1 signal to the clone’s OS process
23: signal ��� pid � , SIGUSR1
24: return 0

The atomic swap at line 17 indicates the point where the occam-kernel either commits
to terminating the clone (via a signal), or leaves it alone (because it is in the process of ter-
minating itself). On a uni-processor machine, it is entirely possible that the occam program
attempts termination before the clone has scheduled. In this case, ‘ ��&#���	� K��%��'%�|(^* ’ (line
4) is called to reschedule the occam-kernel OS process. This gives the clone the chance
to execute the call before it is killed, and it is only killed if it does not complete before the
occam-kernel gets rescheduled. In some situations, this might not be the desired behaviour
– we actually might want to terminate the call before it starts. It is unlikely however, as the
signalling on the semaphore (to dispatch a clone) will cause the Linux kernel to favour the
first process waiting on that semaphore, in this case, the clone which being dispatched.

3.5.2 Dealing with termination in the clone

All of the clones install a signal handler for the SIGUSR1 signal, which is used to ‘interrupt’
them. This signal handler is used in conjunction with a ����o �7�7;�!u�" / ����o�'����;o��!u�" pair, so
that execution can continue at a well-known place when the signal is delivered. A call to����o_�7�7��!u�" is made by the clone just before the function is executed. The ‘ �%R���? ’ member in
the clone’s R���& �������$	� structure points at the jump buffer, which is located just beyond theRY��& �������$�� structure in the clone’s stack. The ����o_�	�7;�!u�" function returns 0 if it is returning
directly, or 1 if it is coming back from a ����o�'�����o��!u�" , in our case from the signal handler.



F.R.M. Barnes / Blocking System Calls in KRoC/Linux 163

The following algorithm implements the clone’s half of the termination process, starting
before the blocking call is made:

1: �x� pointer to the clone’s R���& �������$�� structure
2: ��� cancel �Y� �
3: ��� terminated ��� �
4: channel word ���
5: if sigsetjmp ��� jbuf ���8� then
6: //returning directly
7: unblock SIGUSR1
8: make blocking system call
9: ��� terminated ��� �

10: block SIGUSR1
11: �X� �
12: else
13: //returning from the SIGUSR1 signal handler
14: ��� terminated ��� �
15: �X� �
16: end if
17: �~� �
18: //atomically swap contents of T � cancel � with �
19: swap ��� cancel � , �
20: if �~��� and �X�8� then
21: //other side committed to terminating, but signal is pending
22: wait SIGUSR1
23: end if
24: channel word � null

The functions block and unblock, block and unblock a signal respectively. If a signal is
delivered while it is blocked, it is marked as pending, and delivered when it is unblocked or
waited for. There is a very unlikely case where the occam-kernel terminates a call, just as the
call itself is terminating, but where the signal has not been delivered. In this case SIGUSR1 is
waited for, and when delivered, execution resumes at the point where ����o_�7�7��!u�" was called.

Figure 4 shows the actions of both parties during a ‘normal’ termination.

occam kernel clone X

C.killcall()

signal clone X

continue executing process
interrupted

jump out of blocking call

(continue with normal clean−up)

(executing blocking call)

Figure 4: Normal termination of a blocking call
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3.5.3 Safe termination

The occam fragment below shows a method for terminating a blocking call, without causing
deadlock:

D�.��8p��	'�')=@���;��� '!\���2�2�0l� �!�[=�p��	'�')�� �;�3�h�/�.�2	isD!.��J&)�3�h�/�.�2	ix�;2�2	0b����o	�_$�')�1�/�-  �  w�w�w R '���&!p�����ob&7$�'�'� �;���,[=�r���$	;� � �	�¡(�&jG~=�=�=�*����o	��$�'£¢¤��-	¥�� �  ����� �  w�w�w &���'�'��;&���	�!� z!;�	�	uQ����$7Y�	���1�-�DO/�0���;2�2	0�$%��K[�����o	��$�'<�x$%��K� ���\=�p��	'�'¦�WNli�/�0 � �  �  � �%�	u_$�'�? ���Y���#�=�=�=§��	�7uQ���_$7��	���:&������ ����	���� �;�3[=�p��	'�'�&7$�'�'�(�&¨GIp���'�')=@�����#� '!�*�;2�2	0�$%��K[�����o	��$�'<�x$%��K�����[=�p���'�'��WNx��-	¥�� �  �����

In this example, the “ =�=�= ��	�7uQ���_$7��	���©&������ �#Y�	��� ” could either be an input guard,
or a timer guard. At the end of the code fragment, ‘ � ���[=@p��	'�' ’ indicates whether or not
the blocking call was terminated, and if so, ‘ p���'�')=@�����#� '! ’ indicates the outcome of the
termination. The KRoC occam socket library [6] uses this technique to provide /�0�� able
variants of the �;��$	� , r�� ��;� , $�&�&7�%"� and �;�;& � ?��_�#uª1�-;2�3 s through a two-channel interface.
This reduces the application’s involvement to:

3	h�/�.<2	i8��2�2�0xp���'�')�3	h�/�.<2	ibD�.��<���;��" �����7�>�1�/�-  �  w�w�w R '���&�p����;oE&7$�'�'����&�p;�7«=C$�'!;$7R '	�H=@,¬(Cp��	'�'¨G���;�#" �!���7�)G�=�=�=}* �  ����� �  w�w�w r;$_�#8?_�%�<���;�#" �!���7���%�l���u_���!���YD�6���-<���u®�D!.��l«�� �;����uE�d
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1�-YDd/�0�� �  w�w�w �#��&��#uQ�#��o<���;�#" �!���7�8?��%�x� �%�	u_$�'Z;�	�7u¯����$7������D�.���$%��K[����;�#" �!���7�s�Z$7��Kp���'�'¦¢¤��-	¥;� �  ����� �  w�w�w Y��u_�������(�$	?�;�	�©°��7�;&��!��� *���uE�k/�i�����-�(Cl1�07¥ � °�P�P�P�P�P�P�*D�.��lp\=W���;�#� '%\�� ���p��	'�'£¢±��-	¥�����;�#" �!���7�s�dp«=@���;�#��'!=�=�=²;$7p;�<$;&�Y�	���E���lp«=@���;�#��'!©��?x���;&7�;���7$	��K �  ����� �  �����

This fragment demonstrates a killable blocking socket operation (‘ ����&!p;�7\=C$;'!;$%R '��H=@, ’)
using the two channels ‘ p���'�' ’ and ‘ �;�;�#" ���Y�7� ’. The design rule is that whatever happens, a
single communication must occur on each channel. This ensures that ‘ ����&�p;�7\=`$�'!;$%R�'	�H=@, ’
will not deadlock, as it too must communicate once on each of these channels. In the case
where the call terminates of its own will, ‘ ����&�p;�7«=C$�'!;$7R '	�H=@, ’ performs a 1�/�- allel in-
put/output, allowing the user to order the communications in whatever way is appropriate
to the application.

3.5.4 Cleaning up after termination

In some cases, the C function being executed may need to perform some cleaning-up op-
erations after termination from the occam world. The RY��& �������$�� structure provides two
additional members to aid this operation. The first, ‘ ���	�	� "��� ’, is a pointer into the clone’s
stack, just above the RY��& �������$�� and jump-buffer structures. The second, ‘ &�'	��$%����" ’ is a
pointer to a function which will be called if the call is terminated. To manage this from the C
world, the following C function is provided:

�	F�;�	��� � �����Jq#R��!K_��&7$�'�'��	v;�7�7;v�&�'	��$%����"³( � ������(�q�*�( � �����bq�*�*�y

If the blocking call needs this functionality, it should call this, passing a pointer to a separate
clean-up function. The ‘ ���7�	� "��� ’ pointer is returned as the result. When the cleanup func-
tion is called, it is given ‘ ���7��� "��� ’ as an argument. If a blocking call needs to clean up after
termination, it will also probably need some of its previous state, which should be stored at
this pointer. The space available starting at ‘ ���7�	� "��� ’ is determined largely by the clone’s
stack size (currently 128 kilobytes), minus the amount of stack the clone is currently using.
It is recommended that no more than 1 page (4096 bytes) be used.

One perceived, and investigated, use of this is when a blocking call launches another OS
process, and waits for it to finish. If this functionality were not used, the OS process started
would not be killed when the blocking call is terminated. With this functionality, the blocking
call could arrange for the OS process to be killed on its own termination.
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4 Performance

The performance of blocking system calls is assessed largely by how much impact the system
takes when dispatching, handling and collecting the calls. This in turn provides an indication
of how fine-grained the parallel usage of them may be. Figure 5 shows the arrangement of
the machines involved on the network.

stue08c
P1/180

100 Mbps 100 Mbps

konom
P2/300

korell
dual P3/500

router

campus network (10 Mbps)

sun E450
myrtle

Figure 5: Test network configuration

Figure 7 shows the impact on computation from communication, with the corresponding
throughputs in figure 8. The benchmark used was similar to the one described in [7], but
modified to use streaming TCP data, as shown in figure 6. Data was streamed from the ma-
chines p_�����#u and ����_��P�´�& to p �%����'�' , once with p_�%����'�' using a single processor to handle
the blocking calls, and again with p_�7����'�' using both processors. Communication betweenp ��� �#u and p_�%���;'�' happened at 100 Mbps, with a routing switch forwarding the packets in
cut-through mode (a form of worm-hole routing), whereas communication between �������P�´�&
and p �%����'�' happened at 10 Mbps. In this latter case, the network latency is much higher,
as the “campus network” includes a 100 Mbps FDDI ring and several routers between the
machines.

traffic generator

sink sample succ

(tcp)

Figure 6: Benchmark process network

For runs between ����_��P�´�& and p_�7����'�' , the difference between single and dual processor
performance is marginal. As would be expected, the dual processor throughput in this case
is slightly better than the single processor, up to the point where packet fragmentation occurs
(around 1500 bytes). Runs between p_�����#u and p_�7����'�' tell a different story, with the results
for single and dual processor performance being somewhat different. In the case of p_�%���;'�'
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Figure 7: Impact of communication on computation

having both processors available to schedule the blocking calls, throughput is high, causing
a notable hit in background processing capability. In the case where only one of p_�%����'�' ’s
processors is available, throughput is dramatically reduced. Here, the throughput is less than
that of the 10 Mbps network, up to a packet size of around 9000 bytes, where the limit
of the 10 Mbps network is reached. One cause of this poor performance stems from the
low latency between the two machines. As the occam-kernel and the blocking calls are
restricted to a single processor, a dispatched clone must wait for a (Linux) kernel reschedule
before becoming active. At the point where the clone executes the ����$	�|(^* system call, the
sender is likely to have stalled, as the acknowledgement packets will come back much faster
than in the case of the 10 Mbps network. The difference in throughput on the 100 Mbps
network is around a factor of 250, and this 10 Mbps single processor case is the only one
of the four runs which fails to reach maximum theoretical throughput. When running at 100
Mbps with both processors available, blocking call dispatch times are much lower than the
single processor times. This is expected, as the Linux kernel will schedule the blocking call
immediately if the second processor is inactive.

To provide additional performance metrics, the occam-kernel can be compiled in such a
way that it profiles blocking calls. The pentium CPU cycle counter is used to get accurate
time-stamps for dispatch, trigger, kill and finish events. The dispatch time-stamp is set when
the occam-kernel dispatches the call to the clone, and the trigger time-stamp is set by the
clone when it picks up the call. If the call is terminated, the kill time-stamp is set at the point
where the occam-kernel initiates termination (in 3>=�p��	'�'�&7$�'�'¨(+* ). When the call finishes, the
clone sets the finish time-stamp. It should be noted that profiling the blocking calls decreases
their performance, as the data is dumped directly to the standard error stream.

Figures 9 and 10 show the behaviour of the clones during benchmarking of ��&�&�r �	�	� �
(section 5). Each vertical ‘strip’ represents one of the clones, and in both cases there are 12.
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Figure 8: Data throughput rates during communication

At each point where a clone is dispatched from the occam-kernel, a horizontal line is drawn
from the left-hand margin to the clone. The shaded regions represent a blocked clone (more
accurately, a clone executing the requested function).

Figure 9 shows the behaviour when ��&�&�r��7�	� � was benchmarked from u�K���_'	� (figure 5)
using the apache benchmark program $7R . This varies greatly from the trace obtained when��&�&�r �7��� � was benchmarking from �������P�´�& using the occam benchmark program ��R .

$%R benchmarks by making µ requests to the server, then waits for all the responses before
setting off the next µ requests. Figure 9 shows this quite clearly. The clone which blocks
until the next ‘barrier’ is the acceptor, as it will block until $%R dispatches the next set of
calls. This call does not actually make it through the ‘barrier’ as the trace might suggest. The
occam benchmark program on the other hand attempts to maintain µ requests at all times,
by making a new request as soon as an existing one finishes. The difference can be clearly
seen in figure 10, where dispatching is distributed more evenly than in figure 9. Both of the
traces were made when ��&�&�r �	�	� � was using both processors, in an effort to minimise the
impact of profiling.

The following table shows the results of profiling ��&�&!r �7�	� � , being benchmarked by �!R ,
for both single and dual processor instances of ��&�&�r �	�	� � . This quantifies the difference
between executing blocking system calls on a uni-processor, and executing them on a dual-
processor.

Measured Min (us) Avg (us) Max (us)��&�&�r �7��� � /1 dispatch to trigger 3.28 79.51 2,356.87¶ ��R trigger to finish 46.92 248,792.19 3,292,883.81��&�&�r �7��� � /2 dispatch to trigger 3.96 41.14 1,158.79¶ ��R trigger to finish 17.83 218,370.73 2,745,141.51
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Figure 9: Execution profile of blocking system calls with 687 (apache benchmark) showing the ‘active’ time of
each clone
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Figure 10: Execution profile of blocking system calls with ÿ�� (occam benchmark) showing the ‘active’ time
of each clone
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5 An occam Web-Server

This section describes �������	��
��� – the occam web-server. The overall organisation of the
server is shown in figure 11. The vertical dots indicate process replication. Currently there
are 128 ‘ ��
������������
������	��� ��! ’ processes, 256 ‘ " ���
#�%$�
� ’ processes, and 32 ‘ ��$ �&�%$'
�� ’
processes. ������� �
��� uses the occam socket, file and process libraries, as described in [6],
to handle interaction with the OS.

read.line switch

(tcp)

read.line switch

(tcp)

file.get

(tcp)

(tcp)

profilestats.get stats

(tcp)

cgi.get

(tcp)

(tcp)

cgi.get
(tcp)

file.get

acceptor

Figure 11: Network diagram for the occam web-server

After initialisation, all processes will be blocked on either channels or occam3[8] style
shared-channels (implemented via the semaphore abstract type [9]), with the exception of
the ‘ �'����
�(��)�*� ’ process, which will be blocked in the Linux kernel on a socket accept. The
‘ �'���
*(��)�*� ’ process consists of a loop, which accepts an incoming connection, time-stamps
it, then passes it on to one of the ‘ �'
�����+�'����
 ’ processes through a one-to-any channel. The
server is constructed such that each ‘ ��
���,�+������
 ’ has an associated ‘ ���	��� ��! ’ process, to
which it is connected. These two processes perform the bulk of data processing in the server.

The function of the ‘ ��
���,�+������
 ’ process is to read data from the client connection, sepa-
rate it into lines, and pass each line to the ‘ ���	��� ��! ’ process. After a blank line has been read,
or after an error has occurred, the client connection is passed to the ‘ ���	��� ��! ’ process and
‘ ��
������+�����)
 ’ loops to wait for another client. The ‘ ���	��� ��! ’ process examines the incoming
data, presumably an HTTP request, and decides where to send it based on that request. If the
input is invalid (non-HTTP), the connection is sent to one of the ‘ "	��
#�%$'
�� ’ processes, with
a request to produce an error file.
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Figure 12: Average time to service a request (standard apache)

The collection of processes just described form the ‘front-half’ of the web-server. The rest
of the network deals with returning data to the clients and collecting statistics about the con-
nections. Requests for the special page “ ���'��� �-�.!��/	� ” are sent directly to the ‘ ���'��� �0�%$�
�� ’
process, through an any-to-one channel. ‘ ���'���	�-�%$�
�� ’ interacts with the ‘ ������� � ’ process to
produce a page containing information about connections and the server in general. Once the
data has been sent back to the client, the client connection is passed to ‘ (�����" ��
 ’, along with
other client connections from the ‘ " ��
#�1$�
�� ’ and ‘ �*$ �&�%$�
� ’ processes.

As mentioned earlier, each client connection is time-stamped as it is accepted. Upon
receipt, ‘ ���'��� �0�%$�
�� ’, ‘ " ���
#�%$�
�� ’ and ‘ ��$ �-�%$�
�� ’ add a second time-stamp before process-
ing. Once the connection has been processed, it is passed along to ‘ (��)�*" ��
 ’ through an
any-to-one channel. ‘ (����*" ���
 ’ takes the interval between these two times, along with other
information, and passes it to the ‘ ���'�� � ’ process, which keeps running totals.

The ‘ " ��
#�1$�
�� ’ and ‘ ��$ �&�%$'
�� ’ processes are connected through two any-to-any chan-
nels respectively. ‘ " ���
#�%$�
�� ’ dumps the requested file to the client, or dumps an error file if it
cannot. Once the output has been written to the client, the connection is passed to ‘ (�����" ��
 ’.
The data is copied using the " ���
#�%"����1"���������(�2 procedure, as it keeps the data copying within
a single clone, returning upon completion or error. ‘ ��$	�&�%$�
�� ’ executes the requested script,
with the socket file-descriptors connected directly to the output of the script, thus avoiding
any data copying in ������� �
��� . If an error occurs while processing the script (script does
not exist, script dumped core, etc.), then the connection is fed back into ‘ " ��
3�%$�
�� ’ farm to
produce an error for the client. This saves some code duplication by re-using the services of
‘ " ���
#�%$�
� ’ to handle errors for ‘ ��$ �&�%$'
�� ’, and anything else if it were added.

If the client connection is thought of as the endpoint of a channel, then ������� ��
��� ef-
fectively passes that endpoint around the network, demonstrating a use of the channels over
channels idea [10].
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Figure 13: Number of requests handled per second (standard apache)
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Figure 14: Data throughput rate (standard apache)
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Figure 15: Average time to service a request (tweaked apache)
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Figure 16: Number of requests handled per second (tweaked apache)
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Figure 17: Data throughput rate (tweaked apache)

5.1 Performance of ������� ��
����

The apache benchmark program, �*4 , was used to benchmark ������� ��
���� . This program comes
as part of the standard apache web-server source distribution. �*4 takes a URL, number of re-
quests and concurrency level as parameters, hitting the URL specified the requested number
of times, and tries to ensure that ‘concurrency level’ requests are processed simultaneously.
This parallelism is achieved through using the ‘ ��
������#5�6 ’ system call, not through a schedul-
ing mechanism. As the benchmarking was performed over a real network, real network
factors will bias the results, but hopefully putting (on average) an equal bias one each of
������� ��
���� and apache. The physical network connectivity can be seen in figure 5, where
������� ��
���� and apache were run on korell, and ��4 was run on stuE08C.

Figure 12 shows the average service times for ������� ��
��� and apache at varying levels
of concurrency (1 to 50). One pair of lines shows the performance when retrieving a 1
kilo-byte file, and the other pair when retrieving an 8 kilo-byte file. When retrieving 1k
files, ������� ��
��� ’s average service time is on the whole faster than apache. With 8k files,
������� ��
���� performed faster up to a concurrency level of about 22, at which point the service
times become comparable with apache.

Figure 13 shows the number of requests handled per second, at varying levels of concur-
rency, for 1k and 8k files. Surprisingly, ������� ��
��� dominates this somewhat, and in the case
of 8k files, this value is almost constant from a concurrency level of 5 onwards. The likely
causes for this are apache’s additional client processing, which ������� �
��� does not perform,
and apache’s habit of killing its server processes (described below).
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Figure 14 shows the corresponding data throughput rates from ������� ��
��� and apache, to
the benchmark program �*4 . As can be seen, ������� ��
���� delivers a higher throughput than
apache when serving 1k static pages. For 8k static pages, �������	��
��� is initially faster, but
apache quickly catches up, becoming comparable around a concurrency level of 13.

As can be seen from these three graphs, apache behaves rather erratically when com-
pared with the smoother behaviour of ������� ��
��� . This behaviour arises from the way apache
handles it’s server processes. A configuration option specifies the number of connections a
server process may respond to before it gets restarted. This is done to stop the server get-
ting thrashed, and to reduce the impact of any memory leaks. The default setting in apache
is 30 requests per server process. Figures 15, 16 and 17 show the results of the same tests
when this limit in apache was increased. The limit was set to one million to completely avoid
the restarting of server-processes during benchmarking. These additional results show that
apache and ������� ��
��� are mostly comparable in terms of performance. Apache was able
to transfer 1k files faster than ������� ��
��� (figure 17), but ������� ��
��� handled more requests
for 1k files per second (figure 16). For 8k files, apache and ������� �
��� have a roughly equal
performance.

6 Conclusions and Future Work

This paper has shown that it is possible to enhance a user-level thread scheduler (CCSP [5])
such that individual processes may block inside the OS kernel, without stopping other user-
level threads (occam processes) running in parallel. The work done here centers around the
KRoC occam system, but it could be ported to other user-level thread schedulers such as
MESH [11], which was based initially on CCSP.

The simplicity of the occam web-server demonstrates that occam is a natural language
when it comes to programming multi-threaded internet applications. In addition to the ease
and low-cost2 of fine-grained parallelism from within occam, required for applications such
as web-servers, the occam compiler will perform parallel usage checking to ensure parallel
safety. Low-cost in occam’s terms also means lower development, maintanence and en-
hancement costs. The usage checking performed within the occam compiler reduces the
number of potential bugs by ensuring that parallel processes adhere to certain design rules.
The web-server is currently 1500 lines of occam code and took less than a week to develop,
from design to production. The overall design was, for the most part, intuative, and ������� ��
���
could easily be extended by “plugging in” more functionality. It should also be relatively easy
to call on external programs to perform server-side processing, such as PHP [12], by using a
strategy similar to the CGI handling processes.

The general technique of handling blocking system calls in the way need not be tied to
Linux at all. However, one of the features which this technique uses quite heavily is the ability
to share memory and file-system context between different OS processes. This removes the
problem of data copying between occam and the C world when a blocking call is made. Most
major UNIX variants include the ability to share memory between threads and/or processes,
usually through the use of /�/ �*(35�6 or System-V style shared-memory (SHM). The structures
used to pass information to and from the clones, and the occam workspace could be placed
in this shared region, yielding the same functionality as we have implemented. Two state-
of-the-art Real-Time Operating Systems (RTOSs), Lynx-OS and QNX also have a notion of

2153ns context switch on an Intel P3 500Mhz machine
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threads, so this technique could be applied to them also. It is envisaged that operating-systems
on which this technique could be used would provide sufficient synchronisation primatives
to control the threads.

Sharing the file-system context is necessary to allow a file-descriptor opened in one clone
to be used in another clone. In systems without explicit file-system context sharing, the de-
scriptors can be passed between the processes using a pipe – this technique is non-trivial how-
ever. If a clone opens a descriptor, then passes it to another clone, both clones must ��������
-5�6
the descriptor to dispose of it. One solution to this would be to provide a mapping of file-
descriptors to clones, forcing blocking calls involving a particular descriptor to be executed
by the clone which holds that descriptor. The mapping would need careful construction, as
two (or more) clones could refer to different files by the same numeric file-descriptor value.

With some kernel modifications, it would be possible to remove the need for the clones,
and let the Linux kernel handle the blocking of user-level threads. This of course would
require the kernel to know explitictly about the threads, and probably require the kernel to
schedule them as well. This would mean that each user would have to patch their Linux
kernel – which may not be convienient. The potential performance benifits of this approach
are quite attractive however, as the Intel Pentium 2 processor, and above, provide speedy
instructions to enter and leave the OS kernel ( �*2)��
*����
� and ��2)��
7	��� ) [13]. The occam
processes would execute in user-space, much as they do now, but would call on CSP [14]
functionality in the Linux kernel to handle communication, synchronisation and parallelism.
Such an approach also eliminates many implementation difficulties, such as idling (currently
with ���"�
 (��*89��
-5�6 [1]), I/O, and multi-processor management.
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