
Communicating Process Architectures 2000 63
P.H. Welch and A.W.P. Bakkers (Eds.)
IOS Press, 2000

A Comparison of Linda Implementations
in Java

George Wellsa, Alan Chalmersb and Peter Claytona

aDepartment of Computer Science, Rhodes University, Grahamstown, South Africa
bDepartment of Computer Science, University of Bristol, Bristol, U.K.

G.Wells@ru.ac.za

Abstract. This paper describes the implementation of an extended version of Linda
in Java. The extensions have been made with a view to increasing the efficiency of
the underlying communication mechanisms and the flexibility with which data may
be accessed, particularly in the area of distributed multimedia applications. The
system is compared with two other recent implementations of Linda for Java:
JavaSpaces from Sun Microsystems, and TSpaces from IBM. The comparison is
performed both qualitatively, comparing and contrasting the features of the systems,
and quantitatively, using a simple communication benchmark program and a ray-
tracing program to assess the performance and scalability of the different systems
for networks of workstations.

1. Introduction

This paper describes an extended version of Linda1, called eLinda, developed by the
authors using Java2 [1]. This system is also compared with two other recent Linda
implementations in Java: JavaSpaces from Sun Microsystems [2], and TSpaces from IBM
[3].

The Linda model was first proposed in the 1980’s by David Gelernter [4]. This
approach to distributed and parallel programming offers a number of advantages as it is
based on a shared memory paradigm with a small set of simple operations to access shared
data. In addition, the shared data space effectively decouples communication between
processes, both with respect to time (communication is asynchronous) and location
(communicating processes do not need to be aware of each other’s identity or location in a
multi-processor or networked system). This inherent simplicity and the decoupling of
processes offer a number of benefits over systems based on message-passing, remote
method invocation, etc. However, Linda has been criticised for poor performance, and until
recently there has been little commercial interest in it. This has now changed with the
release of JavaSpaces and TSpaces.

The extensions introduced in eLinda have been designed with a view to making some of
the underlying communication issues more explicit, thus providing the programmer with a
greater level of control of the communication in an attempt to address some of the
efficiency concerns. JavaSpaces and TSpaces also include some extensions and differences
to the original Linda model as proposed by Gelernter, aimed mainly at support for
commercial applications.

1 Linda is a registered trademark of Scientific Computing Associates.
2 Java is a registered trademark of Sun Microsystems, Inc.

64 G. Wells et al. / A Comparison of Linda Implementations in Java

The rest of this paper consists of a brief introduction to the Linda programming model,
followed by further details of the extensions embodied in eLinda and the motivation behind
them. The implementation of eLinda in Java is also discussed. Section four presents a
description of the features of JavaSpaces and TSpaces. This is then followed by results
comparing the performance of the three Linda systems for a simple communication bench-
mark and also for a ray-tracing application.

2. The Linda Coordination Language

Linda is a coordination language for parallel and distributed processing, providing a
communication mechanism based on a logically shared memory space called tuple space.
On a shared memory multi-processor system the tuple space may actually be shared, but on
distributed memory systems (such as the network of workstations used in the eLinda
project) it may be distributed among the processing nodes. Whatever implementation
strategy is used, the tuple space is accessed using associative addressing to specify the
required data objects, stored as tuples. An example of a tuple with three fields is
("point", 12, 67), where 12 and 67 are the x and y coordinates of the point repres-
ented by this tuple.

2.1 Language Overview

As a coordination language, Linda is designed to be coupled with a sequential programm-
ing language (called the host language). The host language used in this work is Java.
Linda effectively provides a library with a small set of operations that may be used to place
tuples into tuple space (out) and to retrieve tuples from tuple space (in which removes the
tuple, and rd which returns a copy of the tuple, leaving the tuple in tuple space). The latter
two operations also have predicate forms (inp and rdp) which do not block if the required
tuple is not present, but return immediately with an indication of failure. The specification
of the tuple to be retrieved makes use of an associative matching technique whereby a
subset of the fields in the tuple have their values specified and these are used to locate a
matching tuple in the tuple space. For example, if a point such as that in the example above
was required then the following operation would retrieve it: in("point", ?x, ?y).
The tuple specification here, ("point", ?x, ?y), is referred to as an anti-tuple. Any
tuple with the same number and type of fields and with the string "point" in the first
position would match this request. When a successful match is made the variables x and y
are assigned the values of the corresponding fields of the matching tuple.

The original Linda model also provides for dynamic process creation by means of the
eval operation. This is not an essential part of the paradigm, and, in fact, it has been
shown that eval may be implemented in terms of the other operations with some support
from a preprocessor [5]. Accordingly, it will not be considered any further here (none of
the three Linda systems discussed in this paper include the eval operation). Further
details of the Linda model of distributed programming may be found in [6].

2.2 Implementation Strategies

On distributed memory systems there are many possible strategies for implementing the
shared tuple space (although such issues are usually transparent to the programmers and
users of the system) [4] [7] [8]. Common approaches include centralised systems (all tuples
are stored on a single processing node), hashing systems (the contents of tuples are used to

G. Wells et al. / A Comparison of Linda Implementations in Java 65

allocate them to particular processors), and partitioned systems (tuples with a common
structure are allocated to a specific processor). Another approach, and that adopted in
eLinda, is to have the tuple space fully distributed, such that any tuple may reside on any
processing node. In the eLinda system, this is combined with internal partitioning of the
tuple space so that tuples with distinct structures are stored separately to improve the
efficiency of retrieving tuples. Both JavaSpaces and TSpaces use the centralised approach.

2.3 Advantages and Disadvantages of Linda

The small set of operations, the associative retrieval mechanism and the shared tuple space
all combine to provide a very useful simplicity and flexibility for constructing distributed
applications. On the other hand, a criticism of Linda has been that it is, at worst,
inefficient, and, at best, subject to unpredictable performance [9], as the simplicity of the
model hides the underlying complexity of the data sharing and communication required. In
order to try to overcome some of these problems, while retaining much of the essential
simplicity of the Linda approach, some extensions to the original Linda model are proposed
in eLinda.

3. The eLinda System

The extensions that have been made in the eLinda system provide the programmer with a
somewhat higher level of control over the communication mechanisms than is normally the
case. This has been done with a view to improving the performance, and to making the
performance issues more explicit (aiding predictability).

Usually some form of program source preprocessor is used with Linda systems to
translate the Linda operations into the actual forms used by the host language. Currently a
preprocessor is not provided for eLinda and so all interaction with the system takes place
using the standard Java function calling and parameter passing mechanisms. However, the
examples given below all make use of a simplified syntax (referred to as the ideal syntax)
such as might be supported by a preprocessor.

3.1 The Extensions in eLinda

The extensions in the eLinda system take three forms. The first is an additional form of
output operation, which provides the programmer with a greater degree of control of the
underlying network communication. The second is a mechanism to allow customised
searching algorithms to be integrated into the eLinda system efficiently. Lastly, support for
multimedia data types has been added. Each of these topics will now be discussed in
further detail.

3.1.1 Explicit Broadcast Communication

Two types of output operation are now provided to reflect explicitly a choice of optimised
internal tuple space communication strategies. These are a “point-to-point” mechanism
(using non-replicated data) and a “broadcast” mechanism (using replicated data). This
contrasts with the existing Linda mechanism where data is written to tuple space using a
single instruction (out), but is then read using one of two methods (in or rd, or the
equivalent predicate forms). In effect, the use of in implies a form of exclusive point-to-
point communication, in that one process places a tuple into tuple space, which is then
removed by another. Similarly, the use of rd suggests a form of shared, or broadcast (read-

66 G. Wells et al. / A Comparison of Linda Implementations in Java

only), communication, as several processes may obtain copies of the tuple.
To allow the programmer to take advantage of this behaviour and the fact that the tuple

space is distributed across all the processors, a new output operation, wr, has been added in
eLinda. This operation broadcasts the tuple throughout the processor network, whereas
out simply places a single tuple in the local tuple space. These mechanisms provide the
programmer with the necessary facilities to express shared, read-only access to data (wr–
rd), or exclusive, delete/modify access (out–in). It should be noted that this usage is not
enforced by the system. For example, it may occasionally be necessary to update data that
is otherwise shared in a read-only fashion. In such a case a tuple would be broadcast using
wr, accessed using rd, and then removed for updating using in. This would result in a
performance penalty, as all the broadcast tuples would have to be deleted. Similarly, rd
may be used to retrieve a tuple placed in tuple space using out, but a search of all the
processors involved in the computation may be required to locate it.

3.1.2 The Programmable Matching Engine

The second extension is to provide a programmable matching engine (PME) for the
retrieval of tuples, allowing the use of more flexible criteria for the associative addressing
of tuples. For example, in dealing with numeric data one might require a tuple which has a
value that is “ close to” some specified value (possibly using fuzzy set membership
functions). In a graphical context, with tuples representing the objects in an image, one
might require a tuple corresponding to an object lying within a specified area of the image.
Such queries can usually be expressed using the standard Linda associative matching
methods, but will generally be quite inefficient. For example, the application might have to
retrieve all tuples of the required type, select one of interest and then return the rest to tuple
space. When the tuple space is fully distributed, as it is in the eLinda system, searching for
a tuple may involve accessing the sections held on all the processors in parallel. This
problem is handled efficiently in eLinda by distributing the matching engine so that

 Table 1: The ProgrammableMatcher Interface

public interface ProgrammableMatcher

 { /** This function compares one anti-tuple with a list of tuples.

 * This is needed for all operations, but particularly for non-

 * blocking operations (i.e. rdp and inp).

 */

 public Tuple matchList (AntiTuple a, TupleIterator t)

 throws MatcherException;

 /** This function compares one anti-tuple with one tuple.

 * This is needed only for blocking operations (i.e. in and rd)

 * where tuples may come in one at a time (of course, it can

 * also be used by the matchList function).

 * If a matcher is never to be used in a blocking operation this

 * can simply return false.

 */

 public boolean match (AntiTuple a, Tuple t)

 throws MatcherException;

 } // interface ProgrammableMatcher

G. Wells et al. / A Comparison of Linda Implementations in Java 67

network traffic is minimised. For example, in searching for the “ largest” tuple, each section
of the tuple space would be searched locally for the largest tuple and that returned to the
originating process, which would then select the largest of all the replies received. The
syntax currently used to specify the matcher which is to be used is op.matcher, where
op is one of the eLinda input operations and matcher specifies the customised matching
routine to be used3. In addition, the extended syntax ?= is used to identify which field (or
fields) is to be used by the non-standard matching routine. For example, the command
in.maximum("point", ?=x, ?y) specifies an in operation using a matcher which
will find the tuple with the maximum x value. Omitting the matcher specification causes
the system to use the “ standard” technique of matching for strict equality.

Such customised matchers are provided by writing a class that implements a Java
interface specifying the necessary methods that must be provided for a matcher. The
interface for the programmable matching engine is shown in Table 1.

Writing such a matcher is not a trivial operation. Various library calls are provided to
allow the matcher to interact directly with the eLinda system (e.g. retrieving tuples from
tuple space, replacing unwanted tuples, deleting local and remote tuples, broadcasting
requests to other processors and subsequently retrieving the results of such requests, etc.).
However, this interaction allows the programmer to access the tuples in tuple space at a
lower level of abstraction than usual, and care needs to be taken to preserve the semantics
of Linda tuple retrieval operations. As an indication of the complexity of writing a
customised matching algorithm, a matcher to find the closest numeric value for a particular
field (or fields) takes approximately 190 lines of (extensively commented) Java code.
Another matcher, that returns a total of numeric tuple fields, is written in 175 lines of code.

The programmable matching engine concept has some aspects in common with the
recent adoption of mobile agents [10]. Effectively, a customised matcher written for the
eLinda programmable matching engine is a form of mobile agent that is distributed on a
network to find a matching tuple (or tuples). This provides the same performance
advantage as for mobile agents, namely that the need to move large amounts of data across
the network is minimised by doing the processing where the data is to be found rather than
centrally.

3.1.3 Support for Multimedia

The third distinctive feature of eLinda is its support for multimedia data. Tuples in eLinda
may contain any of the eight primitive data types supported by Java (int, char, double,
float, byte, short, long and boolean) as well as standard Java String objects.
Furthermore, any Java object4 may be added to a tuple (making use of the polymorphism
supported by Java), although this limits the type checking that can be performed by the
eLinda system. In this way the eLinda system attempts to provide the maximum possible
functionality for general-purpose applications.

To this basic functionality has been added the ability to use a MultiMediaResource
object in an eLinda tuple. This class acts as a wrapper to the underlying Java Media
Framework (JMF) multimedia resource. In particular the implementation of the
MultiMediaResource class provides support (transparent to the application
programmer) for any necessary buffering of data, fetching or streaming of multimedia data
across the network, etc. Multimedia applications are not considered further in this paper.
Further details of this aspect of eLinda may be found in [1].

3 Again, this is the ideal syntax, not the actual Java code.
4 The only restriction is that the object must be serializable.

68 G. Wells et al. / A Comparison of Linda Implementations in Java

3.2 The Implementation of eLinda on a Network of Workstations

A version of eLinda has been implemented using Java. The current structure of the eLinda
system (simplified somewhat) is shown diagrammatically in Figure 1, which illustrates a
relatively small configuration with only three application processes. As indicated in the
diagram, parts of the applications may be multithreaded, and in general there may be many
more application threads/processes than shown here. The Tuple Space Managers (TSMs)
are implemented by a Java class, which is responsible for controlling access to the tuple
space. The “ Comm” components shown in the diagram are lightweight threads that are
responsible for handling the communication and buffering requirements.

The diagram illustrates the system in terms of Java Virtual Machines (JVMs). These
may be running on separate network hosts or may be allocated to common hosts in any
desired configuration, thus allowing for simple load-balancing. The communication
between JVMs makes use of the TCP/IP network protocol, implemented by the Java
Socket class. Within an individual JVM, communication between separate threads of
execution is implemented using shared buffer data structures to decouple the execution of
the threads.

The “ Directory” process is used to direct network messages between the cooperating
processes. This helps to centralise the communication and network configuration issues—
each TSM needs to connect to just one Directory handler. There may be many Directory
handlers in a large network. Each Directory is fully interconnected with all others, giving a
maximum of three network hops to send a message from any part of the system to any
other.

4. Other Linda Implementations

As has already been mentioned, both Sun Microsystems and IBM have recently released
Linda implementations in Java. This section describes their features and compares them

App
1

App
2

App
3

Tuple
Space

Tuple
Space
Man.

 Tuple
Space

Tuple
Space
Man.

Comm

Directory

Comm

JVM

JVM JVM

Figure 1: the Structure of the eLinda System

G. Wells et al. / A Comparison of Linda Implementations in Java 69

with eLinda and the original Yale Linda model. It is worth noting that both JavaSpaces and
TSpaces make use of the object-oriented features of Java (inheritance, polymorphism and
interfaces) to negate the need for a preprocessor.

4.1 JavaSpaces

JavaSpaces [2] is a complex product and relies heavily on a number of other technologies
from Sun. It forms part of the Jini system for networking heterogeneous systems [11] and
so makes extensive use of the Jini API. Network support is provided by the Java RMI
(Remote Method Invocation) protocol. Furthermore distribution of classes to clients is
handled by the HTTP protocol. This means that before a JavaSpaces application can be
started the following list of services must be running:

• an HTTP server (a minimal one is provided with the Jini/JavaSpaces release)
• an RMI activation server (part of the standard RMI software bundled with Java)
• a Jini lookup service (alternatively the RMI registry service can be used, but this is

discouraged)
• a Jini transaction manager
• a JavaSpaces server

Most of these services (and any application programs) also require extensive setting of
command line parameters, further adding to the overall complexity of using JavaSpaces.
Applications are also required to run a security manager, whether security checking is
required or not.

JavaSpaces supports the following operations (the names differ from the original names
used by Yale, but essentially the same set of functions is provided): write (output), read
(non-destructive input) and take (destructive input), and also predicate input forms:
readIfExists and takeIfExists. Tuples are created by the programmer from
classes that implement the Jini Entry interface, and only public fields that refer to objects
are considered.

Tuples are transmitted across the network using serialisation, however JavaSpaces uses a
non-standard method of serialisation in that only public fields of classes are serialised.
Furthermore, multiple references to the same object cause multiple copies to be serialised.
Matching of tuples with anti-tuples (templates) is done using byte-level comparisons of the
data, not the conventional .equals() method. Matching can make use of object-oriented
polymorphism for matching sub-types of a class.

The Yale Linda model is extended in JavaSpaces to provide support for transactions (a
number of tuple space operations can be grouped into a single transaction and rolled back if
any one step cannot be completed successfully), and leases (tuples can be given an expiry
date after which they will automatically be removed from the tuple space). Both of these
extensions are relevant to commercial software, but do not address any of the performance
issues inherent in the Linda model. A centralised tuple storage approach is used and this
may become a performance bottleneck in large systems.

4.2 TSpaces

TSpaces is a product of the IBM Alphaworks research division. In their words it is
intended as “ the common platform on which we build links to all system and application
services” [12]. The TSpaces implementation is fairly simple and all that is required is that a
single server process be running on the network. This server makes use of a textual

70 G. Wells et al. / A Comparison of Linda Implementations in Java

configuration file and provides a useful web interface for monitoring and configuration
purposes. Applications wishing to make use of the TSpaces service need only know the
hostname of the computer running the server.

TSpaces offers a large number of operations. The basic Linda operations are provided
(again different names are used): write (output), read (non-destructive, predicate input),
take (destructive, predicate input), and non-predicate input forms (waitToRead and
waitToTake). Note the rather confusing way in which the standard forms are predicates
and the alternatives non-predicates. There is a delete operation that will simply delete a
matching tuple from the tuple space. There are also operations for the input and output of
multiple tuples: scan, countN, consumingScan, deleteAll, multiWrite and
multiUpdate. Lastly there are operations that specify tuples by means of a “ tuple ID”
rather than the usual associative matching mechanisms: update, readTupleById and
deleteTupleById.

TSpaces transports tuples across the network using standard Java object serialisation.
Tuples are simply objects consist of a number of Field objects (or FieldPS objects
which preserialise to a byte array to allow the server to work with unknown classes). The
associative matching process then uses Field objects with a class type for a wildcard (e.g.
String.class). This restricts tuples to containing objects, not primitives for matching
purposes. Matching is performed using the standard .equals() method (and in some
cases the .compareTo() method). Matching can be done using so-called indexed tuples
(fields are named; ranges of values may be included; AND and OR operations are
supported), and XML queries (Extensible Markup Language, a specification for structured
documents produced by the World Wide Web Consortium [13]). Tuples may have an
expiration time set, providing similar functionality to the lease mechanism in JavaSpaces,
and there is transaction support. Furthermore, access control is provided (based on user
names, passwords and groups).

New commands can also be added to the TSpaces system relatively easily. The rich set
of operations and complex matching criteria provides a facility similar to the Programmable
Matching Engine concept in eLinda. This still requires further investigation to assess the
differences in functionality.

The current implementation of TSpaces also makes use of a centralised server model,
which may become a performance bottleneck.

5. Performance Comparison

This section presents quantitative results for two sets of performance measurements: a
simple communication benchmark, and a ray-tracing application. These results are
compared and discussed for the three Linda systems.

5.1 Round-trip Communication and Setup Time

The first benchmark test that was run was a simple program where one process sent a time-
stamped tuple to another process, which then returned the data to the original process. This
allowed the minimal round-trip communication time to be measured (the average of 50
trips). This program was also used to measure the setup time for each of the Linda systems
(i.e. the time taken from starting the program until the necessary connections to the tuple
space had been established and communication could commence).

G. Wells et al. / A Comparison of Linda Implementations in Java 71

This program was run first on a single machine (Pentium II, with 160MB RAM) with
version 1.2 of the Java SDK, under Windows ’ 95, giving the results show below. The two
setup times are for the two separate systems (client and server).

System Average Round-trip Time
(ms)

Startup Time
(ms)

eLinda 797 660/650
TSpaces 74 380/390
JavaSpaces 176 11750/11480

The same program was then run between two machines across a 10MB Ethernet
network. The first machine was the one described above, and the second was a Pentium
with 64MB of memory, also running under Windows ’ 95.

System Average Round-trip Time
(ms)

Startup Time
(ms)5

eLinda 653 710/3460
TSpaces 54 380/3790
JavaSpaces 279 11590/17960

It is interesting to note from this data that both eLinda and TSpaces ran faster on a
network than on a single machine. This indicates that the overheads of context-switching
on the Microsoft Windows platform is relatively high. However, JavaSpaces performed
considerably worse on a network than on a single machine, suggesting that the network

5 Startup on the remote machine required manual intervention to terminate a dial-up networking dialog, hence
the extended times.

Figure 2: the Scene used in the Ray-tracing Program

72 G. Wells et al. / A Comparison of Linda Implementations in Java

protocols used by JavaSpaces are not very efficient. This may be due to the fact that
JavaSpaces makes use of a non-standard means of serialising objects for transmission
across a network, whereas both eLinda and TSpaces use Java’ s standard object serialisation
mechanisms.

While these results are interesting for comparing the three systems, they are focussed
solely on communication with little data content, and no computational requirements—an
unlikely situation in practice.

5.2 A Ray-Tracing Application

The JavaSpaces distribution includes an example ray-tracing program, using the JavaSpaces
facilities. This was ported to the other two Linda systems and augmented to time the
process of ray-tracing a simple image with four spheres, a textured plane and a single light
source in a scene of 640x480 pixels. Figure 2 shows the rendered image. No attempts were
made to optimise the original program—it was simply used as a means of measuring the
relative efficiency of the three Linda systems.

This was again run on a single machine first (with the characteristics described above),
with one worker process and then again with two. This test was also performed for various
different sizes of the tasks (expressed in pixels). The 50x50 task size resulted in 130 tasks
being created, 100x100 in 35 tasks and 200x200 in only 12 tasks. The following table
gives the results of this test. The times reported are the total time taken to render the entire
scene in each case.

System Task Size One Worker
(seconds)

Two Workers
(seconds)

50x50 89.75 98.43
100x100 82.17 89.86eLinda
200x200 77.99 80.96
50x50 95.29 90.88

100x100 81.51 80.36TSpaces
200x200 76.79 77.33
50x50 102.54 104.74

100x100 86.30 87.49JavaSpaces
200x200 81.29 82.11

These tests were then repeated on a network of 133MHz Pentium PC's with 32MB of
memory, running under Windows NT 4.0. These results were also collected using version
1.3 of the Java SDK which was recently released and which shows considerable
performance improvements over version 1.2 (speedups of approximately four times for the
ray-tracing application have been measured).

These results are graphed in Figures 3, 4 and 5 for a task size of 200x200 and various
numbers of workers. Again the times reported are those for the rendering of the complete
scene. However, in this case one machine was dedicated to running the “ system” processes
(tuple space server and any other required supporting software), another ran the controlling
process, and the workers were each run on separate machines (so, for example, four
workers corresponds to a total of six machines being used). Due to networking limitations
a maximum of nine workers could be run in this environment. Furthermore, due to its
memory requirements for the system processes, a maximum of eight workers could be used
with JavaSpaces. Results were also obtained for 50x50 and 100x100 task sizes, and
showed a similar pattern. It should be noted that there is some statistical variation in the

G. Wells et al. / A Comparison of Linda Implementations in Java 73

results due to the fact that the work is distributed randomly to the workers— the results
shown are the average of five runs.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Number of Workers

Ti
m

e
(s

)

Figure 3: ray-tracing Results for eLinda

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Number of Workers

Ti
m

e
(s

)

Figure 4: ray-tracing Results for TSpaces

74 G. Wells et al. / A Comparison of Linda Implementations in Java

6. Future Work and Conclusions

It is clear from the reported results that the implementation of JavaSpaces is rather
inefficient. Allied with this is the fact that the setup of JavaSpaces is extremely complex
and often presents great difficulties. On the other hand TSpaces is a comparatively efficient
implementation of the Linda model of communication. While the efficiency of the eLinda
system is poor when measuring only communication, it is close to that of TSpaces for the
ray-tracing application. Additionally, it may be that the distributed nature of the eLinda
tuple space will result in greater scalability for larger networks of processing elements.
However, all of the systems, but particularly TSpaces, do show performance benefits for
the ray-tracing application.

Further work, beyond the scope of this paper, will focus on the use of these three
systems in the area of distributed multimedia applications, and also on the degree of overlap
between the facilities of the Programmable Matching Engine in eLinda and the tuple-
matching extensions provided by TSpaces.

More generally, it appears that there is a resurgence of interest in the Linda model of
distributed/parallel programming, with significant industry backing. The decoupled nature
of the communication in Linda appears to be ideally suited to the current trend towards
“ ubiquitous computing” requiring communication between many different types of devices
(mobile telephones, portable computing devices, digital assistants, multimedia
entertainment devices as well as traditional computers). However, the long-standing
concerns about the efficiency of the Linda model must be addressed if it is to succeed in the
market-place, and the performance of the JavaSpaces implementation is particularly
concerning in this regard.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9
Number of Workers

Ti
m

e
(s

)

Figure 5: ray-tracing Results for JavaSpaces

G. Wells et al. / A Comparison of Linda Implementations in Java 75

Acknowledgements

This work has been carried out under the auspices of the Distributed Multimedia Centre of
Excellence in the Departments of Computer Science at Rhodes University and the
University of Fort Hare, with funding from Telkom SA, Lucent Technologies, Dimension
Data and THRIP.

References

[1] G.C. Wells et al., An Extended Version of Linda for Distributed Multimedia Applications, SAICSIT ’99,
http://www.cs.wits.ac.za/~philip/SAICSIT/SAICSIT-99/papers_ideas.html,
November 1999.

[2] Eric Freeman et al., JavaSpaces Principles, Patterns, and Practice, Addison-Wesley, 1999.

[3] IBM, TSpaces, http://www.almaden.ibm.com/cs/TSpaces/index.html.

[4] David Gelernter, Generative Communication in Linda, ACM Transactions on Programming Languages
and Systems, 7(1) (January 1985), pp. 80–112.

[5] S. Hupfer et al., Coordination Applications of Linda, in J.P. Banâtre and D. Le Métayer (eds.), Research
Directions in High-Level Parallel Programming Languages (Lecture Notes in Computer Science, 574),
Springer-Verlag , 1992, pp. 187–194.

[6] Nicholas Carriero and David Gelernter, How to Write Parallel Programs: A First Course, The MIT
Press, 1990.

[7] Sudhir Ahuja et al., Linda and Friends, IEEE Computer, 19(8) (August 1986), pp. 26–34.

[8] Nicholas Carriero and David Gelernter, The S/Net's Linda Kernel, Operating Systems Review, 19(5)
(March 1985), pp. 54–71.

[9] S. Ericsson Zenith, A Rationale for Programming with Ease, in J.P. Banâtre and D. Le Métayer (eds.),
Research Directions in High-Level Parallel Programming Languages (Lecture Notes in Computer
Science, 574), Springer-Verlag , 1992, pp. 147–156,

[10] J. Conde, Mobile Agents in Java, http://wwwinfo.cern.ch/asd/rd45/white-
papers/9812/agents2.html, December 1998.

[11] Sun Microsystems, Jini Connection Technology, http://www.sun.com/jini.

[12] IBM, The TSpaces Vision,
http://www.almaden.ibm.com/cs/TSpaces/html/Vision.html.

[13] World Wide Web Consortium, Extensible Markup Language (XML), http://www.w3.org/XML.

76

