
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

17

Acceptances, Behaviours and
Infinite Activity in CSPP

Adrian E. LAWRENCE
Department of Computer Science, Loughborough University, Leicestershire, LE11 3TU UK

A.E.Lawrence@lboro.ac.uk

Abstract. The denotational semantics presented here defines an extension of CSP
calledCSPP . It includes a full description of infinite behaviour in one simple model
using only finite traces. This is true for both finite and infinite alphabets. The struc-
ture is a complete lattice, and so also a complete partial order, under refinement. Thus
recursion is defined by fixed points in the usual way. It is also a complete restric-
tion metric space so this provides an alternative treatment of recursion for contraction
mappings.

Keywords: CSP; CSPP; Denotational semantics; formal methods; concurrency; par-
allel systems; occam; hardware compilation; priority; p-priority.

CSP is a process algebra which describes processes which engage in events. In theorigi-
nal version of CSP presented in [1] and reprinted in [2] processes were sequential, but could
run in parallel at an outer syntactic level. They could communicate by unbuffered message
passing. Hence the nameCommunicating Sequential Processes. The communication was
more likeπ-calculus than modern CSP: channels did not appear explicitly.

The second version of CSP is described in a very accessible way in Hoare’s book [3]. In
this version, parallelism is ubiquitous, and the name CommunicatingSequentialProcesses is
not so obviously appropriate. However, the concurrency isinterleaving, so events occur in
sequence and the historical name can be defended on those grounds.

The language has spawned many variants and even competitors, but the mainstream
version has not changed substantially in recent years and is described comprehensively in
Roscoe’s landmark text [4].

CSP also spawned the concrete languageoccam [5], which was designed by May in
consultation with Hoare and other CSP researchers. It is an imperative language and so had to
encompass notions which did not appear explicitly in the more abstract CSP.occamwas one
of the first practical concurrent imperative languages with a mathematical foundation. That
foundation was CSP extended with algebraic semantics to cover aspects of state. An almost
complete denotational semantics is given by Goldsmith, Roscoe and Scott in [6] and [7].

occam, originally closely associated with the transputer, inspired and enthused a world
wide community. It is so innovative, simple and elegant that it revolutionised the approach of
many practitioners. It must be said that those very same qualities, coupled with a longstand-
ing lack of support for conventional tools and environments, since rectified, alienated others
wedded to tradition.

Whenoccamwas introduced its close connections with CSP were seldom mentioned, and
occampractioners were typically unfamiliar with the algebra. Theoccamcommunity, who
were in effect the main ‘applied-CSP’ practioners, developed many techniques and insights
largely independently from main stream CSP.

occamwas regarded from the beginning as merely an initial foundation for more pow-
erful developments, particularly in raising the level of abstraction. The language has indeed

18 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

evolved from proto-occam tooccam-3, although the level of abstraction has not changed sig-
nificantly so far. It also has small extensions for hardware compilation: see [8], [9] and [10].
But so far it has proven to be remarkably resistant to major change or extension: it seems
that the core language is so robust, simple and transparent that modification is almost always
a backward step.

The work on CSP reported below originated in this context:
• occamincludes a way to give priority to some CSP events: conventional CSP abstracts

from such concerns. This problem became a serious concern when the author attempted
to prove that his hardware, software and firmware design in the HARP([11],[12])
codesign circuit boards and Handel-AS compiler was correct.

• Hardware compilation involves true concurrency.

• The semantics in [6] and [7] is rather difficult to use informally: a simpler way to
understand imperative state in the same way as CSP events is very attractive.

• The characteristic features ofoccamstem from its mathematical foundations. In seek-
ing successors or extensions, it is essential to have a full mathematical theory on which
to build.

This led to two incremental extensions of CSP:CSPP andHCSP . CSPP extends CSP
by including priority: the trailing P stands for priority.HCSP is a further extension of
CSPP and includes true concurrency and additional constructors for hardware compilation:
the leading H stands for hardware. These ideas were first presented informally at the Twente
WoTUG–20 technical meeting.

Readers with only passing acquaintance with CSP may wish to be reminded that there
are two elementary processesSkipandStop. Neither process does anything, butSkipdoes it
successfully! That isSkipterminates: it will pass control on to a successor, whileStopis a
deadlock. The process representing livelockdiv might also be included as an ‘elementary’
process: that represents a situation when a broken program goes into an infinite internal loop.

A common way of building more complex programs is to useprefixing: if a process
performs an eventa before stopping, that is written asa → Stop. And the process that
performsa before passing control to a successor isa→ Skip. Notice thata is aneventwhile
both a → SkipandSkipareprocesses. Processes just engage in events. Almost: as in the
case ofStop, they mightrefuseto engage in events.

A slightly more general prefixing is exemplified byn : {1, 2, 3} → Skip, a process that
is willing to engage in the eventn wheren is drawn from{1, 2, 3}. Notice that here we are
regarding ordinary integers as CSP events. That is fine: CSP does not specify the nature of
events. Here we interpret such an event as thereceptionof a number from some sender. Our
process is willing to accept one of the three numbers and then terminate. This is an example
of external choice: the sender decides on whether to send 1,2 or 3, and our receiver process
follows that decision. It is ‘driven’—the choice is made—externally: hence ‘external choice’.

The more general form of external choice is written2, so

n : {1, 2, 3} → Skip= (1 → Skip) 2 (2 → Skip) 2 (3 → Skip) ,

for example.
Now consider(3 → 1 → Skip) 2 (4 → 2 → Skip). A most important aspect of CSP is

that it supports abstraction—hiding of detail. Thus
(
(3 → 1 → Skip) 2 (4 → 2 → Skip)

) \ {3, 4}
is our same process, but now with the events 3 and 4 hidden. Because 3 and 4 are hidden,
they are unconstrained, and can happen freely as far as the inner process is concerned. The

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 19

justification for this idea is not difficult, but must be omitted from this brief overview. It
is now aninternal matter whether 3 or 4 occurs, so the external view of the process is non
deterministic. We may observe a process that is prepared to accept the number 1 and will
refuse 2, or the reverse. In fact

(
(3 → 1 → Skip) 2 (4 → 2 → Skip)

) \ {3, 4} = (1 → Skip) u (2 → Skip) .

Thusu is theinternalor non deterministicchoice operator.
Concurrency has been implicit in all our examples so far: the ‘receiver’n : {1, 2, 3} →

Skipneeded to interact with a ‘sender’. So the receiver and sender are running in parallel.
Thus we may have

(1 → Skip) ‖ (n : {1, 2, 3} → Skip) = (1 → Skip) ,

where‖ is the parallel operator which requires that every event be a joint event of both
partners. A more general version is‖

E
: the parallel partners synchronize on the joint events in

E, but are otherwise independent. This is enough to express any sort of parallelism including
interleaving||| which is just‖

∅
.

Sequential composition is written as#, so

(1 → Skip) # (2 → Stop) = 1 → 2 → Stop.

The last of the basic CSP operators is recursion.µ P • n : {1, 2, 3} → P is the process
that will accept an unending sequence of events drawn from{1, 2, 3}.

CSPP extends CSP by the addition of biased and neutral versions of the external choice
and parallel operators. Since prefixing is a form of external choice, that also gets extended
as does interleaving which is a particular case of the general parallel operator. Thus(1 →
Skip)

←−
¤(2 → Skip) is a process that will choose to accept a 1 when there is a choice. Fre-

quently, there is no choice: a sender is only prepared to send a single integer on any given

occasion. Then(1 → Skip)
←−
¤(2 → Skip) behaves in just the same way as the ordinary

(1 → Skip) 2 (2 → Skip). All this has been described in previous papers presented in this
series of conferences: [13],[14], [15] and [16].

Merely adding extra syntax to CSP does not achieve very much in its own right. It is
necessary to ensure that a consistent and meaningful structure emerges. Since we are building
an algebra, we must be able to identify what algebraic laws are obeyed, at the very least. The
original and traditional way to do that for CSP is by way of a denotational semantics. That is
a mapping from syntax into a mathematical structure embedded in a known theory typically
incorporating some sort of fixed point property.

The standard denotational semantics of CSP is based on Failures and has a long history
some of which is recounted in [4]. It took a while for the right concepts to emerge, and various
difficulties to be recognised and sidestepped. But there have always been severe problems
in handling certain sorts of infinite behaviour connected with unbounded non determinism.
These have been largely overcome mainly by outstanding work by Roscoe, see [17]. Yet
it has to be said that when thefull theory is included, the whole semantics is somewhat
convoluted. And the treatment of termination is a little contrived. It is believed that the
semantics presented in this paper completely overcomes all of those problems as well as
having additional merits.

The design ofCSPP was driven by the acceptance denotational semantics below. This
too evolved, and various versions were explored and presented in this conference series. A
number of difficulties were encountered but have now been resolved. The version in this

20 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

paper is pleasingly simple and appears to have solved all the outstanding problems with a
single theory. Time will tell whether it will become the standard semantics for CSP and its
extensions. This semantics definesHCSP including true concurrency with almost no change:
that is the subject of the companion paper [18].

1 Introduction

The theory introduced here is a significant advance over earlier denotational semantics for
CSP:

• It captures infinite behaviour in the simplest and only model.

• It is a complete partial order, indeed a complete lattice, under refinement in all cases.

• X is a token rather than a first class event; a new token✗ is introduced to represent
divergence.

• It deals with certain ‘awkward’ processes likeSkip2 P in a simple and natural way.

• It is expressive enough to capture extensions to CSP, in particular priority.

The main family of denotational semantics for CSP is based on Failures, see [3], [4],[19],
[20] and the references therein. The principal idea is to characterise a process by what it
can refuseto do after it has performed some trace, that is a sequence of events. The idea
is elegant and economical, if somewhat anti-intuitive. However there are some difficulties,
especially when infinite behaviour is included. In particular, refinement then fails to be a
complete partial order.

In contrast to Failures, the Acceptance semantics below is based on the idea of simultane-
ously offering a process a number of mutually exclusive events, and observing which event
or events can be chosen oraccepted.

A problem which seems to be inherent in a semantics based on Failures is an inability
to describeconditional refusal. So if a process prefers to engage in an eventa when it is
available, but otherwise will performb, thenb will sometimes be refused and sometimes
accepted. The best that a simple Failures model can do is to model that non deterministically.

CSPP extends CSP to include priority, so the last observation is very pertinent: accep-
tance semantics was devised as a means of definingCSPP precisely. Traditionally CSP
abstracts from priority, modelling it with nondeterminism, presumably arising from the un-
derlying Failures semantics. And sometimes it is said that CSP is not appropriate for mod-
elling ‘fine detail’ like priority.

Yet the correctness of some systems, including those built directly in hardware, depend
upon priority. So there is every reason to capture them in a formal and precise way in a single
unified language. This is a prime motivation for extending CSP and giving it a rigorous
definition.

Nondeterminism is fundamental and is modelled here in a rather direct way by allowing
a process to have multiplebehaviours. That is a type of internal choice: a parallel partner
cannot control which is selected.

Nondeterminism also arises when a particular behaviour does not make a unique choice
of an event from those offered to it. This is a extension of external choice: such a response
indicates a behaviour which is prepared to be flexible orcompliant: it is prepared to negotiate
or be driven by a parallel partner into the refinement of the choice down to a particular event.
If there is no such partner, or the response of the partner is also compliant, then the final
selection of a particular event is nondeterministic.

The entity ‘offering’ the choice of events to a process is abstracted as theenvironment.
This is generally the set of parallel partners of the process. But even if our process represents

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 21

a whole system, it can at least be observed, perhaps passively, from the outside: one expects
it to engage in at least one event if it is of any use. In this sense, there is always an outermost
environment.

Those familiar with the standard semantics of CSP will recognise much of this picture,
but the interpretation in Acceptances is enriched. Events remain atomic and require the joint
participation of all partners. It is useful to think of some such partners as ‘always ready and
compliant’ as in a passive observer.

2 Extended CSP

CSP originated in the context of concurrent software typically implemented on a single se-
quential processor. Major issues were synchronisation and communication. And CSP unified
these in the notion of an atomic event which involved the joint participation of, normally
two, processes. The joint participation involved both partners in such events mutually block-
ing. The event could only proceed when both were ready: there was a ‘handshake’ between
partners.

As technology advanced, CSP came to be used to describe situations involving true con-
currency. In particular, the theory was used to design and program massively parallel arrays
of transputers, although since individual transputers were not usually synchronous across
arrays, it might be argued that the concurrency involved was still interleaving.

In consort, CSP was used to designoccam, and that introduced new concepts. It in-
troduced parallel assignment as inp,q := q,p . The semantics was equivalent to true
concurrency although it was not expressed in that way. However, the assignments were not
regarded as CSP events, so that did not immediately raise the question of true concurrency in
CSP.

But occamalso introduced priority as PRI PAR and PRI ALT, and these were obviously
direct extensions of the CSP operations‖ or ||| and2. However there was no formal seman-
tics for these extensions. The first attempt to provide such was made by Fidge in [21], but
since fundamental issues of recursion and fixed points were not considered it was incomplete
and so did not succeed.

The topic of priority is sometimes said to be a ‘real-time’ issue rather than a matter of
‘logical’ design, and therefore legitimately separated from matters of correctness. This is
an appealing ‘separation of concerns’ argument at first sight: it seems to have more force

when applied to
←−‖ and‖, the parallel operators, rather than to

←−
¤ and2, the external choice

operators. But many programs, especially those involving PRI ALT, depend on priority for
their correctness.

It would be absurd to require a second precise language with another rigorous semantics
to establish what PRI ALT meant and to be able to prove the correctness of programs utilising
it. Far better to extend CSP rigorously which is whatCSPP achieves. And that is done in a
way that maintains ‘separation of concerns’. For PRI ALT is a refinement of ALT. That is if
we establish the correctness of a program that employs ALT, then it follows that ALT can be
replaced by PRI ALT, and the program is still correct.

Although CSP andoccamwere used in the design of hardware including the transputer,
direct use in hardware compilation was a later development. The hardware was usually a
synchronous circuit and was truly concurrent.occam simultaneous assignment was used
extensively. And when two processes engaged in a joint event, the ‘handshake’ was typically
implemented with a signal in each direction. But there were some circuits where the receiver
was ‘always ready’: it was a waste of hardware to provide redundant signals. So the idea
of a process that was ‘always ready’ to engage in an event arose. Although this idea seems
disturbing to some only familiar with software, it is still a valid interpretation of CSP and

22 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

CSPP . We can maintain the fiction that such a ready process could in principle inhibit the
event, but it ‘chooses’ not to do so.

Once one has admitted that interpretation of an event, it opens the door to the more radical
idea that ‘actions’ like assignments might also be regarded as events. Quantum physicists are
very familiar with the idea that a measurement can affect the subsequent observed behaviour
of a system. And that measurement involves the reception of information.

While conventional assignment can be described perfectly well by CSP, that normally
requires an explicit model of a variable. By extending the idea of an event to include assign-
ments where an observer is ‘always ready’ to see the action, we can capture a large part of
the semantics of anoccam-like language within the framework of an extended CSP. Since
sequential execution is included, this provides a radical unifying theory for imperative pro-
gramming in general. There is a further extension ofCSPP which covers such matters. For
now, merely note that events in the theory below may have non traditional interpretations.

Hardware also throws up the idea of events that involve more than two processes. In
software, events normally include precisely two processes joined by a channel (which is
formally merely a set of events). The most obvious example of an event involving many
processes in hardware is a clock edge in a synchronous circuit.

The underlying theory of CSP did not restrict events to two processes. In fact the number
of processes involved in an event is not even well defined as evidenced by the identity

(a→ Skip) ‖ (a→ Skip) = (a→ Skip) .

Almost all descriptions of CSP aimed at software deal with events as channels. Below
we concentrate on the underlying events for the reasons indicated above, and because the
semantics is more obvious. Channels are used in applications and examples.

Here only the modest extension of CSP toCSPP is addressed, but this also serves as a
foundation for further extensions includingHCSP . Only interleaving concurrency is cov-
ereded here.HCSP includes true concurrency. The main extensions to standard CSP here
are:

• A miraculous process,>. This is an unimplementable process introduced for technical
reasons: it ensures that the structure is a complete lattice under refinement.

• Priority and compliant processes. Thus2 has refinements
←→
¤ ,

←−
¤ and

−→
¤ , for example.

• ‘Fair’ refinements of standard operations like interleaving. Thus|̂|| is a refinement of
interleaving that must eventually favour each partner. This is related to priority and
infinite behaviour and expresses ideas found in temporal logic.

3 Why denotational semantics?

Much recent work in CSP concentrates on operational semantics. That work is largely con-
cerned with modelling and proving systems correct particularly with the aid of model check-
ing [22]. FDR [23] is a model checker for CSP which is built around such an operational
semantics.

Here there is a different emphasis: the main thrust is in building tools and designing lan-
guages for codesign, especially for hardware design. In particular transformation laws, in
effect algebraic semantics, are required which can be used in compilers. Acceptance seman-
tics is abstract and simple, yet can capture more detail than standard CSP and can be applied
to a wide range of situations. It can establish the algebraic identities needed for practical
tools. And the insight that it affords in aiding understanding and recognising new realms of
application should not be dismissed.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 23

4 Some intuitions underlying Acceptances

4.1 Events and Traces

Classical CSP models concurrency by interleaving: no more than one event can occur at any
instant. Since such events may be separated by arbitrarily small times, at least in untimed
CSP, this suffices for many purposes. If we wish to model two events that occur together, that
is done by supposing that closer examination would reveal that the events actually did happen
at different times, and so can be represented by a trace: a particular sequence. In fact, the
more precise measurement of the order is not available, so that information is missing, and
consequently the order is indeterminate. Thus if we wish to model two eventsa andb that
appear to happen together either because that is the reality, or because we cannot determine
the times of occurrence sufficiently precisely, then that is handled as the pair of orders〈ab〉
and〈ba〉. The corresponding elementary process is(a → Skip) ||| (b → Skip) = (a →
b → Skip) 2 (b → a → Skip): one or other order will happen, we know not which. This
identification is established rigorously in section 5.9 on page 28.

On occasions this model is inadequate. Modelling synchronous hardware in full detail in-
cluding explicit clocks requires a more realistic model.HCSP [18] is an extension ofCSPP
which is further extended to include true concurrency. ButCSPP is a more conservative
extension of standard CSP and retains interleaving semantics.

4.2 Priority, simultaneous offers and concurrency

CSPP is aimed at capturing priority. Consider two eventsa and b again, and a process
that gives priority toa in preference tob. If the process is presented with botha and b
simultaneously, then the process will selecta. At first sight, we seem to be faced with the need
for true concurrency once again. Yet priority arises in real software systems implemented on
entirely sequential processors, so that cannot be the case. The explanation here is that the
state of the system, in particular what events are available, issampledat various points.

Acceptance semantics captures these ideas, but can also be extended as inHCSP to
handle true concurrency. It is intended to be close in spirit to Failures semantics, but easier to
understand: it is simpler to identify what a processacceptsrather than what it refuses. Hence
the name.

4.3 Environments, simultaneous offers, compliant responses, and events.

A basic idea is that of anenvironmentwith which a process interacts. That environment
is formed by the concurrent partners of the process if any. But at the outer level, it may
be thought of as a passive observer. The only purpose of the environment is to engage in
common events. At the outermost level, a passive observer merely ‘accepts’ – observes – any
event that the process chooses to perform. This is an example of a ‘compliant’ environment.

Thus if a particular process has a repertoire of eventsa, b andc, then a compliant envi-
ronment might make the compliant ‘offer’X = {a, b, c}. That means that the environment
is prepared to engage in precisely one of the events inX. It is compliant in that it leaves the
choice to the process. If the process opted for eventa, then we will describe that by saying
that the process ‘accepted’{a} in response to the offer{a, b, c}.

But the environment is also the mechanism for capturing the interaction of cooperating
(and also contending) processes. If a process is placed in parallel with another process only
prepared to engage in the shared eventa, that would in effect constitute an environment
offering X = {a}. If our process is only prepared to perform another eventb, then deadlock
follows.

24 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

An offer like {a, b, c} is a simultaneouspresentationof a choice among 3 events. This is
quite distinct from simultaneouseventswhich are only present inHCSP : the compliant offer
is to perform exactly one of the events. This is just what we need to capture priority. Notice
that explicit priority is sometimes only required when true concurrency is not available: if
both eventsa andb are available and we can execute them together, there is no need to use
priority to select just one. But there are uses for explicit priority even when true concurrency
is available: there may still be mutually exclusive choices with a preference when both are
available.

5 Simple examples

The examples here serve to introduce notation and fix ideas. It is assumed that the reader has
had some previous exposure to CSP.

5.1 Stop

ConsiderStop. Like all processes, it starts with an empty trace〈〉: initially it has done
nothing: AndStopcontinues to do nothing: if it is offered the set of eventsX, then it accepts
nothing. We write the acceptance semantics as

〈〉 : X Ã ∅ or Stop::: 〈〉 : X Ã ∅ when we need the process name.

Stopis an example of a process which has only onebehaviour, namely〈〉 : X Ã ∅. That will
be explicit in section 13.1 on page32.

5.2 Prefixing:a→ Stop

a→ Stopalso has a single behaviour. If it is offered the eventa initially, it accepts it:

〈〉 : {a} Ã {a}
More generally

〈〉 : X Ã {a} ∩ X.

Once the only behaviour ofa → Stophas accepteda, the trace of its past actions is〈a〉.
It subsequent behaviour is

〈a〉 : X Ã ∅ .

X Ã {a} can be pronouncedX accepts{a} or X may accept a, but X Ã ∅ is probably
better pronounced asX may refuseor X may accept nothing.

A behaviourhas a set of traces, here just{〈〉, 〈a〉}, and associates each trace with the
responses to all possible offersX.

5.3 Nondeterminism:Stopu (a→ Stop)

ConsiderStopu (a→ Stop). This is a process that may behave likeStopor like (a→ Stop).
And the choice isinternal: the environment cannot influence which. An implementation
might consist of either process alone in which caseStopu (a → Stop) can be regarded as a
specification. Or a system might be capable of behaving like either component process, but
makes arbitrary choice between the options when it is run.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 25

These two possibilities are mapped very literally here: there is a distinctbehaviourmatch-
ing each of the component processes. The process is modelled by this set of two behaviours
{b1, b2}.

Even whena is among the events offered initially, it may be refused:〈〉 : X Ã ∅. But we
still have〈〉 : X Ã {a} whena ∈ X as well. Each corresponds to one of the twobehaviours
of the component processes. We write

b1 :: 〈〉 : X Ã ∅
b2 :: 〈〉 : X Ã X ∩ {a}
b2 :: 〈a〉 : X Ã ∅

for the two behavioursb1 andb2. Since these behaviours are uniquely associated with the
component processes here, we can abuse notation in such cases to write:

Stop :: 〈〉 : X Ã ∅
(a→ Stop) :: 〈〉 : X Ã X ∩ {a}
(a→ Stop) :: 〈a〉 : X Ã ∅

So in general a process is identified with a set of partial functions each of which represents
a possible behaviour. A behaviourb takes a possible tracesand yields another function which
describes what is accepted when a set of eventsX is offered. Thusb :: 〈〉 : X Ã ∅means that
b(〈〉) is the functionX 7→ ∅. More precisely

b(〈〉) = {X 7→ ∅ | X ⊆ Σ}

whereΣ is the set of all events.

5.4 Termination:X andSkip

The processes illustrated above simply cease activity, but useful processes normally termi-
nate. That is how a process passes control to a successor on successful completion. In CSP
this is done with a special token written asX. An associated process isSkipwhich has a
single behaviour which does nothing except terminate:

〈〉 : X Ã {X}

In CSPP X has a special status: it cannot be offered to an event, and it cannot appear in a
trace. In classical CSP,X is treated as an ordinary event for most purposes so it may appear in
traces. To do this consistently requires considerable ingenuity and awkwardness in Failures
semantics. These problems do not arise in Acceptance semantics.

A characteristic property ofX is

(a→ Skip) # (b→ Skip) = (a→ b→ Skip)

This has a behaviour with

〈ab〉 : X Ã {X}

TheX which passes control froma→ Skipto b→ Skipis a hidden synchronisation between
the two processes, and does not appear in the trace: rather it is associated with the instance
of the sequential constructor# which “glues” the two processes together.

26 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

5.5 Recursion:µ P • a→ P

CSP includes solutions to recursive equations like

Q = a→ Q .

which defines an infinite process. This can be written

Q = µ P • a→ P

µ P • f (P) denotes denotes the unique solution of the equationP = f (P) if one exists. If
there is more than one solution, then it selects theleast, that is the most non deterministic, of
the available solutions, if any. Determining under what conditions such solutions exist is one
of the primary tasks in setting up a denotational semantics for any CSP variant.

Acceptance semantics based on behaviours shows thatCSPP constitutes a complete met-
ric space. This shows that all functionsf which are contracting with respect to that metric
have unique solutions.

With the addition of a ‘miraculous’> process,CSPP is also a complete lattice and
therefore also a complete partial order. The order relates processes with common behaviours
where those that are more deterministic are ‘better than’ those which exhibit more internal
choice. This refinement order is defined below. It then follows from standard results about
fixed points that all sensible recursions inCSPP have ‘best’ – most deterministic – solutions.

Be that as it may, note for the moment thatµ P • a→ P is an infinite process with traces
consisting of a sequence ofa’s. Its semantics is

〈an〉 : X Ã {a} ∩ X

where〈an〉 is a trace ofn consecutivea’s. It is unbounded: it can perform more thann events
for anyn.

This is our first example of abehaviourwith an infinite domain. The domain is the set of
all finite traces consisting of sequences ofas. This ability to represent infinite behaviour using
only finite traces is simple, yet significant. It is the extra layer of structure at the individual
behaviourlevel that yields the expressive power to distinguish truly infinite behaviour.

5.6 Hiding, divergence and✗: (a→ b→ Stop) \ {a}

An important feature of CSP is that it includes hiding. An example:

(a→ b→ Stop) \ {a} = b→ Stop.

Soa becomes an ‘internal event’ invisible to the environment. This is the primary abstraction
mechanism. It introduces nondeterminism and divergence. So

(
a→ (µ P • b→ P)

) \ {b} , (1)

is a process which performsa, but then goes into an infinite loop which no longer interacts
with its environment, and there is no way to exercise control. This livelocked process is said
to bedivergentin analogy with uncontrolled infinite behaviour. Such situations are captured
with the aid of another pseudo-event✗. The notation is intended to indicate undesirable
non-terminating behaviour contrasting withX. For equation (1) the behaviour is:

〈〉 : X Ã {a} ∩ X
〈a〉 : X Ã {✗} .

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 27

When priority is present, processes like

(
(a→ Stop)

←−
¤(b→ Stop)

) \ {a} = Stop,

arise. (a → Stop)
←−
¤(b → Stop) is a process which always performsa when it is available,

but otherwise performsb. But
(
(a→ Stop) 2 (b→ Stop)

) \ {a} = Stopu (b→ Stop) .

Here(a→ Stop) 2 (b→ Stop) treats the eventsa andb on an equal basis. Both of the above
equations are true in the semantics presented below.

5.7 External choice:(a→ Stop) 2 (b→ Stop)

A simple example of external choice is,(a → Stop) 2 (b → Stop). It is a process which is
partly controlled by the environment as we can see in

b1 :: 〈〉 : X Ã {a, b} ∩ X
b2 :: 〈〉 : X Ã {a} J a ∈ X I {b} ∩ X
b3 :: 〈〉 : X Ã {b} J b ∈ X I {a} ∩ X

〈a〉 : X Ã ∅
〈b〉 : X Ã ∅ .

(2)

E1 J booleanI E2 is a notation borrowed from CSP itself: if the boolean is true the result
is the expressionE1, otherwise it isE2. Our process is nondeterministic because there are in
general three possible responses to an initial offer ofX. The last two lines in equation (2)
represent the responses common tob1, b2 andb3.

b2 :: 〈〉 : {a, b} Ã {a} shows that the process may choose to perform the eventa when
given a choice betweena andb. But suppose that we have a process which is compliant in
the sense that it wishes to conform to the selection made by a parallel partner in its shared
environment. It expresses that by responding with botha andb: b1 :: 〈〉 : {a, b} Ã {a, b}.

Thus2 allows any of these possibilities: it abstracts from those details. Priority is a
means of choosing just one class of these behaviours.

5.8 The pseudo events{X, ✗}

X and✗ model termination and livelock respectively. We work with a global alphabetΣ ∪
{X, ✗} whereΣ is a set which includes all the ‘ordinary’ events that may arise.

Later we will encounter the odd processSkip
←→
¤ div. It always accepts{X, ✗}. That is

X Ã {X, ✗} for every offerX.
{X, ✗} has the form of a compliant response, but since an environment can only offer

real events, it cannot ‘select’ betweenX and✗: there is no way to makeSkip
←→
¤ div comply

with a request to terminate because the environment has no way of making such a request.

How then doesSkip
←→
¤ div differ from Skipu div? The acceptance semantics certainly

differ. The first has a single compliant behaviour; the second two deterministic behaviours.
The nondeterminism inSkipu div is between the two possible behaviours. We interpret any

unresolved compliance also as a nondeterministic outcome. SoSkip
←→
¤ div is deterministic

in that there is only one behaviour, but nondeterministic in that no environment can choose
betweenX and✗ in the response of that behaviour. So no single experiment can distinguish

Skip
←→
¤ div andSkipu div.

28 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

5.9 Interleaving:(a→ Stop) ||| (b→ Stop)

The interleaving(a→ Stop) ||| (b→ Stop) has 3behaviourscharacterised by

b1 :: 〈〉 : X Ã {a, b} ∩ X
b2 :: 〈〉 : X Ã {a} J a ∈ X I {b} ∩ X
b3 :: 〈〉 : X Ã {b} J b ∈ X I {a} ∩ X
〈a〉 : X Ã {b} ∩ X
〈b〉 : X Ã {a} ∩ X
〈ab〉 : X Ã ∅
〈ba〉 : X Ã ∅ ,

where the responses after the first event for a particular trace are common. This is just

(a→ b→ Stop) 2 (b→ a→ Stop) ,

so the process is prepared to performa andb in either order. And when offered{a, b} it may
choosea, b or be noncommittal.

5.10 Parallel:(a→ Stop) ‖
{a}

(a→ b→ Stop)

(a → Stop) ‖
{a}

(a → b → Stop) is a process that synchronises on the eventa. The two

component processes can only engage ina simultaneously so there is only onebehaviour
given by:

〈〉 : X Ã {a} ∩ X
〈a〉 : X Ã {b} ∩ X
〈ab〉 : X Ã ∅ .

b is an independent event, so one partner can engage in it without the participation of its
compatriot. So

(a→ Stop) ‖
{a}

(a→ b→ Stop) = (a→ b→ Stop) .

6 Alphabets and traces

As above, there is an alphabetΣ of ordinary events: this will be large enough to include all
the visible events of any process that we need to describe. To this we add the pseudo events
X and✗, writing ΣX✗ = Σ ∪ {X, ✗}.

Traces are sequences, empty or finite, of events drawn fromΣ. 〈〉 is the empty sequence.
The set of all finite traces drawn fromΣ is written asΣ

∗
. The acceptance semantics here

based onbehavioursneeds only finite traces.

7 Behaviours

We specify the meaning of a process by describing its responses after it has performed some
trace of events. Traces are members ofΣ

∗
. Given such a trace, we then specify an acceptance

function as{X Ã U}. The offerX is some subset of the alphabetΣ: that isX ⊆ Σ. And

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 29

a responseU is a subset ofΣX✗. So there is a partial functionb : Σ
∗ 7→ (

PΣ → PΣX✗
)

representing each possible behaviour.
Thus we have a description which is a setBP of such behaviours:

BP : P
(
Σ
∗ 7→ (

PΣ → PΣX✗
))

(3)

[[P]] is the usual notation for the semantic function describing the behaviour of the processP,
butBP is more intuitive and used here. The set of traces of the process is just the union of
the traces of the behaviours:

traces(P) =
⋃{traces(b) | b ∈ BP} ,

wheretraces(b) = dom b.
We sometimes identify a process directly with its behaviours where the context warrants.

And that leads to a simple matchingnormal form.

8 p-priority

CSPP extends CSP with extra operators including
←−
¤ and

←−‖ .

8.1 Process Priority and external choice.

P = P1

←−
¤P2 extends external choice and provides a semantics for PRI ALT inoccam. The

first event is selected in favour ofP1. SoPab = (a → Stop)
←−
¤(b → Stop), with a minimal

alphabetΣ = {a, b} for simplicity, has the behaviour:

〈〉 : {a, b} Ã {a}
〈〉 : {a} Ã {a}
〈〉 : {b} Ã {b}
〈〉 : ∅ Ã ∅
〈a〉 : X Ã ∅
〈b〉 : X Ã ∅ .

(4)

P1

←→
¤ P2 is the symmetrical version. So the behaviour ofP = (a → Stop)

←→
¤ (b → Stop)

is:
〈〉 : {a, b} Ã {a, b}
〈〉 : {a} Ã {a}
〈〉 : {b} Ã {b}
〈〉 : ∅ Ã ∅
〈a〉 : X Ã ∅
〈b〉 : X Ã ∅

(5)

P1

←→
¤ P2 embodies the antithesis of p-priority in that it refuses to choose betweena andb but

rather treats them symmetrically. But it will always respect the p-priority of a parallel partner.

9 Fairness

The presence of priority inCSPP provides a way to express degrees of fairness. Since
infinite behaviour is also captured properly, this includeseventual fairness.

30 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

If A = µ p • a → p and B = µ p • b → p, considerP1 = A ||| B where there
are no other processes involved so that both component processes are always ready. Then

an implementation ofP1 can always favourA over B, that isA
←−|||Bw P1, and nob is ever

performed.

EvenP2 = A
←→|||B could also behave in just the same way. Although no behaviour ofP2

favoursa overb, but is neutral, the nondeterministic resolution of that neutrality, conceptually
resolved by the environment in this case, might happen to be consistently unfair.

Acceptance semantics based on behaviours allows us to defineP0 = A |̂|| B which is a
process which cannot be consistently unfair. It guarantees thateventuallythere is an instance
when a has priority, and likewise an instance whenb has priority. To be precise,A |̂|| B
consists of those behaviours ofA ||| B which have at least one trace matching an acceptance
giving priority toA and another giving priority toB.

More precise control is given byA
n̂

||| B which ensures fairness in the sense above over
every sequence ofn events.

10 Abstracting from priority

When two processes are combined, one or the other may have priority, or the result may
be compliant. So if the first process acceptsX1 and the otherX2, the overall acceptance is
determined byX1 if the first process has priority, byX2 when the second process has priority
and byX1 ∪ X2 in the compliant case. Each case corresponds to a particular variant of the
joint process. But we also need a general version which abstracts from those details. We need
it to model situations in which we lack full information, and for specification where we wish
to leave the implementation choices open. This last is especially important in a programming
language where we wish the compiler to generate the most efficient circuit or code.

A more general and fairly extreme example ise : E → StopwhenE is a large set. This
is a process that may perform any event fromE that may be offered. But if several events
from E are offered simultaneously, we do not wish to constrain how the final choice of a
single event is made. In a hardware implementation, the most efficient circuit is quite likely
to be one with a definite priority hardwired. A biased implementation is acceptable. But
a compliant implementation is just as acceptable, as is any intermediate sort that might be
compliant with respect to{e1, e2} say, but biased in favour of{e3}.

11 Some definitions and notation

The discussion so far has been introductory. There is no room in a conference paper for full
technical detail. Here we lay out the foundations, in particular the axioms or ‘health condi-
tions’ and simply give a taste of the full semantics by way of a small number of examples.

Definition 11.1 When X⊆ Σ, XX is used to denote X∪ {X} and XX✗ denotes X∪ {X, ✗}.

#s is the length of s:#〈〉 = 0 and #(t ̂ 〈e〉) = #t + 1. We extend this notation
to behaviours:#b = max{#s | s ∈ dom b} which is well defined when the lengths are
bounded. Otherwise#b = ∞.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 31

12 Health Conditions (Axioms)

A set of partial functionsBP : P
(
Σ
∗ 7→ (

PΣ → PΣX✗
))

describing a processP, must
satisfy the axioms or health conditions below. We usually writeb(s)(X) asbsXfollowing the
usual conventions for curried functions. This is equivalent to writingb :: s : X Ã bsX.

Each behaviour starts with a clean slate:

H1: ∀ b ∈ BP • 〈〉 ∈ traces(b)

traces(b) = dom b above. The miraculous process has no behaviours:B> = ∅.
The traces of a behaviour are prefix closed, and extend while any event can be accepted:

H2: ∀b ∈ BP • ∀ s∈ Σ
∗ • ∀ x ∈ Σ •

ŝ 〈x〉 ∈ traces(b) ⇔ s∈ traces(b) ∧ (∃X ⊆ Σ • x ∈ bsX)

Notice that these closure conditions determine all behaviours when the acceptances are spec-
ified for a general trace.

Every acceptance of an event is one of those offered. And there is a response to every
offer because eachb(s) is a total function:

H3: ∀b ∈ BP • ∀ s∈ traces(b) • ∀X ⊆ Σ • bsX⊆ XX✗

If an offer can be refused, then so can any smaller offer. And if an event can be accepted,
then no offer including that event can be refused. However the accepted event may differ
from the original, perhaps because the second offer includes an event of higher priority:

H4:

∀b ∈ BP • ∀ s∈ traces(b) • ∀X, Y ⊆ Σ •
bsX= ∅ ∧ Y ⊆ X ⇒ bsY= ∅

∧
bsX∩ Y 6= ∅ ⇒ bsY 6= ∅

If an offer can be accepted, then smaller offers including accepted events can also be
accepted:

H5:
∀b ∈ BP • ∀ s∈ traces(b) • ∀X, Y ⊆ Σ •

bsX∩ YX✗ 6= ∅ ∧ Y ⊆ X ⇒ bsY= bsX∩ YX✗ .

Combining conditions fromH4 andH5 shows that all behavioursb ∈ BP have accep-
tances which obey

(C1) bsX= ∅ ∧ Y ⊆ X ⇒ bsY= ∅
(C2) bsX∩ Y 6= ∅ ⇒ bsY 6= ∅
(C3) bsX∩ YX✗ 6= ∅ ∧ Y ⊆ X ⇒ bsY= bsX∩ YX✗ ,

whens is one of their traces andX andY ⊆ Σ.
These requirements for any individual behaviourb are collected in the following abbre-

viation.

32 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

Definition 12.1 behave(b) is an abbreviation for

b : Σ
∗ 7→ (

PΣ → PΣX✗
)

∧
〈〉 ∈ dom b

∧
∀ s∈ dom(b) • ∀X ⊆ Σ • bsX⊆ XX✗

∧
∀ s∈ Σ

∗ • ∀ x ∈ Σ •
ŝ 〈x〉 ∈ dom(b) ⇔ s∈ dom(b) ∧ (∃X ⊆ Σ • x ∈ bsX)

∧
∀ s∈ dom b • ∀X, Y ⊆ Σ •

bsX= ∅ ∧ Y ⊆ X ⇒ bsY= ∅ ∧
bsX∩ Y 6= ∅ ⇒ bsY 6= ∅ ∧

bs(X) ∩ YX✗ 6= ∅ ∧ Y ⊆ X ⇒ bsY= bsX∩ YX✗ .

13 Semantics

There is only room here to give the precise semantics for some of the simpler cases and
to highlight refinement and recursion. In particular, the definition of the parallel operators
requires a little technical infrastructure which we omit.

13.1 Stop

〈〉 : X Ã ∅ (6)

The only behaviour has a single empty trace and no events are accepted. This means

BStop=
{{〈〉 7→ {X Ã ∅) | X ⊆ Σ}}} , (7)

so the only behaviourb has domain{〈〉} = traces(b) andb〈〉X = ∅ for everyX ⊆ Σ.

13.2 Skip

〈〉 : X Ã {X} (8)

Again there is only one behaviour, the only trace is empty, but the process always offers to
terminate.

BSkip=
{{〈〉 7→ λ X • {X}}} (9)

13.3 div

We define a simplediv here. It is a process which immediately livelocks:

〈〉 : X Ã {✗}
There is a single behaviour{〈〉 7→ λ X • {✗}}.

13.4 ⊥

⊥ is the most unpredictable of processes: it includes every behaviour.

B⊥ =
{

b | behave(b)
}

(10)

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 33

13.5 >

> is a miracle. And a fraud. It has no behaviours, and so is not implementable. But it refines
every process. And ensures that every monotone recursion is well defined.

B> = ∅ (11)

13.6 Prefix choice

Considere : E → P(e) with E ⊆ Σ. In general there are many possible initial behaviours
b〈〉:

b :: 〈〉 : X Ã ∅ J X ∩ E = ∅ I U

whereU ⊆ X ∩ E is not empty. Sob〈〉 must satisfyb〈〉X = ∅ when X ∩ E = ∅ and
∅ 6= b〈〉X ⊆ X ∩ E otherwise;

B (e : E → P(e)) =

b

∣∣∣∣∣∣∣∣∣∣

behave(b)
∧

∀X ⊆ Σ • b〈〉X ⊆ X ∩ E ∧ (b〈〉X = ∅ ⇒ X ∩ E = ∅)
∧

∀e∈ E • ∃p ∈ BP(e) • ∀ s∈ Σ
∗ • 〈e〉 ̂ s∈ traces(b) ⇒ b(〈e〉 ̂ s) = ps

(12)

The behaviours represent all possible ways of assigning or refraining from assigning priority
among the events ofE. They match one of those inBP(e) after the initial event.

13.7 Compliant Prefix choice

The fully compliant refinement of prefix choice,e :
←→
E → P(e), is sometimes useful. An

initial behaviour accepts anything fromE: 〈〉 : X Ã X ∩ E. So

B (e :
←→
E → P(e)) =

b

∣∣∣∣∣∣

behave(b) ∧ ∀X ⊆ Σ • b〈〉X = X ∩ E
∧

∀e∈ E • ∃ p ∈ BP(e) • ∀ s∈ Σ
∗ • 〈e〉 ̂ s∈ traces(b) ⇒ b(〈e〉 ̂ s) = ps

 (13)

13.8 Non deterministic choice

B (P1 u P2) = BP1 ∪ BP2 (14)

We extend the definition to sets of processes, writing

B
(
u
i∈I

{Pi}
)

=
⋃
i∈I

{BPi} (15)

34 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

13.9 Compliant external choice

The processP = P1 2 P2 abstracts away from implementation details. If given the choice,
it may select between available initial events ofP1 andP2. If it always favours events from
P1, that amounts to p-priority, but in general there are a large number of other possibilities.
Among them is the case where the process abstains entirely from making a choice, and is
completely symmetrical in its treatment ofP1 andP2. It will always comply with the wishes
of whatever mechanism makes the final decision:

B (P1

←→
¤ P2) =

b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

behave(b)
∧

∃(p1, p2) ∈ BP1 × BP2 •

∀X ⊆ Σ • b〈〉X = p1〈〉X ∪ p2〈〉X
∧

∀e∈ Σ • ∀ s∈ Σ
∗ • 〈e〉 ̂ s∈ traces(b) ⇒

∃X ⊆ Σ • e∈ p1〈〉X ∧ b(〈e〉 ̂ s) = p1(〈e〉 ̂ s)

∨
∃X ⊆ Σ • e∈ p2〈〉X ∧ b(〈e〉 ̂ s) = p2(〈e〉 ̂ s)

(16)

13.10 p-prioritised external choice

B (P1

←−
¤P2) =

b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

behave(b)
∧

∃(p1, p2) ∈ BP1 × BP2 •

∀X ⊆ Σ • b〈〉X = p2〈〉X J p1〈〉X = ∅ I p1〈〉X
∧

∀〈e〉 ∈ traces(b) • ∀ s∈ Σ
∗ • 〈e〉 ̂ s∈ traces(b) ⇒

∃X ⊆ Σ • e∈ p1〈〉X ∧ b(〈e〉 ̂ s) = p1(〈e〉 ̂ s)

∨
∃X ⊆ Σ • p1〈〉X = ∅ ∧ e∈ p2〈〉X ∧ b(〈e〉 ̂ s) = p2(〈e〉 ̂ s)

(17)

This simply says that the process always behaves likeP1 unlessP1 refuses in which case
it behaves likeP2. It allows P1 to perform any event, terminate or diverge if it is capable of
doing so. So ifP1 is active in any sense, it is let loose:

〈〉 : X Ã U if P1 ::: 〈〉 : X Ã U apart fromU = ∅
P2 is only allowed to be active whenP1 is not. If P1 shows any sign of life, even pathological
life, it executes.

13.11 External choice

We defineP1 2 P2 abstractly as(P1

←−
¤P2) u (P1

←→
¤ P2) u (P1

−→
¤P2):

B (P1 2 P2) = B (P1

←−
¤P2) ∪ B (P1

←→
¤ P2) ∪ B (P1

−→
¤P2) (18)

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 35

13.12 Sequential Composition

B (P1 # P2) =

b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

behave(b)
∧

∃(p1, p2) ∈ BP1 × BP2 • ∀ s∈ traces(b) • ∀X ⊆ Σ •

s∈ traces(p1) ∧ X 6∈ p1sX∧ bsX= p1sX
∨

s∈ traces(p1) ∧ X ∈ p1sX∧ bsX= ((p1sX) \ {X}) ∪ p2〈〉X
∨

∃(s1, s2) ∈ traces(p1)× traces(p2) • ∃Y ⊆ Σ •
X ∈ p1s1Y ∧ s2 6= 〈〉 ∧ s2(0) ∈ p1s1Y ∧ s = s1 ̂ s2 ∧ bsX= p2s2X

(19)

Notice that we cover processes likeµ p • (Skipu a→ p) #Q. And also that it is trivial to
check thatSkip# P = P # Skip= P.

13.13 Refinement

Refinement is as usual
P1 w P2 ⇔ P2 = P2 u P1 (20)

which simply maps onto set inclusion on the behaviours:

P1 w P2 ⇔ BP1 ⊆ BP2 (21)

13.13.1 > and⊥
The most nondeterministic process which has all possible behaviours is evidently below any
other process in this order: it is the least element⊥ of w.

> has no behaviours, and is not implementable. Its contribution is to form the final brick
in building a complete lattice. The structure then has the weaker property of being a complete
partial order to which we can apply standard fixed point theorems to define recursion.

13.13.2 Meets and joins

Obviously meets correspond to unions and joins to intersections of behaviours which always
represent processes. Thus meet is justu which is the motivation for the choice of symbol.
For example, the meet of(a→ Stop) and(b→ Stop) is (a→ Stop) u (b→ Stop).

Joins are written analogously as in(a → Stop) t (b → Stop) = >. All meets and joins
exist so the set of processes is a complete lattice under refinement. And so also a Complete
Partial Order(CPO).

13.13.3 Unbounded nondeterminism

> handles cases of unbounded nondeterminism in a clean way. A standard example with an
infinite Σ is:

Example 13.1 Consider the set of processes

Pn =u{ai → Stop| i ≥ n}
for n ∈ N where all the ai are distinct.

36 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

Here any finite set of thePi has an upper bound, namelyPm wherem is the largest index.
So we have a directed set. Yet for everyn ∈ N, an cannot be performed by members of
{Pi | i > n}, so there can be no process behaviour which refines every element. But since>
has no behaviours, it is the join:t{Pn | n ∈ N} = >. [13.1]

Another of the standard examples of an awkward directed set involves infinite behaviour
even whenΣ is finite.

Example 13.2 LetΣ = {a, b} and

P0 = µ p • (b→ p) (22)

P1 = a→ P0 (23)

P2 = b→ a→ P0 (24)

P3 = b→ b→ a→ P0 (25)

. . . (26)

so that Pn performs an a as the nth event in an otherwise unbroken stream of b’s. Write

Dn = u
i>n

Pi .

Then D= {Dn | n ∈ N} is a directed set.

A finite set ofDn is refined by a process that performs ana any time after thenth b. It might
be thought that a possible candidate for a process that refines every member ofD is P0. Yet
is is clear that this is not true here for it consists of a single behaviour which is not present in
any otherPn. Clearly the only candidate for an upper bound ofD is given by intersection of
the behaviours of members ofD. That is obviously empty, so yields>.

13.14 Recursion

µ p • f (p) denotes a fixed point of the functionf . This is often the least fixed point with
respect to the refinement order in standard untimed CSP. Semantics based on Failures often
have problems in this area: when unbounded non determinism or infinite traces are present,
refinement is no longer a CPO.

The Acceptance semantics based onbehaviourspresented here is the first denotational
semantics that completely overcomes all those problems. It naturally includes infinite be-
haviour yet, as we have seen above, it is not only a CPO, but also a particularly simple sort
of complete lattice under refinement.

Standard theorems now ensure that every monotone function f has a least fixed point,
and soµ p • f (p) is well defined. All the ordinary operators ofCSPP are monotone with
respect to the refinement orderw: this follows from the fact that they are defined in terms of
individual behaviours, so they all distribute overu.

As noted earlier, a restriction metric can also be defined, and that is also complete. Con-
traction mappings then have unique fixed points: the corresponding recursions in CSP are
known as constructive. The simplicity of establishing the uniqueness of the fixed points is
often useful in proofs.

A.E. Lawrence / Acceptances, Behaviours and Infinite Activity 37

14 Conclusions

Acceptances employingbehavioursprovides a simple satisfying powerful and intuitive deno-
tational semantics for CSP andCSPP . It incorporates infinite behaviour naturally in contrast
to other denotational theories for CSP which require awkward extensions to do the same.

The standard operators distribute overu which is related to refinement in the usual way.
With the additional of a ‘top’ or ‘miraculous’ process, refinement yields a complete lattice.
Thus all standard recursions are well defined and have fixed points. This intuitive result has
been difficult to establish in other denotational semantics, but the present theory shows that
the intuition was well founded.

It extends CSP so that there is theoption of refining to the level of detail required to
describe priority, yet in an abstract way which does not require a fully timed theory.

It forms a foundation for wider extensions of CSP needed for codesign, especially hard-
ware compilation, but also for capturing a larger part of the semantics ofoccam-like lan-
guages than is traditional. These further developments will be reported elsewhere.

15 Acknowledgements

Bill Roscoe noticed a deficiency in an early version of Acceptance semantics which did not
include what are now called compliant processes. His prompting led to their formulation, but
he is not to blame for the details.

Support from Jeremy Martin whenCSPP was just an experiment was crucial. The
WoTUG community and discussions at CPA conferences have inspired many of the ideas
underlyingCSPP .

References

[1] C.A.R.Hoare. Communicating sequential processes.Communications of the ACM, 21:666–677, 1978.

[2] Per Brinch Hansen, editor.The Origin of Concurrent Programming. Springer-Verlag, 2002.

[3] C.A.R Hoare.Communicating Sequential Processes. Prentice Hall International, 1985.

[4] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998.

[5] Inmos Limited.occam 2 Reference Manual, 1988. Document 72 occ 45 01.

[6] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational semantics for occam 2, part 1.Transputer
Communications, 1:65–91, 1993.

[7] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational semantics for occam 2, part 2.Transputer
Communications, 2:25–67, 1994.

[8] B.M.Cook and R.M.A.Peel. Occam on Field Programmable Gate Arrays - Steps towards the para-PC. In
Barry Cook, editor,Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent
Systems, volume 57 ofConcurrent Systems Engineering, pages 211–228, Amsterdam, April 1999. IOS
Press.

[9] R.M.A.Peel and B.M.Cook. Occam on Field Programmable Gate Arrays – Optimizing for Performance.
In P.H.Welch and A.W.P.Bakkers, editors,Communicating Process Architectures, Proceedings of WoTUG
23, volume 58 ofConcurrent Systems Engineering, pages 227–238. World occam and Transputer User
Group (WoTUG), IOS Press, Netherlands, September 2000.

[10] I Page and W Luk. Compiling occam into fpgas. In Will R Moore and Wayne Luk, editors,FPGAs.
Abingdon EE&CS Books, 1991.

[11] A.E. Lawrence. HARP (TRAMple) manual. Volume 1. User Manual for HARP1 and HARP2.Oxford
University, 1992-95.

38 A.E. Lawrence / Acceptances, Behaviours and Infinite Activity

[12] Adrian Lawrence & Andrew Kay & Wayne Luk & Toshio Nomura & Ian Page. Using reconfigurable
hardware to speed up product development and performance. InJFIT Conference. Oxford University,
1994.

[13] A.E. Lawrence. Extending CSP. In P. H. Welch & A. P. Bakkers, editor,Proceedings of WoTUG 21:
Architectures, Languages and Patterns, volume 52 ofConcurrent Systems Engineering, pages 111–131,
Amsterdam, April 1998. WoTUG, IOS Press.

[14] A. E. Lawrence. Hard and soft priority in CSP. In Barry M Cook, editor,Architectures, Languages
and Techniques for Concurrent Systems., volume 57 ofConcurrent Systems Engineering, pages 169–195,
Amsterdam, Apr 1999. WoTUG, IOS Press.

[15] A. E. Lawrence. CSPP and event priority. InCommunicating Process Architectures – 2001, Concurrent
Systems Engineering, pages 67–92, Amsterdam, Sept 2001. IOS Press.

[16] A. E. Lawrence. Successes and Failures: Extending CSP. InCommunicating Process Architectures –
2001, Concurrent Systems Engineering, pages 49–65, Amsterdam, Sept 2001. IOS Press.

[17] Oxford University Computing Laboratory.Two Papers on CSP, number PRG-67 in PRG Technical Mono-
graphs, July 1988.

[18] A. E. Lawrence. HCSP, imperative state and true concurrency. InCommunicating Process Architectures
– 2002, Concurrent Systems Engineering, pages 39–55, Amsterdam, Sept 2002. IOS Press.

[19] A.W. Roscoe. An alternative order for the failures model. InTwo Papers on CSP[17].

[20] A.W. Roscoe. Unbounded nondeterminism in CSP. InTwo Papers on CSP[17].

[21] C.J.Fidge. A formal definition of priority in CSP.ACM Transactions on Programming Languages and
Systems, 15(4):681–705, September 1993.

[22] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled.Model Checking. MIT Press, 1999.

[23] Formal Systems (Europe) Ltd, 3, Alfred Street, Oxford OX1 4EH UK.FDR2 User Manual, May 2000.

[24] Jeff Magee & Jeff Kramer.Concurrency: State Models & Java Programs. John Wiley, 1999.

[25] Jeremy Malcolm Randolph Martin.The Design and Construction of Deadlock–Free Concurrent Systems.
PhD thesis, University of Buckingham, 1996.

[26] A.W. Roscoe, editor.A Classical Mind. Prentice Hall Series in Computer Science. Prentice Hall, 1994.
Essays in Honour of C.A.R. Hoare.

[27] Gavin Lowe. Prioritized and probabilistic models of Timed CSP. Technical Report PRG-TR-24-91,
OUCL, 1991.

[28] Gavin Lowe. Prioritized and probabilistic models of timed CSP.Theoretical Computer Science, 1994.
Special Issue on Mathematical Foundations of Programming Semantics conference.

[29] Carl A. Gunter.Semantics of Programming Languages. The MIT Press, 1992.

[30] A.E.Lawrence. HCSP: Extending CSP for Codesign and Shared Memory. In P.H.Welch and A.P.Bakkers,
editors,Proceedings of WoTUG-21: Architectures, Languages and Patterns for Parallel and Distributed
Applications, volume 52 ofConcurrent Systems Engineering, pages 133–156, Amsterdam, April 1998.
IOS Press.

[31] A. E. Lawrence. Infinite traces, Acceptances and CSPP. InCommunicating Process Architectures – 2001,
Concurrent Systems Engineering, pages 93–102, Amsterdam, Sept 2001. IOS Press.

[32] Andrew Butterfield and Jim Woodcock. Semantics of prialt in Handel-C. InCommunicating Process
Architectures – 2002, Concurrent Systems Engineering, pages 1–16, Amsterdam, Sept 2002. IOS Press.

