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Abstract. The Space Software Laboratory is developing a self-configuring
distributed kernel to be used on future satellite missions. The completion of this
system will allow a network of heterogeneous processor nodes to communicate and
broadcast in a scalable, self-configuring manner. Node applications software will be
transparent to the underlying network architecture, message routing, and number of
network nodes. Nodes may halt or be reset and later rejoin the network. The kernel
will support in-flight programming of individual nodes.

1. Introduction

In small, low-power satellites, processing is often distributed. Developers find it cost and
power efficient to do processing and control close to each of many data sources. As such,
each sensor or experiment is typically controlled by its own small processor. This approach
also speeds development and reduces cost by parallelizing development and testing efforts.
The availability of micro-miniaturised space-tested processors [1,2] with extremely low
power consumption has made this approach mass, size, and power efficient.

In such a networked system, each experiment or sensor node typically communicates
data and receives commands from a satellite control or data handling computer that
manages communication with the rest of the satellite and the ground telemetry system.
Communication bandwidth requirements are often modest.

In many missions, it is important for a sensor or experiment node to be situationally
aware - important measurements made by one node must be communicated to other nodes
in order to take advantage of the collective capability of the entire payload. For example,
one sensor may be capable of detecting a solar flare event. If such occurs, other
experiments or sensors should be notified of this important change in environment to allow
them to adjust operational parameters.

During flight, nodes may be powered off, reprogrammed, or otherwise leave and join a
network. In some important cases, it has even been necessary to add new sensor or
experiment nodes to a satellite system just prior to launch. In the future, missions are
envisioned where new nodes will be added or docked to a satellite network in orbit. In such
a system, sensor nodes would be developed independent of the rest of the network or even
the satellite mission. Nodes would become standardized off-the-shelf modules for rapid and
cost-effective satellite missions.

Unfortunately, this type of communication often requires the capabilities of each node,
the network configuration, and message routing to be fixed very early in the satellite
development cycle. Changes to this fixed configuration may result in significant time and
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budget expenditures in order to adapt and reprogram nodes.
Historically, such satellite network software systems have been custom developments. A

significant amount of development time and budget is spent on specifying and developing
network communications software and messaging protocols.

To address these satellite development issues, the Space Software Laboratory of Utah
State University is developing a self-configuring distributed communications kernel. The
goal is to allow an experiment or sensor node to be developed independent of the rest of the
network. When a node is added to or leaves the network, the system will self-configure
communications. The system will allow a new node to become situationally aware even
though it is not aware of specific network members or configuration. It will also allow all
other nodes to take advantage of the sensor capabilities of the new node without software
modifications. This combined capability is often called plug & play in the satellite
community. In-situ reprogramming of nodes will also be supported.

2. Requirements

The kernel will allow the ground station to upload and execute new software on a specified
network node. In addition, the kernel will provide a set of interface functions to the
application programmer of a satellite node to hide a) details of communications and routing
and b) the current network situation. The kernel requires a simple two-thread scheduler to
provide a CSP channel model for process blocking and local process messaging. Our intent
is to use an existing operating system for local process scheduling and channels. The kernel
will simply add a self-configuring network for inter-node network communications. The
basic requirements of a self-configuring network are the following;

2.1 Functional Flexibility.

Applications software on any sensor or experiment node must be upgradable in flight. For
flexibility, in-situ programming must be provided in a complete and general high-level
language (such as C or C++).

2.2 Fault-Tolerance.

A halt failure of a sensor or experiment node must not halt or impair the continued
operation of the rest of the network. Reset or restarted nodes must begin again to participate
in the network.

2.3 Dynamic Scalability.

Network system software must be self-configuring for additions, removals, and failures of
sensor or experiment nodes. Application software for one node must not require details of
the architecture, network configuration, or network members to keep aware of the global
situation.

2.4 Standardized Interfacing.

The programmers for sensor or experiment nodes will require only minimal understanding
of the communications system and network operation. Space tested off-the-shelf
components must be used. It must be possible to independently develop and test sensor or
experiment nodes.
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2.5 Scalability.

No software modifications or hardware capabilities, routers, switches, or ports will be
required for the addition of a node (other than that required by the node itself).

3. Design

Much like a LAN, the applications software for each node will sit atop a distributed
network kernel, which provides communications and overall operations control. Network
communications will appear to be bus-oriented. On the other hand, the satellite control
computer will communicate with the network as if it were a single node. In other words, the
satellite will not need to be aware of network size or configuration (fig. 1).

In the following discussion, the use of the kernel will first be explained from the
perspective of the applications programmer for a given node. Next, the paper will discuss
the implementation details of the kernel design itself.

For space and execution efficiency as well as program development support, the kernel
is being implemented in C++.

3.1 Self-Configuring Communications.

For simplicity and flexibility, all application code will communicate only with the kernel.
The kernel appears to be a central repository of status and situational information. The
applications software developer for a node may utilize a set of library functions for kernel
interaction: These library functions (described below in symbolic code) provide support for
configuration-independent communications.

 The kernel design utilizes the bulletin board model similar in concept to the Linda or
tuple-space network operating system family [3-7]: Imagine a central room with a set of
bulletin boards – one board for each network node. Each node may post information to its
own bulletin board and read the information from another's. One additional bulletin board is
global - any node may AND or OR information on this board to update the global situation.
The kernel library is defined with the functions outlined in the sections below.

Figure 1. Sensor node configuration
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int Register (string sensor_name);

Each registering sensor is assigned a bulletin board with its ‘name’ at the top. Each
bulletin board has space for a status word and data messages. Sensor names are
hierarchical. For example, two different sensors that both detect solar flares may begin their
names with the prefix "SF". A node is expected to register all its experiments and sensors
upon booting up.

A node may also request a list of all currently registered sensors or experiments;

int WhoIsRegistered (list& sensor_list);

3.1.2 Sensor Status Information

A sensor or experiment may posts its status to its system bulletin board with the following
library function;

int PostStatus (string sensor_name, int sensor_status);

The system identifies the appropriate board to post this information. The sensor status is
simply an integer – the definition and meaning of status values or bits can be defined by the
sensor developer. If this sensor name is not registered, an error is returned. If this sensor
name was registered by another node, an error is returned and the call has no effect.

A sensor node may also request the status of another sensor or experiment by referring
to its name;

int GetStatus (sensor_name, int& sensor_status);

The system identifies the appropriate board to read and return this information. If the
sensor is not registered, an error is returned.

Since names are hierarchical, an application can infer the function of another sensor
from its name. For example, if the application software on a node would like to be aware of
the occurrence of a solar flare (but is not itself capable of such detection), it can search the
list of registered sensors for any with the name prefix "SF" and then retrieve the current
status of such available sensors.

3.1.3 Situational Information

The kernel also maintains a separate bulletin board with a word of global situation
information. This is a string of bits that may be manipulated by any node with the operators
AND, OR, and EOR (exclusive OR).

int PostSituation (string sensor_name, int situation,
Operator operator_name);

Any application may retrieve this global situation;

int GetSituation (int& situation);

Each bit of this global word is pre-assigned to a particular situation. Situations reflect
states of nature that are detected by sensors or measured by experiments and as such, are
independent of sensors. For example, any sensor node that detects a solar flare will OR bit
three of the situation word. Any node wishing to be aware of a detected solar flare will
retrieve the global situation word and examine bit three. The examining node need not be
aware of which sensor node or nodes set this bit - only that if a sensor node capable of
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detecting a solar flare is on-board at the moment, it will set this particular bit when a flare is
evident. The examining node can deduce that a zero in this bit may mean that a flare is not
evident, or that no sensor is on board capable of detecting the flare. No provision is made
for conflicting sensors.

For more real-time operations, an application node may request that a certain function or
procedure automatically be invoked each time a given situation occurs;

RegisterForInterrupt (void *function_name,
int situation_mask);

In this library function call, the function to be automatically invoked is indicated by the
first argument. The second argument is an integer mask to be AND’d with the current
situation. Any time this AND operation produces a true result, the indicated function is
invoked on the node making this call.

3.1.4 Data Transfer

Data messages may also be posted on a bulletin board for access by other nodes. (The
details of hand shaking, polling, etc. are all hidden from the programmer.)

int PostData (string sensor_name, Data data_message);

If the sensor is not registered or was registered by another node, an error is returned. The
most recent data message posted by another sensor may be read with the following call;

int ReadData (string sensor_name, Data& data_message);

If the sensor is not registered, an error is returned. Data to be stored for future satellite
downlink telemetry is stored with the following call. Normally, telemetry data is not
available to other nodes.

int TelemetryData (string sensor_name, Telemetry
message);

3.2 Implementation

The above discussion shows how the kernel would be utilised from the application
programmer’s perspective. The discussion below outlines how the kernel itself is
implemented.

The distributed kernel is divided into four functional units that are replicated on each
sensor or experiment node:

♦ Physical communications layer -- responsible for physical network
communications and protocols.

♦ Network layer - responsible for formatting and handling communications at the
message level.

♦ Interface layer -- a standard library of function calls available for applications to
perform communications, data transfer, and scheduling.

♦ Program control -- accepts and executes new applications software from the data
handler.
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The first three units form a simple protocol stack, allowing the details of physical
communications as well as handshaking and messaging protocols to be separated from the
application program. The physical layer and program control layers are specific to a given
architecture. In a heterogeneous system, each node’s kernel will have a physical and control
unit specific to that architecture. The interface and network layers are portable. The design
of each of these four functional units is described below:

3.2.1 Physical Layer.

Many different connection strategies could be employed including Mil. Std. 1553 and the
newly proposed European Space Agency SpaceWire standard. The first version of the
kernel system is targeted at small, low-power, scalable satellite needs and utilises RS422
configured as a half-duplex multi-drop differential bus. Low-voltage differential signalling
associated with 422 provides a robust connection and no special router or port support is
required. As a result, plug & play is easily achieved. Simple space-tested RS422 bus drivers
are readily available and interface easily to a processor serial port. (To be bus compatible, a
processor must enable the transmit signals. In other words, control when the node is
physically connected to the transmit bus and able to transmit.). Each node requires a single
serial port interface (transmit and receive), a single-bit transmit-enable discrete (transmit
enable), and a single- bit input (Satellite RTS) (fig. 2).

Figure 2. Physical network layer using RS422 in a half-duplex multi-drop bus.

To avoid contention, one node serves as the bus master. Each node may only transmit
when polled by the master to eliminate the need for special contention circuitry.

The satellite control computer interfaces to the sensor/experiment network using a
similar RS422 serial port (fig. 3).

Figure 3. Satellite control computer connection to the network.
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The satellite control computer does not need to recognize the network configuration or
bus master. It simply treats the network as a single kernel and does not participate in the
kernel master/slave protocol. To transmit a message, the satellite control a) asserts the RTS
(request to send) discrete, b) pauses, c) transmits a message, and d) receives the reply(s). It
is the responsibility of the network master kernel to recognize the satellite control computer
request by monitoring the RTS discrete. The pause allows the master kernel to complete
any current messaging and turn the bus over to the satellite. When communicating with the
network, the satellite control computer simple ignores the serial port interface and leaves
RTS de-asserted.

3.2.2 Network Layer.

At the network layer, messages are formatted and routed to the local kernel or application.
A network message consists of an ASCII SOH byte followed by a command byte and data
as diagrammed in table 1. If a message contains a SOH byte as data, this byte is coded
twice. In other words, a single SOH indicates the beginning of a network message while a
double SOH indicates a single data value.

Table 1.  Network messages

Message Purpose

SOH, node_id poll message from the master node to a slave node ID

SOH, 0x80, node_id end-of-file message response

SOH, 0x81, length, data data message response (0...255 bytes) from a slave node

SOH, 0x82, node_id coup notice from the new bus master node

SOH, 0x83 data dump request from the satellite

SOH, 0x84, node_id data dump request from the master to a slave node ID

SOH, 0x85, node_id,
length, data

application-specific command or control message from the
satellite to a specific node ID

The first three messages are associated with normal network operation. Each experiment
or sensor node developer is assigned a unique ID when a sensor or experiment is first
commissioned (1..255 excluding SOH). The master node transmits a poll message to each
current slave node in a round-robin manner and awaits a response. The network layer of
each slave node listens for a poll referencing its ID that establishes a logical connection to
the master. The slave kernel responds to the poll with a data message or an end-of-file
message. If the slave returns a data message, the master responds with a reply data message
and awaits another data message from the slave.

If the slave responds with an end-of-file message, the master polls the next slave ID to
establish a connection with the next node. Naturally, the master node may have its own
sensors and experiments and must logically poll itself as well.
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This approach is similar to the Mil. Std. 1553 protocol. A node ID is independent of the
sensor ‘name’ mentioned above and is not related to the node purpose or use. In practice, a
short delay is configured into the polling mechanism loop. In other words, the master
delays prior to polling the next node in order to reduce the network overhead required by
the above ongoing protocol.

During normal operation, a slave node may also fail or leave the network. This is
detected by the master through a poll response time-out. The associated slave-node ID is
subsequently ignored in the polling cycle. Periodically, the master will re-poll all node IDs
allowing nodes to enter or re-enter the network to achieve dynamic plug & play capability.

The “coup notice” message is associated with choosing or replacing a master node. Any
node kernel may serve as the bus master. Naturally, when the network first boots up, there
is no master. This situation also occurs if the current master is lost or removed from the
network. Since polls are predictable and ongoing, the lost or absence of the bus master is
easily detected by a slave node with a timeout. When a slave node detects the absence of a
master as noted by an unexpectedly quiet bus, it attempts to assume the roll of master with
two steps:

1. Idle for a period proportional to the node ID number.
2. Stage a coup by notifying all other nodes that it has assumed the master roll.

If a node receives a coup notice while idling (step 1), it abandons the attempt to become
the master. It resumes the roll of slave and must re-register its sensors. The above algorithm
results in the node with the lowest ID number becoming the new bus master. Our
experience shows that this approach requires that the idle period must be at least twice the
uncertainty associated with the time required for all nodes to detect the loss of the bus
master.

The purpose of the last three “data dump” and “command” messages will be explained
below in the section on satellite communications. The physical and network layer code is
communications-interrupt driven. In other words, this software is invoked upon reception of
incoming bytes from the communications bus.

3.2.3 Interface Layer.

On the applications side, the interface consists of the user-callable functions described
above in section 3.1. Normally, an interface function is blocking does not return until the
desired communication has been completed. Blocking also limits the amount of buffering
space required within the kernel. The interface layer utilises the same thread as the
applications code. Communications between the interface layer and the network/physical
layers is via a CSP local channel.

The operation of the interface layer is best illustrated with a symbolic example showing
the GetStatus() function call (fig. 4). In this diagram, Send and Receive represent intra-node
or local channel communications while NetTransmit and NetReceive represent network
communications.

Suppose the application on a particular slave node calls GetStatus() to retrieve status
information on the global bulletin board for a particular sensor. The interface layer formats
an appropriate data message containing this information and sends it the network/physical
layer via a local channel. When a reply is received, the reply information is send back along
the same channel.

When a network poll arrives at the network layer interrupt service routine for this node,
it transmits the queued data message containing the GetStatus() information to the master
node kernel and awaits a data message response. When the response data message arrives,
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the network layer routine a) transmits an end-of-file message to the master and b) returns a
channel message to the blocked GetStatus() routine in the interface layer.

3.2.4 Program Control.

This unit resides in a reserved section of address space in the kernel. System messages for
program control consist of reset requests or software uploads from the satellite. When a
software upload message arrives, normal operation of application software is suspended
and new code is written to program address space. Reset requests cause the program control
unit to begin execution of application code at a pre-defined starting address.

Figure 4. Symbolic code of interface and network/physical layer
interactions for a PostStatus() call by an application

3.2.5 Bulletin Board Memory

The bulletin board represents a shared resource to the application programs on the network.
The information posted by PostStatus(), PostSituation(), and PostData() calls resides
centrally on the master node to simplify and reduce message traffic. The information posted
by TelemetryData() calls resides locally upon each node.

The kernel does not backup or replicate the bulletin board, since this information is
expected to be fairly transient and easily updated during normal operation. When a slave
kernel determines that a coup has been successful, it must re-register its sensors.

3.3 Satellite Communications

The last three network messages defined in table 1 are utilised for communications with the
satellite control computer and ground telemetry system. These system messages are
transparent to the application programs.

As previously discussed, the satellite control computer views the sensor and experiment
network as a single system. To communicate with the kernel, the satellite control a) issues a
RTS discrete, b) pauses briefly, c) transmits a message, and d) awaits the reply. The pause
allows the master node kernel to complete a polling cycle and be in an idle state.

To retrieve telemetry data to be sent to the ground, the satellite control transmits a
“ dump data”  message. This message is received by the master node kernel. The master then

// Interface layer routine called by
//     application thread.
int GetStatus(string sensor_name, int&
                        sensor_status)
{   format an appropriate network message
     Send request message on local channel;
     Receive reply message on local channel;
     Copy reply data to parameter
     return;
}

// Network/Physical layer
//         – invoked on poll for this ID –
void OnPoll() interrupt
{    if (local channel has a queued message)
      {  Receive request message from interface layer
          format network message
          NetTransmit message in response to poll;
          if (reply is appropriate)
         {   NetReceive reply from master;
              format reply data
             Send appropriate reply to application layer
         }
    }
    else NetTransmit an end-of-file reply
}
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sequentially issues specific “ dump data”  messages to each active slave in the network.
Upon receipt of a “ dump data”  message to a specific slave kernel, that kernel transmits

the current data previously queued with a local TelemetryData() call. The satellite control
computer simply receives these messages as if they were all being sent by a single node.
Upon receipt of an end-of-file message with a node ID of zero, the satellite control
computer releases RTS and allows the master node to proceed with network polling.

Uploading new executable code to sensor or experiment nodes from the satellite control
computer is accomplished with a similar procedure using the “ command”  message.

4. Discussion

There are several costs associated with this self-configuring networking approach: In this
first version utilizing the RS422 bus, the physical layer must monitor the bus for a poll and
thus must be interrupt driven. In the current design, the physical layer may be configured to
either perform as the system interrupt handler or be called by an operating system or
scheduler. In the first case, the physical layer may invoke an operating system or scheduler
interrupt handler if an interrupt is not communication related. In the second case, the
physical layer assumes that all invocations are communications related.

A slave node kernel must monitor all bus bytes for a “ poll”  message. A processor can
usually handle an incoming byte interrupt within a few instructions. Testing shows that
even for a simple 12 MHz Intel 80C31 8-bit processor receiving at 19200 baud, the
overhead of bus monitoring for “ poll”  messages represents only 2% of available cycles.

In this design, bandwidth does not scale: The bandwidth available to a node cannot
exceed the bus rate divided by the number of nodes. Further versions of this system which
replace the physical layer with higher speed intelligent interfacing may reduce overhead
and increase transmission bandwidth. While this design can be timely, it may not be strictly
real-time. In other words, the latency and lag of communications may not be strictly
predictable.

The bulletin board situation integer is a shared global read/write resource. Updates to
this integer are not atomic. As a result, it would be conceivably possible to loose an update
according to transaction theory. (Sensor status and data does not have this problem.) This is
not considered an issue however, since sensor situation changes should not be dependent on
the previous state. In other words, it should not occur that a sensor would need to read the
current situation in order to decide whether to post a situation change. Each sensor is
expected to update specific situation bits based on measurements from nature.

While there are costs and issues to this approach, there are also several advantages to the
self-configuring bulletin-board approach: The network kernel allows true plug & play and
is tolerant of a variety of failures. There is no pre-designated bus master and the network is
extensible. If a master node fails however, some current bulletin board data may be lost.

To facilitate parallel software development, a separate project will produce a simulator
for the above network kernel. This simulator will run on a PC and interface to a single node
via a PC serial port and a commercial RS232-to-RS422 adapter. The PC acts as the master
kernel node. This will allow a programmer to test applications code with appropriate
interface calls and actions. While the project is still in progress, preliminary results indicate
the kernel will require approximately 8k of program space on each node.

There are a number of issues that will be considered in the future: The current design
utilizes a scheduler to provide multiple threads and channel communications. If a simple
node is responsible for a single sensor or experiment and does not require multi-tasking, it
would be a simple matter to modify the kernel to support stand-alone operation. The
physical and network layers would execute under the interrupt thread while interface kernel



S. Cannon and L. Denys / A Self-Configuring Distributed Kernel 119

layer would run under the single application thread. Channel communication and blocking
could be achieved with shared memory and a simple variable flag.

The use of the bulletin board model of communications may lend itself to full state fault-
tolerance that insures no loss of data or state, as has been demonstrated in the MOM flight
operating system [5-7]. In this similar system, nodes may arbitrarily be powered down and
restarted for power budget management without any loss of state, processing, or data.

A more fault-tolerant design might replicate the bulletin board on each node. Certainly,
the memory space required is expected to be minimal. Since each bulletin board update is
broadcast on the bus, this would not require additional messaging. It would however,
require additional processing on each slave node to keep the current copy of the board
updated according to bus message traffic.

While this first kernel utilizes the RS422 serial bus, the design inherently supports any
bus or open-link communications. This kernel could directly support satellite clusters using
omni-directional RF or LED communications. All satellites in the cluster could be
situationally aware and take advantage of all sensor capabilities. New satellites could be
launched to join the cluster and older satellites could be de-commissioned without
modifications to software or communications. Future work will examine these features and
possibilities for the distributed kernel system.

In conclusion, we expect the completion of this project will allow significant time and
budget reductions in the development of future small low-power satellites.
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