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Abstract. An experimental version of KRoC [1] has been written that implements
recursion in occam¥*, using Brinch Hansen’s algorithm for allocating activation
records [2]. It shows that efficient parallel recursion is possible in occam.

1. Introduction

This paper describes an experimental implementation of recursion in occam. It is based on
the SPARC version of KRoC, so it depends on the implementation of routines (PROCs and
FUNCTIONS) on the transputer. For simplicity, no changes have been made to the compiler
itself, only to oct ran, the translator from transputer to target assembly language. It is not
a fully working system, but it demonstrates the potential of the method.

2. Why occam does not support recursion

Recursion, dynamic arrays, and parallel constructs with variable numbers of processes are
not allowed in occam.

The reason for this is that it is very important, in many applications, that the maximum
amount of memory required by a program should be known at compile time, so that it is
impossible for an executing program to run out of memory. This is particularly true for
programs involving parallelism, where the occurrence of such errors may depend on details
of the scheduler.

This limitation has long been a minor embarrassment to occamists, since recursion is
such a valuable tool. In particular, parallel recursion is a natural way of expressing many
algorithms.

2.1. Syntax

It is sometimes said that the lack of recursion in occam is merely an implementation
restriction, but actually it is impossible to express it in the syntax of the language. A name
comes into scope only at the end of its declaration, so any attempt at a recursive call would
be a reference to an undeclared routine (or possibly to an earlier routine of the same name —
see below). This rule is also important in other sorts of declarations, allowing such idioms
as

VAL [][]REAL64 Y IS Y:

so it cannot be changed.

* occam is a trademark of the SGS-THOMSON Microelectronics Group.
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2.2. Pseudo-recursion in occam

In fact it is possible to implement recursion to a limited depth in occam [3], using this
syntactic feature of declarations: the routine is simply written out several times, and each
‘recursive’ call refers to the immediately preceding copy.

3. Adding recursion to occam

The problems here are to find some way of expressing recursion in occam without doing
violence to the syntax of the language, and to allocate memory to routines in a way that
allows both parallelism and recursion, and is reasonably efficient.

3.1. Activation records

The activation record of a routine is a block of memory that holds all its local variables
(including temporaries generated by the compiler), the parameters passed into it, and
control information like the return address.

In a block-structured language without parallelism, routines are always entered and left in
a last-in—first-out order, so activation records may be kept on a simple stack. They are then
usually called stack frames. With this mechanism, recursion incurs no extra cost. (Some
compilers allow recursion in Fortran, which is not supposed to support it, because
preventing it would be more difficult.)

For convenience, a frame pointer is often used to point to the current stack frame, since
the stack pointer may change during the execution of the routine — for example, when
setting up the parameters for a nested call. The stack frame record is then roughly the
region between the frame pointer and the stack pointer. In this case, the previous frame
pointer may be saved in the stack frame, giving a linked list of activation records.

When one routine calls another, they communicate through parameters. Since these are
set up in one routine and used in another, they can be considered to be in a region where the
two stack frames overlap.

On the transputer, the workspace pointer corresponds to the stack pointer, but there is no
frame pointer, so the boundaries between activation records are not so obvious.

3.2. Dynamic allocation of workspace

The conventional implementation of recursion using a stack does not work when processes
are running in parallel, since entries to and returns from routines are no longer simply
nested. Hence some other mechanism for allocating memory is required. A general heap
system would clearly work, but is likely to be slow.

3.3. Parameters

If the activation records of the calling and called routines are no longer adjacent, the
handling of parameters is more complicated. Ideally, to avoid unnecessary copying, the
new record should be allocated by the calling routine, so that the parameters can be stored
in it.

On the transputer [4], and hence in KRoC, up to three parameters are placed in the
registers of the integer evaluation stack before the call, and the call instruction itself saves
them in the workspace, together with the return address. Any further parameters are placed
in the workspace before the call.
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As well as the explicit parameters, additional ‘hidden parameters’ may be passed to a
routine. These include a pointer to the vector space, used for arrays and records, and static
links, for access to non-local variables.

3.4. Brinch Hansen’s algorithm

Brinch Hansen has described a simple and effi cient algorithm for allocating memory in
parallel recursive programs.

Initially, there is a single block of free memory (memory below) from which all
activation records will be taken. Each routine has its own ‘pool’ of free records, which is
initially empty.

When a routine is called, its activation record is taken either from its pool, or, if that is
empty, from the free memory. On a return, the activation record is released to the pool.

Records are never returned to the free memory, and hence cannot be reused by other
routines.

Brinch Hansen gives his algorithm in Pascal, as follows:

var
pool : array [1 .. limit] of integer;
memory : array [min .. max] of integer;
top : integer;

procedure initialize;

var
index : integer;
begin
for index := 1 to limit do
pool [index] := empty;
top := min - 1 { $Stop := min }
end;
procedure allocate (index, length : integer;
var address : integer);
begin
address := pool[index];
if address <> empty then
pool [index] := memory[address]
else
begin
address := top + 1; { address := S$Stop }
top := top + length;
assume top <= max { $Stop <= S$Smax }
end

end;
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procedure release (index, address : integer);
begin
memory [address] := pool[index];
pool [index] := address
end;

The comments above refer to the values of $Stop and $S$max used in the code below,
which are one greater than those used by Brinch Hansen.

The actions of allocate and release are intended to be performed by in-line code
on entry to and exit from routines; they are given as separate procedures for documentary

purposes.

3.5. Modified algorithm

In the published form of this algorithm, every routine has its own pool of activation records,
which can never be reused by other routines. Brinch Hansen leaves this limitation ‘as an
exercise for the reader’.

Pools can trivially be shared by routines having activation records of the same size, but
this would make little difference. An improvement is to round up the size of each activation
record to the next higher power of two, and use this power as the index, so all routines with
the same rounded size of activation record share the same pool. This should greatly
increase the reuse of memory, at the cost of an average wastage of 25%.

The current version also uses intermediate sizes of the form 3 x 2" (giving 2, 3, 4, 6, 8,
12, etc.), so the ratio between successive sizes is roughly V2. This reduces the memory
wastage to about 14%, at the cost of less reuse by different routines. It is not clear whether
this is really useful, but it is an area where a compiler might be able to optimize the
allocator.

4. Implementation

The SPARC version of the KRoC translator, octran, has been modifi ed so that, as an
option, it can handle recursive routines. No changes have been made to the compiler itself.

4.1. Syntax

The syntactic problem is to make it possible for a routine to be called before its name has
come into scope.

The trick used here is to leave the external appearance of a recursive routine unchanged,
and to declare a dummy routine inside it having the same name prefi xed by ‘R.’*.

* Compare the KRoC convention that C function names start with ‘C.” .
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For example:

PROC Hanoi (VAL INT n, VAL BYTE x, vy, z, CHAN OF BYTE out)
—-— Move n discs from x to y via z

PROC R.Hanoi (VAL INT n, VAL BYTE x, vy, z, CHAN OF BYTE out)
—— Dummy PROC. Calls to this are mapped into
—-— recursive calls to Hanoi.
SKIP

IF
n >0
VAL INT n IS n - 1:
SEQ
R.Hanoi (n, x, z, y, out)
out.string ("Move from tower ", 0, out)

out ! x
out.string (" to tower ", 0, out)
out ! vy
out.string ("*c*n")
R.Hanoi (n, z, vy, %X, out)
TRUE
SKIP

(Note that the redeclaration of n can work only if it comes into scope at the end of its
declaration.)

Calls to routines like R. Hanoi are then translated into recursive calls to Hanoi. This is
possible because, although Hanoi is not in scope to occam, it is in the transputer
assembly language.

The dummy routine must have exactly the same interface as the real routine. This causes
diffi culties with ‘hidden parameters’ — in particular, the pointer to the vector space, and
static links used to access non-local variables.

Since this syntactic trickery is entirely local to the routine, external calls are perfectly
normal; for example, Hanoi (10, "X’ , "Y', "Z’, out).

It would be possible to give the dummy routine the same name as the real one, without
any modifi cation, but that would break existing programs.

4.2. Who does what?

Modified code for calls and returns could be generated in some combination of the
following places:

. In the calling routine, in the instructions leading up to the actual call;
. At the beginning of the routine itself;

. In the instructions at the end of the routine leading up to the return;

. In the calling routine, following the return.

Which of these is chosen for this implementation depends on where the relevant
information is available to the code generator.
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4.3. Who knows what?

The compiler, of course, knows everything, but not all of this information is accessible to
octran, which needs:

. The size of the workspace. In the transputer assembly language, routine headers have
the following form:
L41: -— PROC Hanoi, lexlevel: 1, WS: 22, VS: 0

where WS and VS indicate the workspace and vector space required by the routine.

. The number of parameters passed to the routine. This is available at the point of call,
though not at its entry point. If it is not more than three, it is the current depth of the
integer evaluation stack; if it is four or more, the additional parameters will have been
stored in the workspace, marked with a parameter comment:

1d1 4 —— CHAN out
stl 1 —-— parameter
ldc 90

stl 0 —— parameter

Counting these comments gives the total number of parameters.
. The name and label of the routine. Calls refer to the assembly-language label (141 in
this case), not the occam name (Hano1i), although this is included as a comment:

call L41 —— Call Hanoi

The mapping between names and labels can be found from the header, or from the
external directive for a separately compiled routine.

For separately compiled routines, the size of the workspace is not known at the point of
call, so in general the activation record cannot be allocated there.

Inside the routine, the number of parameters is not known, so allocation cannot be done
in the entry code either.

The only place where all the necessary information is available is at the point of a
recursive call, inside the routine.

Hence calls to normal* routines, and normal calls to recursive routines, are unchanged,
and pre-existing programs are unaffected. Calling a recursive routine looks (and indeed is)
normal to the caller; any syntactic trickery and modifi ed code are internal to the routine.
This retains the security of current occam programs. It is also more effi cient than using the
recursive mechanism for all calls, though this may not be signifi cant.

5. Usage

Recursion is enabled with a command-line flag to oct ran; for example
octran —-X5 hanoi.kt8 hanoi.s

where the number after the X flag specifi es the size of the heap, in megabytes, to be used for
allocating activation records.

* Here ‘normal’ means non-recursive, implemented in the unmodified way with statically
allocated activation records.
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On the SPARC, a normal routine call, such as Hanoi (10, "X’, 'Y’ , "Z’, out), is
translated as follows. First, any parameters after the third are placed in the workspace:

1d
st
mov
st

[$13+16],%10

%10, [313+4]
90, %10
%10, [%13]

!- CHAN out
!~ parameter

|-~ parameter

and the fi rst three are loaded into the registers of the evaluation stack:

mov 89,%10
mov 88,%11
mov 10,%12

The transputer call is translated into a short sequence of instructions. The workspace
pointer is advanced by four words, and the active registers of the evaluation stack and the
return address are stored in the space so allocated. The routine is then called, with the
return address being saved in the delay slot of the call instruction:

dec 16,%13 !- Call Hanoi
st $12, [$13+4]

st $11, [$13+8]

st %10, [$13+12]

call L41 !+ Hanoi

st %07, [%$13] I *

The workspace pointer is restored in the return from the routine:

1d [$13], %07
retl
inc 16,%13 1 *

A recursive call such as R.Hanoi (n, x, z, y) is implemented by a longer sequence.
As before, the parameters are set up:

1d [$13+36],%10 - CHAN out
st $10, [$13+4] !~ parameter
1d [$13+28],%10 - BYTE y

st %10, [%$13] |-~ parameter
1d [$13+32],%10 !— BYTE z

1d [$13+24],%11 |- BYTE x

1d [$13+8],%12 !— INT n

The pool for this size of activation record is checked (instructions in the delay slots of
branches make this code harder to follow):

1d [$17+S$Spool+36],%10

tst %i0 !- Call R.Hanoi
bne, a 1f

1d [$10], %12 ld
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If the pool is not empty, it is used; otherwise a new record is claimed from the free space (if
this is possible):

1dd [$17+S$Stop]l, %10 '+ and $$max
add %$10,128, %12 '+ size of record
cmp %$i2,%il
tgu 23 '+ MEMORY
ba 2f
st %12, [%$17+S$Stop] !'*
1: st %12, [$17+$Spool+36]
2 st %13, [%10] '+ save Wptr

Additional parameters after the third must be copied from the old workspace to the new
(with the workspaces suitably aligned, this can be done two words at a time):

1dd [%13], %12 '+ parameters
std %$i2, [%10+112]

The workspace pointer is set to point to the new activation record:
add %10, 96,%13 '+ new Wptr

Saving the stack registers and the call are as normal:

st %12, [$13+4] '+ Areg
st $11, [%$13+8] '+ Breg
st $10, [$13+12] '+ Creg
call L41 '+ Hanoi
st %07, [%$13] I* save Iptr

After the return, the activation record is released to the appropriate pool:

sub %$13,112,%10 !+ release

1d [%$17+$Spool+36],%il

st %10, [$17+$Spool+36]

1d [%10],%13 '+ restore Wptr
st %$il, [%10]

Since the return instruction has already adjusted the workspace pointer by the normal
amount, the adjustment here is by 16 bytes (4 words) more than in the call.

7. Limitations

This is not a fully general implementation of recursion in occam. Indeed, this would
probably not be possible without some help from the compiler itself.

7.1. Vector space

At present, the vector space used by a routine is not included in the activation record. There
is a further complication that the pointer to the vector space is passed in one way to
externally visible routines, and in a different way to all others. This problem could
probably be solved, but it would be tedious. At present, variables that the compiler would
normal place in vector space can be explicitly PLACEd IN WORKSPACE.
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7.2. Non-local variables

To ensure that the static links are passed in the recursive call, there would have to be
dummy references to any non-locals in the dummy routine.

7.3. Function calls in actual parameters

If any of the actual parameters itself involves a function call, it is impossible to distinguish
which routine the parameter comments refer to. This is only a problem if either the
function, or the routine of which it is a parameter, has more than three parameters — so
R.Ackermann (m—1, R.Ackermann (m, n— 1)) works.

7.4. Mutual recursion

The present implementation requires that the entry point of the recursive routine must be
known at the point of the recursive call. This is impossible with mutual recursion, though a
more complicated treatment could solve this problem.

7.5. Memory usage

The activation record used for a recursive routine includes space not only for the routine
itself, but also for all the routines that it might call, even when it does not.

7.6. Multiprocessors

None of these problems is diffi cult in principle. However, Brinch Hansen’s other ‘exercise
for the reader’, implementing the algorithm for shared-memory multiprocessors, is much
harder. As he says, it involves claiming and releasing locks on entry to and return from
routines, which is inevitably expensive.

8. Results

A normal routine call on the SPARC costs three instructions, plus one for each parameter up
to three. (Further parameters are stored in the workspace before the call.) A return also
takes three instructions. The code above, including releasing the activation record after the
return, is 17 instructions longer than a normal call. Further parameters after the third cost
about one instruction each.

Eleven extra instructions are executed if reusing a record (which should be the common
case); 15 if creating a new one (including a check for running out of memory). This is
rather more than the ‘three or four’ suggested by Brinch Hansen, but still small compared
with the body of most routines.

Measurements indicate that, provided the depth of recursion is reasonable, the overhead
of a recursive call is less than 50% greater than that for a normal call (for example, 61 ns
compared with 42 ns). For routines involving any signifi cant amount of computation, this
is negligible. Very deep recursion (or very large activation records) take the allocation out
of the cache, and the overheads rise signifi cantly, but this would also happen in analogous
situations without recursion.

The smallest possible activation record uses 12 words (for 64-bit alignment), or 48 bytes.
The present implementation is restricted (by the 13-bit immediate-value field of SPARC
instructions) to activation records of less than 4096 bytes. This could easily be extended,
but it is adequate for the largest workspace in the cgtest suite. Hence only a small
number of pools (less than twenty) are required.
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Using a fixed set of sizes means that the pointers to the various pools can be set up
statically, without any help from the compiler; hence there are no problems with separate
compilation.

This implementation is not optimal. Ideally, with more information from the compiler,
parameters after the third should be stored directly in the new activation record, and one
instruction in the return sequence could be eliminated, but these points make very little
difference.

8.1. QuickerSort

For a realistic application, the occam implementation of the QuickerSort algorithm [5]
described in [6] was modifi ed to use the system described here.

Parallel recursion to depth d with this algorithm requires 2¢ processes, which becomes
excessive even for reasonable depths. For this reason, an additional parameter is used to
keep track of the depth of recursion, and the routine switches from parallel to sequential
recursion when this reaches some suitable limit:

PROC quicker.sort ([]INT X, VAL INT quicker.threshold)

PROC g.sort ([]INT X, VAL INT bottom, top, threshold, depth)
#PRAGMA SHARED X

PROC R.g.sort ([]INT X, VAL INT bottom, top, threshold, depth)
SKIP —— Dummy for recursion

VAL INT n IS top - bottom:
IF
n < threshold
insert sort

TRUE
INT lo, hi:
SEQ
partition X
IF
depth > 0
VAL INT depth IS depth - 1:
PAR
R.g.sort (X, bottom, lo - 1, threshold, depth)
R.g.sort (X, hi, top, threshold, depth)
TRUE
SEQ
R.g.sort (X, bottom, lo - 1, threshold, 0)
R.g.sort (X, hi, top, threshold, 0)
g.sort (X, 0, (SIZE X) - 1, quicker.threshold, 10)

This code was run as shown here, and also without the parallelism (effectively with a
depth parameter of zero). It was compared with a routine equivalent to that described in
[6], running on a single processor. The speeds were all the same to within the accuracy of
measurement, but the recursive code was smaller by a factor of more than 20, because there
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was only a single instance of the routine, rather than the many required when using the
mechanism described in § 2.2.

8.2. Sieve of Eratosthenes

A theoretical version of the sieve of Eratosthenes for generating prime numbers is given in
recursive occam in [7]. It now runs as a real program:

PROC from (VAL INT start, step, CHAN OF INT c)

INT count:
SEQ
count := start
WHILE TRUE
SEQ
c ! count
count := count + step

PROC filter (VAL INT n, CHAN OF INT in, out)

WHILE TRUE
INT a:
SEQ
in ? a
IF
(a\n) <> 0
out ! a
TRUE
SKIP

PROC sieve (VAL INT count, CHAN OF INT in, out)

PROC R.sieve (VAL INT count, CHAN OF INT in, out)
SKIP —— Dummy for recursion

IF
count = 0
id (in, out) —-— Just copy in to out
TRUE
INT n:
SEQ
in ? n
out ! n
CHAN OF INT c:
PAR
filter (n, in, c)
R.sieve (count - 1, ¢, out)
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PROC primes (CHAN OF INT out)

—— Generates primes up to one million
-— (Square of 169th prime > 1,000,000)

VAL INT LIMIT IS 169:

SEQ
out ! 2
CHAN OF INT c:
PAR

from (3, 2, c)
sieve (LIMIT, c, out)

9. Conclusions

This experiment has shown that recursion can be implemented effi ciently in a concurrent
language like occam, using Brinch Hansen’s algorithm for allocating memory.

Brinch Hansen suggests that this mechanism should be used for all routine calls, so that,
as with most sequential languages, no special action would be required for recursion.
Although it is imposed by accidental details of the implementation, the method used here,
in which only recursive calls of recursive routines are treated specially, has a small
advantage in effi ciency and retains the security of occam for non-recursive routines.

A proper implementation would require some change to the syntax of the language, and

changes in the compiler to deal with some diffi cult points, but this does not affect these
conclusions.

10. References

[1] David C. Wood and Peter H. Welch. The Kent Retargetable occam Compiler.
Proceedings of WoTUG-19: Parallel Processing Developments, edited by Brian C.
O’Neill. IOS Press, 1996. ISBN 90-5199-261-0.

[2] Per Brinch Hansen, Efficient Parallel Recursion, ACM SIGPLAN Notices, Volume
30, No 12, December 1995.

[3] Michael Poole, Fixed Maximum Depth Recursion in occam. WoTUG Newsletter
No 16. January 1992.

[4] Andy Whitlow, Occam Run-time Model Specifi cation, INMOS Limited, June 1990.

[5] C.A.R.Hoare. Quicksort. Computer Journal (5):10-15, 1962.

[6] Kevin Vella and Peter H. Welch. CSP/occam on Shared Memory Multiprocessor

Workstations. Proceedings of WoTUG-22: Architectures, Languages and Techniques,
edited by Barry M. Cook. I0S Press, 1999. ISBN 90-5199-480-X

[71 James Moores. CCSP — A portable CSP-based run-time system supporting C and
occam. CSP/occam on Shared Memory Multiprocessor Workstations. Proceedings
of WoTUG-22: Architectures, Languages and Techniques, edited by Barry M. Cook.
IOS Press, 1999. ISBN 90-5199-480-X



