
The Kent Retargetable occam Compiler
David C. WOOD and Peter H. WELCH

Computing Laboratory, University of Kent at Canterbury, CT2 7NF
{D.C.Wood, P.H.Welch}@ukc.ac.uk

Abstract: A generic approach to targeting occam* to non-transputer architectures
is described. The principle is to build a register-level emulation of the major design
elements of the transputer, using native registers of the target hardware, and reuse
the standard Toolset occam compiler with as little alteration as possible. The
porting effort thus reduces to an architectural mapping, rather than involvement in
the compiler and code-generator. An immediate payoff comes from the reuse of a
well developed and sophisticated compiler. An important scientific question, with
relevance to efficient and portable parallel computing, is whether the crucial benefits
of transputer architecture (such as the very low overheads for the management of
processes and events) can be transferred through such emulation. We report some
initial results for SPARC-based targets.

1. Introduction

The multi-processing language occam provides a strong formal basis for the secure and
efficient development of high-performance parallel applications. Industrial experience over
the past ten years (limited to transputer-based hardware) has amply demonstrated its
benefits for the engineering of scalable computing applications across a wide spectrum of
problem areas. Methodologies and supporting tools for specific areas (e.g. modelling, real-
time control, databases, and hardware design) have been developed, and remain the subject
of vigorous and high-quality research.

The occam-for-all project [1] aims to build a set of architecturally neutral tools, based on
occam, that support the design, implementation, optimization, and maintenance of high-
performance applications. Systems constructed with these tools will be portable across all
current and foreseen (MIMD) parallel-computing platforms, where they will operate with
high levels of efficiency. The programme is motivated by fears that the engineering and
commercial benefits previously enjoyed through the use of occam on transputer-based
platforms will be denied in the future unless the language is ‘opened’ to the wider parallel
computing community. The positive motivation arises from occam being the only parallel-
processing language in widespread industrial and academic use whose semantics is
sufficiently well defined, simple, and powerful to play this unifying role.

This paper reports on initial developments of KRoC (the Kent Retargetable occam
Compiler), which underlies several of the work packages in occam-for-all. KRoC is
intended to provide a simple way of retargeting occam to run on different architectures.
UNIX† versions for the SPARC and DEC Alpha processors have now been released [2].
Others for the PowerPC, the Motorola 68000, the Motorola 68HC11 microcontroller and
the Analog Devices 21060 SHARC digital signal processor are under development −

* occam is a trademark of the SGS-Thomson Microelectronics Group.
† UNIX is a trademark of AT&T Bell Laboratories in the USA and other countries.



- 2 -

including versions targeted for ‘naked’ processors devoid of operating system. Strategic
goals for KRoC include transputer-like overheads for concurrency, access to the full (serial)
computational performance of the targeted processor, and minimization of the effort needed
for retargeting.

occam-for-all is a collaborative project funded by the (UK) EPSRC as part of its Portable
Software Tools for Parallel Architectures programme. Formal partners include the
Universities of Kent and Keele, British Aerospace and GEC-Marconi Avionics (end users),
and SGS-Thomson Microelectronics and Formal Systems Limited (technology suppliers).

2. Virtual Transputers

The thesis underlying KRoC is that the architectural design of the transputer offers
significant benefits for the secure and efficient management of concurrent processes and
ev ents. Emulating key elements of that design at the lowest possible level in the target
architectures may enable those benefits to be reproduced − turning those targets into virtual
transputers.

The difficulty, howev er, is to achieve those benefits without losing other important
properties of the target (such as high integer and floating-point performance) as a result of
this emulation. For example, a key problem when targeting RISC architectures is
reconciling the very reduced and stack-oriented register set of the transputer with the very
extensive and flat register sets of most RISC designs. Nevertheless, the importance that is
beginning to be recognized of low-level concurrency (sometimes known as lightweight
threads) as a design and implementation route for user applications − not just operating
systems − makes the attempt to square this circle worthwhile.

3. Tactics

KRoC uses the SGS-Thomson Microelectronics occam Toolset compiler to produce
transputer assembly language, which it translates into the assembly language for its target
machine (currently the SPARC or DEC Alpha). This approach means that the retargeting
effort does not involve issues of compilation and that it is independent of the language
being retargeted. Indeed, upgrading the SPARC KRoC system from occam 2 to occam 2.1
[3] involved the retargeters in no work.

A cautionary note, however, should be added that the translator does require its transputer
assembly-language source code to adhere to certain standards of good behaviour − not all
instruction sequences translate! The Toolset occam compilers do conform to those
standards, but other language compilers may not. This also has implications for in-line
transputer ASM or GUY code within occam programs, which must also stick to the rules.

The translator maps the transputer registers (the evaluation stacks and the workspace,
process, and timer queue pointers) onto SPARC registers in a way that will require little
modification for other processors with a general-register architecture. It makes no use of
the SPARC register-window mechanism, except when calling external functions (e.g. UNIX
system calls or any user-supplied C code).

The translated code is assembled and linked with a small kernel. This is written in the
assembly language of the target machine to give direct access to the registers.

The current KRoC releases are built on top of UNIX, through which it has to plough to
gain access to timers and external input/output. This is achieved by a small set of
procedures, written in C, which are called from the kernel.



- 3 -

The mechanics of this process are managed by a driver program, kroc, which −

• compiles an occam source file (for example, prog.occ), to transputer assembly
language (prog.t), using a modified version of the occam Toolset compiler;

• translates this into SPARC assembly language (prog.s), using the KRoC translator;

• assembles and links this with the kernel to produce the executable (prog), using
standard GNU and UNIX tools.

The intermediate files may be deleted automatically. If any step of this process fails, the
driver program aborts.

4. The Kernel

The KRoC software kernel provides those functions from the transputer’s microcode that
are not provided by the target hardware. These are mainly concerned with process
scheduling, timers, communications, and event handling.

For KRoC applications running on top of host operating systems, there was the possibility
of exploiting multi-processing facilities already provided by those systems (e.g. lightweight
threads). However, this approach was ruled out as being far too heavyweight to support the
fine-grained parallelism we wanted to allow occam programmers (and which we believe to
be necessary for simple application-oriented design and scalable multi-processor
performance).

On the other hand, the transputer algorithms and data-structures for multi-processing are
elegant, simple, and secure, and are reasonably well documented [4, 5, 6, 7]. Some details,
however, are not publicly available (e.g. reactions to timers and external events), and these
have had to be reconstructed.

The KRoC kernel, therefore, follows the transputer mechanisms as closely as possible,
although we have allowed ourselves the licence of some experimental deviation here and
there.

A crucial constraint we have imposed is never to make UNIX systems calls unnecessarily.
System calls take an unacceptably long time to execute. If they were made in the normal
flow of the kernel logic, they would completely swamp the kernel overheads we are trying
to achieve (which are measured in nanoseconds). This means that, in the main process-
management code, we cannot exploit UNIX calls to suppress interrupts, access semaphores,
or poll devices. We hav e also to be careful to avoid system calls that may block, making
them only when we know they will complete. Asynchronous input/output calls will help in
the future, but those currently available are not portable, and the POSIX.4-compliant ones
still remain mostly unimplemented.

Interfacing efficiently with UNIX has been the hardest part of building the KRoC kernel.
Implementing the transputer algorithms was much easier. We look forward to future
versions of KRoC that target ‘naked’ processors, where there will be no operating system
standing between occam and the external environment.

The kernel reports deadlock and any software errors (e.g. arithmetic overflow, range
violations, . . .) detected at run-time. On completion, the scheduler returns (to UNIX) the
transputer ErrorFlag* as its result. The kernel also includes code for allocating

* occam and transputer names are here printed in a fixed-width Courier font (e.g. ErrorFlag). UNIX and SPARC names
are italicized (e.g. stdin).



- 4 -

workspace, initialization of registers, setting up the external channel parameters, and,
finally, entering the user’s occam program. The code used for communicating messages
between processes is shared with that for block move instructions (move and
move2dall). It is optimized to the extent that it identifies blocks consisting of a whole
number of words aligned on word boundaries, which can be copied very fast. Other cases
are complicated by the endian problem (see Section 9.1).

Maintaining a transputer register image using registers in the target architecture means
that the kernel needs to be implemented in the assembly language of that architecture. For
ease of development, maintenance, and subsequent retargeting to other architectures, the
necessary data-structures and algorithms were first written in an extended occam 2.1.
These algorithms are purely serial and focus on the management of queues. The extensions
allow a Pascal syntax for pointers to make the details easier to develop and comprehend.
The space to which these pointers are pointing has, of course, been pre-allocated − it is part
of the workspace of each process − so that we do not open any semantic problems
associated with dynamic storage. We use serial occam because of the precision of its
semantics. An example is given in Section 6.

These algorithms are hand-compiled to target assembly language. The occam sources
are left in the assembly-language source as high-level documentation. They hav e proved
invaluable when rewriting the kernel for other machines.

The kernel contains about 1,000 lines of assembly-language source text, nearly half of
them comments, which assemble to less than 1,800 bytes of (SPARC) object code. There
are also about 700 lines of C source code for interfacing with UNIX, most of which would
simply disappear for a version supporting a naked embedded processor. This UNIX
interface adds a further 7,000 bytes of object code to the kernel.

5. External Channels

Three external channels, corresponding to stdin, stdout, and stderr in UNIX, are
provided. Programs must start with a heading of the form*:

PROC program.name (CHAN OF BYTE stdin, stdout, stderr)

If an occam process were to input from stdin (usually the keyboard) by calling a
simple UNIX input function (e.g. getc()) and no input were available, that process would
be (correctly) blocked. Unfortunately, all other processes would also be (incorrectly)
blocked, which is definitely not acceptable. Given that portable system calls for
asynchronous input/output do not yet exist (although they hav e been defined under
POSIX.4), KRoC uses two UNIX processes: the parent, which calls the input routine,
blocking until a character arrives; and the child, which contains the occam program and
which has to continue running so long as there are runnable occam processes.

The parent process blocks waiting for keyboard input. When a key is typed, it signals the
child, writes the character down a pipe to the child, and waits for an acknowledgement. A
signal handler in the child sets a flag, which is tested in the scheduler. When this flag is
detected, a pseudo-occam process is scheduled that inputs the character from the pipe and
outputs it to an ordinary occam channel. When this pseudo-occam process is re-
scheduled (by the normal kernel algorithms triggered by the real occam process inputting

* Later versions of KRoC will support the Toolset SP interface as an alternative.



- 5 -

from that channel), it signals an acknowledgement to the parent (which can now loop to
wait for another character) and de-schedules itself. The overhead in the kernel for detecting
the presence of external input (testing a flag) is kept extremely low, compared with direct
mechanisms that require expensive system calls.

The stdout and stderr channels are similarly managed through pseudo-occam
processes. As far as occam processes are concerned, external communications operate
over channels in exactly the same way as internal communications. The kernel does not
need to detect whether its channels are being used for internal or external messages. In
particular, no special arrangements for handling ALTs from the keyboard need to be made.

6. Timers

Timeouts operate in the same way as on the transputer. A time-ordered queue of processes
aw aiting timeouts is maintained. The UNIX alarm-clock mechanism is invoked whenever
the first process in that queue is changed − only one alarm-call is outstanding at any time.
A signal handler responds to an alarm-call just by setting a flag, which is tested in the
scheduler. Again, the polling overhead in the scheduler reduces to testing this flag, rather
than making a system call. When this flag is detected, the kernel responds as described
below:

--{{{ deal with timer interrupt
INT now:
INITIAL BOOL removed IS FALSE:
SEQ
tim ? now
WHILE (Tptr <> NotProcess.p) AND (NOT (Tptrˆ[Time] AFTER now))
SEQ
... move first process on timer queue to the run queue
removed := TRUE

IF
(Tptr <> NotProcess.p) AND removed
ualarm (Tptrˆ[Time] MINUS now, 0) -- book new alarm call

TRUE
SKIP

--}}}

where:

--{{{ move first process on timer queue to the run queue
INITIAL POINTER temp IS Tptr:
SEQ
Tptr := Tptrˆ[TLink] -- remove from timer queue
tempˆ[TLink] := TimeSet.p -- record that the timeout expired
tempˆ[Time] := now -- record the current time
IF
tempˆ[State] = Ready.p -- the ALTing process has already
SKIP -- been put on the run queue

TRUE
SEQ
tempˆ[State] := Ready.p -- mark as runnable
... add on to run queue

--}}}

The above occam 2.1 pseudo-code is extracted from the documentation supporting the
KRoC kernel (see Section 4). This response is not documented in the transputer data-books.



- 6 -

7. The Translator

This takes readable transputer assembly language and translates it into SPARC assembly
language. With two exceptions (conditionals and floating-point rounding), it works on one
instruction at a time. It expects its input to be in the form generated by the compiler from
occam; so pfix, nfix, opr, and fpenter instructions do not appear explicitly, but are
implied by the use of large operands and secondary instructions. This makes translation
somewhat simpler.

It also assumes that the code satisfies certain conditions: in particular, that each PROC or
FUNCTION has a single return at the end of its code body and that merging flows of control
do not have unreasonably different views of transputer stack levels. Hence, the translator
may not be able to handle code derived from untidy ASM (or GUY) statements.

In a few situations, the translator has to read the comments provided by the compiler:

• to identify PROCs and FUNCTIONs;

• to identify the entry point of the program (the PROC at lexical level zero);

• to find out how much workspace and vector space are required;

• to identify stubs for external routines;

• to keep track of the file name and line number of the occam source, for reporting
errors.

7.1. Architectures

Both the transputer and the SPARC are 32-bit machines with ‘load−store’ architectures; that
is, the only references to memory are through load and store instructions, all manipulation
of data being done in registers. In other respects they are very different.

The transputer [7] is rather unusual:

• Computation is done with two evaluation stacks, one for integers and one for floating-
point numbers. Each stack is three registers deep. Most instructions manipulating
data have no explicit operands.

• It has a microcoded kernel for scheduling processes and communicating between
them. Special registers maintain the necessary queues.

• Local memory is accessed through a workspace pointer.

• Addressing is little-endian.

The SPARC [8] is a fairly conventional RISC machine:

• It has a large flat set of general registers. These are organized in overlapping
windows so that 32 of them are accessible at any time. They are divided into four sets
of eight: global, input, local, and output − output registers of one window are the
input registers of the next. There are also 32 global floating-point registers.

• Most instructions operate on three registers, or two registers and a literal.

• The instruction immediately following a transfer of control (called the ‘delay slot’)
normally executes, but in conditional branches it can be ‘annulled’ if the branch is not
taken.

• Addressing is big-endian.

The different endianism is a problem and is discussed in Section 9.1.



- 7 -

7.2. Tr anslation

Many transputer instructions translate into single SPARC instructions. This may be a
misleading comparison, as primary transputer instructions with small operands (zero to 15),
and the commonest secondary instructions, occupy single bytes, while all SPARC
instructions use 32-bit words. However, primary instructions with larger operands may
need several prefixes, most secondary instructions need two bytes, and some floating-point
instructions need three or even four.

SPARC instructions can include constant operands of up to 13 bits; larger values can be
handled by the ‘synthetic instruction’ set, which normally corresponds to two real
instructions. (These constant operands are signed, which in this context very often wastes
one bit, since many instructions come in pairs, like add and sub, and and andn, and so
on.) For example:

ldl 1000
ldl 10000

translates to:

ld [%l3+4000],%l0
set 40000,%i0 !+ big operand
ld [%l3+%i0],%l1

(Comments in the transputer source are passed on into the SPARC assembly language, with
the initial -- replaced by !-. The translator also adds comments of its own. These usually
start with !+, but delay and annul slots are marked with !* and !@, respectively.)

Some operations are complicated by trivial differences in definition between
corresponding instructions on the two machines. For example, occam allows a shift of 32
bits on an INT32 variable, giving a result of zero, but shift counts on the SPARC are taken
modulo 32, so an extra test has to be included, giving four instructions instead of one.

A very rough estimate is that the number of instructions in the SPARC translation is about
70% greater than in the original transputer code; and, since SPARC instructions are four
bytes long, while most of those on the transputer are only one or two, the code expands by a
factor of about five. This emphasizes the fact that transputer code is remarkably compact,
and that RISC architectures like the SPARC tend to have a low code density.

A comparison of numbers of cycles is more favourable. Many transputer instructions
take sev eral cycles, while most on the SPARC execute in only one. For example, call
takes seven cycles, while its translation takes from three to six. Loading and storing bytes,
lb and sb, take five cycles, while, even with the overhead of reversing the endianism, the
translation takes only two.

A few instructions translate into quite long sequences. Probably the most important of
these are endp (end-process, sev en instructions) and lend (loop-end, ten). The longest is
disc (disable-channel, sev enteen).

The translator makes some unnecessary ‘optimizations’. For example:

ldc 0

is translated as:

clr %l0



- 8 -

although this is exactly equivalent to:

mov 0,%l0

This is partly to make the translated code more readable, but may also be useful when
writing translators for other target machines.

7.3. Registers

The registers of the transputer integer evaluation stack (A, B, and C) are mapped statically
onto three SPARC registers (%l0, %l1, and %l2) by the translator, rather than being pushed
and popped dynamically as the program runs. So, for example, the transputer code:

ldc 0 -- A = 0
ldc 1 -- A = 1, B = 0
ldc 2 -- A = 2, B = 1, C = 0

becomes:

clr %l0 !- A = 0
mov 1,%l1 !- A = 1, B = 0
mov 2,%l2 !- A = 2, B = 1, C = 0

on the SPARC. The floating-point stack is handled similarly.

Because the translator knows the state of the evaluation stacks, it detects underflow or
overflow, giving an error message if necessary. Also, it generates code to store only the
active registers on a call.

Since FUNCTIONs may return their results on the stacks, the translator records the state
of the stacks at the return from a FUNCTION, and restores it after the call.

The transputer workspace pointer (Wptr) is also represented by a SPARC register (%l3).

The instruction pointer (Iptr) corresponds, of course, to the the program counter (PC).
There is a small complication here, because Iptr always points to the next instruction,
while PC points to that currently executing. When values of Iptr are saved in the
workspace, a consistent convention is needed. For the ldpi (load-pointer-to-instruction),
it must be ‘adjusted’ to point to the next instruction, because it is used in generating the
addresses of data as well as code. It follows that calls to the scheduler (such as in and
out) hav e to follow the same convention, and this is done by incrementing the link register
by eight (two instructions) in the delay slot of the call; for example:

call $$in
inc 8,%o7 !* adjust

This differs from the normal SPARC convention, in which the adjustment is made in the
return instruction.

However, for translating the transputer subroutine instructions (call and ret), the
‘unadjusted’ PC is used for simplicity.

The process queue pointers, Fptr and Bptr, are kept in the SPARC registers %l4 and
%l5, and the timer queue pointer, Tptr, in %l6.

To simplify the scheduler, %l7 is used as a pointer to an area of frequently accessed
variables.



- 9 -

Four registers, %i0 to %i3, are available for use as temporary variables, both by the
translated code and by the kernel.

The transputer makes extensive use of the number MostNeg, or MinInt, (hexadecimal
80000000) so it is convenient to hold this in a register, %i4.

The ErrorFlag and HaltOnErrorFlag are represented as bits in %i5.

The output registers, %o0 etc., are used as parameters for calling external C functions.

The following table summarizes the use of the SPARC registers by KRoC. Together with
an understanding of the layout of the transputer workspace, this is enough to enable
assembly-language routines to be written.

SPARC−Transputer Register Mappings

Class SPARC name Transputer name Description

local %l0−%l2 Areg−Creg evaluation stack
%l3 Wptr workspace pointer
%l4 Fptr front process-queue pointer
%l5 Bptr back process-queue pointer
%l6 Tptr timer-queue pointer
%l7 pointer to scheduler variables

input %i0−%i3 temporary workspace
(used as %i4 MostNeg 0x80000000
local) %i5 ErrorFlag, status

HaltOnErrorFlag
%i6 (%fp) frame pointer
%i7 return address to calling function

output %o0−%o5 parameters/results for C functions
%o6 (%sp) stack pointer
%o7 return address for called functions

global %g0 zero
%g1−%g3 used for move2d
%g4−%g7 reserved by SPARC ABI

%y multiply/divide register
floating %f0−%f5 FAreg−FCreg floating-point evaluation stack
point %f6, %f7 floating-point temporary

%f8, %f9 floating-point zero
%f9−%f21 floating-point constants
%f22−%f31 spare

%fsr FP Error Flag, floating-point status register
Round Mode

7.4. Conditionals

The most obvious inefficiency of translating instructions one at a time arises in
conditionals. On the transputer, a comparison generates a Boolean value on the evaluation
stack, and this is tested by the conditional jump instruction, cj.



- 10 -

For example:

gt
cj L666

would produce something of the form:

cmp %l1,%l2
bg,a 1f
mov 1,%l1 !@ true
mov 0,%l1 !+ false

1:
tst %l1
be L666
nop

with an unnecessary Boolean value being generated.

To avoid this, the translator defers generating the Boolean until the next instruction has
been identified, and omits it if it finds a cj, producing the appropriate conditional branch
instead:

cmp %l1,%l2 !+ remember GT
ble,a L666 !+ was GT
mov 0,%l1 !@ make sure it’s false

The instruction in the delay slot of the branch is sometimes needed in evaluating Boolean
expressions; it involves no extra cost, since otherwise a nop would be required.

There is a further special case in the use of eqc 0 for inverting conditions, which
generates no extra code:

gt
eqc 0
cj L666

gives:

cmp %l1,%l2 !+ remember GT
! invert condition

bg,a L666 !+ was LE
mov 0,%l1 !@ make sure it’s false

7.5. Memory

The whole of the occam workspace is represented by a single SPARC stack frame, which is
organized as follows, from high address to low:

• a few words, accessed relative to the SPARC frame pointer, %fp, needed for some
floating-point instructions, because the only path between the floating-point and
integer processors on the SPARC is through memory;

• the workspace of the main occam process, including a pointer to the vector
workspace and the file parameters corresponding to stdin, stdout, and stderr,
set up by the kernel;



- 11 -

• the rest of the occam workspace, arranged exactly as on the transputer;

• the vector space, if any;

• ninety-two bytes required by the SPARC for dumping registers etc.

The translator generates a symbol, $$space, the value of which is used by the kernel to
allocate this space. Variables shared between the assembly-language kernel and the C
routines, together with other workspace used by the scheduler, are in the UNIX .data
area. For speed of access, a SPARC register (%l7) is used as a pointer to this area.

7.6. Error Detection

The code needed after checked arithmetic operations to implement the full transputer
ErrorFlag−HaltOnErrorFlag mechanism is considerable, so four alternative lev els
of checking are provided:

• none;

• setting ErrorFlag, but no HaltOnErrorFlag;

• trap on error (this is the default);

• ErrorFlag and HaltOnErrorFlag.

A trap handler in the child process reports fatal errors.

7.7. Tr anslation Errors

The translator checks for a number of errors; for example, underflow and (unexpected)
overflow of the evaluation stacks, unrecognized and unimplemented instructions, calls to
undeclared PROCs and FUNCTIONs, and inconsistencies in the sizes of floating-point
operands. In each case, it prints the offending line, with its line number in the transputer
assembly-language file, and the line number and name of the occam source file, and then
exits.

7.8. Speed

Of the steps involved in generating an executable file, translation is usually about twice as
fast as compilation, and somewhat faster than assembly and linking, so it contributes less
than a quarter of the total.

8. Separate Compilation

There are three situations where occam programs may call separately compiled routines.
These are described in the subsections below.

In order to translate (transputer assembly-language) calls to such routines, we need to
know in what state the calls leave the transputer register stacks. For occam PROCs, that
state is always empty. Howev er, occam FUNCTIONs may leave integer or floating-point
results on these stacks. The standard Toolset compiler does not give this information in its
assembly-language output − we are not even told whether the calls are to PROCs or
FUNCTIONs.

We are grateful, therefore, to SGS-Thomson Microelectronics for providing the occam-
for-all project with compiler sources. Another member of the project team (M. D. Poole)
has modified these sources to provide the missing information. (The compiler has further
been modified so as only to produce assembly-language output plus the header information
in ‘TCOFF’ files necessary for the compiler itself to manage separate compilation. KRoC



- 12 -

systems do not, therefore, generate transputer executables. We hav e permission to release
binaries derived from the Toolset compiler only to support occam targeted to non-
transputer platforms.)

8.1. Compiler Functions

The occam compiler sometimes generates calls to ‘compiler functions’; for example, for
INT16 and INT64 arithmetic. In the transputer assembly-language output, these functions
appear as stubs, which would be filled in by the Toolset linker. The translator replaces calls
to these stubs by direct calls to the functions.

The bodies of the compiler functions are written in occam. They can be translated and
assembled in the usual way, and included in the library of run-time support routines used by
KRoC. Some of them contain ASM sections, and in a few cases these violate the
assumptions made by the translator, so modified versions have had to be written. For
efficiency, some are being rewritten in SPARC assembly language.

8.2. Separately Compiled occam

Libraries of occam PROCs and FUNCTIONs can be included in a program in two ways:
either in source form, using the #INCLUDE directive, or pre-compiled, with #USE. The
first is invisible to KRoC, but the second requires the use of the modified occam compiler
described above.

8.3. Calling C Functions

KRoC provides a mechanism for calling functions written in C. For a function with the C
prototype:

int foo (int this, int that);

an occam ‘prototype’ is required of the form:

#PRAGMA EXTERNAL "PROC C.foo (INT result, VAL INT this, that) = 0"

Since a C function is likely to have side effects (we can never assume it really is a
function in the mathematical or occam sense), it is represented as a PROC with an extra
result parameter, rather than as a FUNCTION. The initial ‘C.’ is a naming convention
to allow the translator to generate appropriate calling code. The zero at the end of the
pragma is the number of words of occam workspace required by the function; since C
functions create new SPARC stack frames for their workspace, none needs to be provided in
the occam world.

The two languages have different mechanisms for passing parameters. To convert
between them, an interface function is required. This can be written in C, so that the details
of the C mechanism are handled by the C compiler. This function is passed a single
parameter, which is the region of the occam workspace containing the occam parameters.
This region appears as an array of word s, where the type word is a union of all data
types that can be represented in a single word.



- 13 -

For the above example, we need integers (i) and pointers to integers (ip):

void foo (w)
word w[3];
{
*w[0].ip = foo (w[1].i, w[2].i);

}

A tool (ocinf) has been written by another member of the project team (C. S. Lewis) to
generate both the interface functions and the occam PRAGMAs automatically from the C
prototypes. A demonstration using the X11 library is provided in the KRoC release.

Because of the endian problem, parameters occupying more or less than a single word
have to be converted from one format to the other. Simple variables can be converted in the
interface routines, but other types − such as character strings and arrays of REAL64s − may
be processed by several C functions, so it is more efficient to convert them only when
required. Special procedures are provided for this.

Routines written in other languages, such as Pascal or Fortran, can also be accessed
through C interface functions. Hence, for example, libraries like NAG could be used.

Assembly-language routines do not need separate interface functions; they can be written
using either the normal occam conventions or those of the C interface.

9. Problems and Solutions

9.1. Endianism

The transputer is a little-endian machine and the SPARC is big-endian. In the transputer,
BYTEs and BOOLs in arrays occupy single bytes, but simple variables of these types are
held in words. For parameters passed by reference, the object has to be in the correct (little)
end of the word. Hence all accesses to bytes have to be modified (by inverting the low-
order two bits of their addresses). This is a small overhead in block moves (generated by
move instructions and in/out communications). Later releases of KRoC may eliminate
this problem by modifying the occam compiler to allow it to generate code for a (mythical)
big-endian transputer.

INT16s are treated similarly.

All constants, of whatever size, are compiled into byte directives in little-endian order.
Since there is no way of knowing how they are to be used, they hav e to be translated
consistently. Hence groups of four bytes are translated into .word directives, in reverse
order.

It would be more efficient if REAL64s (and INT64s) could be accessed using the SPARC
double-word ldd and std instructions, but they are in the wrong order. Howev er, there is
another problem arising from the SPARC requiring 64-bit objects to be aligned on eight-
byte addresses, whereas the transputer needs only four-byte alignment. Double-word
alignment requires further change to the occam compiler.

9.2. Floating Point

Since both the transputer and the SPARC conform to the IEEE 754 floating-point standard
[9] (and neither supports extended precisions), numerical results should be identical.
Preliminary tests confirm this.



- 14 -

The transputer floating-point evaluation stack is handled in the same way as the integer
stack, being mapped statically onto six SPARC floating-point registers, two for each 64-bit
item.

The precision of the transputer floating-point registers is dynamic, being recorded in an
internal flag associated with each register. This is simulated statically by the translator,
which also checks that the precisions of operands match.

A number of constants used by transputer floating-point instructions, such as 0.0 and 0.5,
are held in SPARC floating-point registers.

The transputer rounding mode defaults to ToNearest after every floating-point
instruction. Since modifying the SPARC floating-point state register, %fsr, which controls
the rounding mode, is rather complicated (it may have to be stored in memory, loaded into
an integer register for manipulation, returned to memory, and reloaded), the translator keeps
a record of the current rounding mode, and changes it only when necessary.

By default, the floating-point errors invalid operand, overflow, and division by zero (NV,
OF, and DZ) cause a trap, but alternatively the transputer FP Error Flag can be
simulated by the the accrued exception field, aexc, of the SPARC %fsr.

The transputer computes square roots with a sequence of instructions (fpusqrtfirst,
fpusqrtstep, and fpusqrtlast). Since the SPARC requires only a single fsqrts
or fsqrtd, only fpusqrtlast is translated.

It is not clear from the available documentation exactly what the instructions of the
floating-point remainder sequence (fpremfirst and fpremstep) do. At present, only
the first is implemented, using a call to the SPARC mathematical library function
remainder.

The SPARC has no instruction for moving a double-precision floating-point quantity
between registers; the two words have to be moved separately, using fmovs. Since KRoC
keeps the value zero in floating-point registers for other reasons, it seems in the RISC
tradition to use something of the form:

faddd Source,Zero, Destination

Experiments on a range of different SPARC processors confirm that this is up to twice as
fast as the conventional method.

The transputer has an instruction for multiplying a floating-point number by two,
fpmulby2. On the SPARC, adding a register to itself is as fast or faster, and does not
require the value two to be kept in registers.

9.3. Stack Shuffling

The implementation of the evaluation stacks in KRoC requires that the translator should
always be able to deduce how many items are on each stack.

This is usually possible, but in some situations redundant information may be left on the
integer stack and the compiler allows this to overflow. The following cases are known:

• enable and disable in ALTs (enbc, enbs, enbt, disc, diss, and dist) − the
Boolean pre-condition is not always used;

• conditional jumps (cj) − the zero left on the stack when the jump is taken is
sometimes never used;



- 15 -

• long arithmetic (lsum, ldiff, lmul, lshl, and lshr) − the second word is not
always required;

• range checks (csub0 and ccnt1) − the value checked is not always used;

• addition is sometimes used for checking (add and adc) − the result is ignored;

• indexing arrays of timers (ldl) − the transputer does not, of course, provide arrays of
timers and the same one is used regardless of index. However, that index is always
checked for range violation and left on the stack for natural wastage.

In each of these cases, where the stack level cannot be determined unambiguously, the
translator records the fact that one or more items may not be required. If the compiler
provides comments that clarify the situation, the translator takes account of them. Then, if
it encounters a situation that would cause the stack to overflow, it ‘shuffles’ the registers.

It tries to keep track of how many items may be lost in this way, but the process is
somewhat unsatisfactory, as it could allow translation errors to go undetected and also
introduces a small inefficiency. (Typically, it happens only once in several hundred
instructions.) For this reason, the modified compiler mentioned above provides additional
information about the stack level in these cases.

A particular problem arises with labels, in that the stack level may appear to be different
depending on whether the label was reached directly or from a jump. In this case, the
translator assumes that the lowest level is correct, and introduces a shuffle into the
appropriate path. The same thing happens when there are two or more jumps to a label.

On very rare occasions, the translator may be unable to resolve a conflict in apparent
stack levels; it then prints a warning message and continues. This has only happened once
. . .  and the program concerned runs correctly.

Potentially, there is a similar problem with the floating-point stack (for example, in the
fprem sequence), but it seems never to arise in code generated from occam.

10. Performance

10.1. Validation

The ‘CG test suite’ (developed by INMOS) comprises 27 test programs for occam 2, with a
further 18 for occam 2.1. It contains some 7,000 tests consisting of more than 50,000 lines
of occam. KRoC passes all of these, with a few small modifications to allow for the
different architecture of the SPARC (e.g. KERNEL.RUN must be tested with a SPARC
binary rather than a transputer one).

However, the CG test suite is a test for compiler correctness and not a test for the correct
implementation of transputer instructions, which is what is really required for KRoC. It
builds great confidence, but we need to develop a further test suite that checks specifically
for the latter. Such a test suite would be helpful in the early stages of retargeting.

10.2. Process Management Overheads

We use a simple benchmark* that starts up N pairs of processes, transmits M messages
between each pair, and shuts down all pairs of processes. Each message consists of one
integer (four bytes). The test is then re-timed skipping the transmission of messages, but

* The source codes for the benchmarks described in this paper are included in KRoC releases from version 0.7beta onwards.



- 16 -

retaining the inner SEQ-loops of each process. Subtracting the former time from the latter
leaves us with the overheads for transmitting N*M messages − these overheads are primarily
those for context-switching (i.e. process synchronization and re-scheduling), plus the cost
of the actual memory-to-memory transfer of four word-aligned bytes. Continuing the
benchmark by removing the inner SEQ-loops and, finally, the inner pair of processes lets us
get handles on the overheads for managing the SEQ-loop (which are high on transputers
because of the inefficiency of its loop-end instruction) and for process startup and shutdown
(measured together).

The benchmark is compiled and translated by KRoC with a flag that makes occam timers
yield UNIX user-time, rather than real-time. UNIX user-time reports with a granularity of
10 milliseconds and with an absolute accuracy no better than about 100 milliseconds.
Therefore, values need to be set for N and M in the benchmark that result in timings of the
order of 10 seconds and above, so that the relative errors in the timings are small.

Although the number of processes being scheduled has no effect on the number of
instructions executed to effect a context switch, memory is involved and so caching effects
have an impact. Adjusting the value of N (the number of process pairs) changes the
workspace requirements of the benchmark. Since the benchmark is repetitive, having a
small N enables it run almost entirely within cache. For large N, the workspace needed is
much greater than the cache available and, since the processes are round-robin scheduled
and hardly anything happens within each process, no advantage can be taken from that
cache.

The following tables give results from this benchmark compiled under KRoC 0.7beta and
executing on a 60-MHz SPARC-20 Workstation with 1 Mbyte fast cache and running SunOs
4.1.3. The External Memory figures relate to 1,000,000 processes* communicating 256
messages between each of 500,000 pairs. The Cache Memory figures are for 100 processes
communicating 2,560,000 messages between 50 pairs. For comparison, results are also
given for code produced by the Southampton Portable occam Compiler (SPoC) [10], with
and without gcc −O2 optimization, running on the same machine. Finally, results are
given for transputer code produced from the standard Toolset compiler running on 20-MHz
(revision D) T9000 and 20-MHz T800 transputers. (Note: the code and workspace
requirement for the 100-process benchmark fits inside the 4 kbytes of on-chip SRAM in a
T800 transputer.)

Context-Switch Overheads (microseconds)

Systems External Memory Cache Memory

KRoC 1.06 0.46
SPoC 3.83 1.87
SPoC (−O2) 3.16 0.96
Toolset (T9000) 2.29 1.25
Toolset (T800) 2.17 1.36

* Workspace limits imposed by a UNIX system on user stack space may prevent the running of this benchmark with
1,000,000 processes. Under KRoC, each process in this benchmark requires 32 bytes of workspace; under SPoC, somewhat
more is needed.



- 17 -

Startup+Shutdown Overheads (microseconds)

Systems External Memory Cache Memory

KRoC 1.60 0.70
SPoC 18.5 8.44
SPoC (−O2) 16.4 4.86
Toolset (T9000) 4.42 1.84
Toolset (T800) 4.22 2.10

SEQ Loop Overheads (microseconds)

Systems External Memory Cache Memory

KRoC 0.20 0.20
SPoC 0.14 0.14
SPoC (−O2) 0.04 0.04
Toolset (T9000) 0.33 0.33
Toolset (T800) 1.53 0.65

The context-switch overheads include the time to move the message (four word-aligned
bytes) between the process workspaces. The startup+shutdown overheads give the
combined time to start up and shut down a process − separate timings are hard to measure.
Note also that process shutdown involves a barrier synchronization.

KRoC process-management overheads are about three times lower than those for 20-MHz
transputers (T8 or T9), which is (the least) we should be looking for from a processor that is
clocked at three times the speed (60-MHz SPARC). The SPoC context-switch figures are
slightly greater than those for the transputers, but the startup and shutdown overheads are
significantly greater (which will affect the freedom with which low-level PAR constructs
can be applied). KRoC suffers from the loop-end difficulty it inherits from the transputer.

10.3. Serial Floating-Point Performance

No matter how fast multi-processing can be made, it is important that this is not gained at
the expense of other fundamental parameters, such as floating-point performance.

Daxpy is a low-level component of the standard BLAS routines, which adds a multiple of
one array to another. In occam:

PROC daxpy ([]REAL64 a, VAL []REAL64 b, VAL REAL64 c)
SEQ i = 0 FOR SIZE a

a[i] := a[i]+ (b[i]*c)
:

This is a severe test for modern processors as it enables practically no advantage to be
taken of cached memory (assuming the array sizes are large). Nevertheless, the test reflects
per-processor MFLOPS commonly sustained by state-of-the-art HPC facilities on real
applications (which generally range from 2% to 30% of their theoretical peak [11, 12]).

As with the previous benchmark, versions were run to show its performance in external
and cache memory. For the former, the array sizes were set to 100,000 and the computation
repeated 100 times. For the latter, these numbers were reversed. All results were checked
for numerical accuracy. The same SPARC and transputer platforms as reported in the
previous section were used for these tests.



- 18 -

Daxpy Performance (MFLOP/second)

Systems External Memory Cache Memory

KRoC* 2.7 3.6
KRoC unrolled* 4.0 6.3
KRoC + GUY 4.8 8.6
KRoC + as (little-endian) 5.4 12.3
KRoC + C (-O) 6.1 14.0
KRoC + as (big-endian) 6.8 16.0
SPoC* 1.2 1.3
SPoC unrolled* 3.9 5.4
SPoC (−O2)* 3.7 5.6
SPoC unrolled (−O2)* 6.0 14.2
C 3.1 4.4
C (−O2) 5.8 14.4
Toolset (T9000)* 1.4 1.9
Toolset unrolled (T9000)* 1.9 3.2
Toolset + GUY (T9000) 1.7 2.2
Toolset (T800)* 0.45 0.52
Toolset unrolled (T800)* 0.58 0.70
Toolset + GUY (T800) 0.75 0.96

Several different versions of daxpy are reported in the above table. For KRoC, the first
row giv es the (double-precision) floating-point performance for the raw occam code given
above. The next row has the loop unrolled 16 times, which gives significant run-time
savings on array element address computations and on array index range checks. The third
row has the unrolled loop replaced by in-line transputer assembly language (GUY). The
fourth row has occam calling the daxpy routine written in SPARC assembly language
(as), but with the data still in transputer little-endian format (which means no advantage
can be taken of double-word loads and stores). The next row shows the result of occam
calling C (separately compiled with gcc −O). Note that the data has to be organized into
big-endian format for this to work. The last row in this first section shows the result of
hand-crafted SPARC assembly language that also takes advantage of the data being in big-
endian format.

The next section of the table shows the performance of SPoC on the original occam code
and its loop-unrolled form. The third section repeats this but with gcc optimization on
during SPoC compilation. The fourth section shows the performance of an all-C version of
daxpy, with and without gcc optimization and, of course, with no range checks.

The final two sections give the results of the original occam, the unrolled occam, and
the occam plus GUY code on T9000 and T800 transputers.

From occam, both KRoC and SPoC give serial floating-point performance as good as
gcc from C. Howev er, KRoC needs to drop into native assembly language, or separately
complied and optimized C, to match gcc with optimization. SPoC is the clear winner here
since it can directly exploit gcc optimization in its second stage (having first compiled
occam into C).

* Includes range-checking of array indices.



- 19 -

10.4. Discussion

Putting the figures from the previous two sub-sections together, it is relevant to express
process management overheads in terms of obtainable serial floating-point performance (as
opposed to some mythical peak figure). From Section 10.2, this best performance varies
between about 6 and 15 MFLOP/second, depending upon how successfully we can hit the
cache. We can now generate the following tables:

Context-Switch Overheads (FLOPs)

Systems External Memory Cache Memory

KRoC 6.3 6.9
SPoC 22.9 27.9
SPoC (−O2) 18.9 14.3
Toolset (T9000) 4.3 4.0
Toolset (T800) 1.6 1.3

Startup+Shutdown Overheads (FLOPs)

Systems External Memory Cache Memory

KRoC 9.6 10.4
SPoC 110.8 126.0
SPoC (−O2) 98.2 72.5
Toolset (T9000) 8.4 5.9
Toolset (T800) 3.2 2.0

For floating-point intensive applications, we can now make decisions about how much
parallelism (or multi-threading) it is safe to allow ourselves before their overheads become
noticeable. Note that these decisions are now independent from considerations of cache
hit-rates (the columns contain very similar costs).

A most striking observation from the above tables concerns the extraordinary capabilities
of the T800 transputer. The T800 can start up a process, shut down a process, or switch
context at almost the same speed with which it can perform (64-bit) floating-point
arithmetic! Combine that with the recollection that the T800, when it was first available
commercially, was the fastest floating-point microprocessor in the world and we have an
achievement from which state-of-the-art architectures have retreated dramatically. That
achievement needs regaining for two reasons. Firstly, it enables the direct implementation
of fine-grained parallel design (which is the starting point for most methodologies for
modelling the natural world). Direct implementation implies simplicity and, hence, greater
confidence, verifyability, and security. Secondly, it is a  prerequisite for low-latency startup
for external communications, which is itself a prerequisite for scalable performance on
multi-processor platforms (private memory, shared memory, or virtual shared memory).

The T9000 transputer, clocked at the same speed as the T800, has improved its floating-
point performance (currently by a factor of three and a bit*), but has only slightly improved
its process management − hence, the increased costs in the above tables. KRoC, applied to
a modern RISC processor (a 60-MHz SPARC-20), brings that processor into line with the
T9000, yielding process costs in terms of arithmetic that are almost as low, without

* Note that the in-line GUY code, optimized for the T800, is not helpful for the T9000.



- 20 -

damaging the speed of that arithmetic. SPoC is three to ten times more expensive than
KRoC, depending on how much low-level parallelism is present. Nevertheless, all these
systems have costs that are sufficiently low to qualify as virtual transputers, enabling us to
retrieve most of the scientific and engineering achievements of the original T800.

11. Future Work

Work is in progress on a number of extensions to the present KRoC, as well as on versions
for other architectures (see Section 1).

11.1. Multi-Processor Systems

A major extension will be to run occam programs distributed over a network of
workstations or tightly coupled multi-processor systems. The system under development is
based on the design of the Virtual Channel Processor (VCP) of the T9000 transputer, and
will provide support for virtual channels using whatever communications fabric (TCP/IP
ethernet, DS-links, shared memory, . . .) is to hand. A side-effect of this will be an occam
channel interface to UNIX sockets and, for example, the ability to start experimenting with
occam multi-threaded World Wide Web servers . . .

11.2. Calling C

The current mechanism provides a conventional procedure interface. It would be much
better to provide a channel interface to enable occam to call C functions without blocking
and to receive call-backs in a natural way.

11.3. File Access

At present, KRoC can only access files through redirecting the standard UNIX streams
stdin, stdout, and stderr. Later versions of KRoC will support the Toolset SP
interface as an alternative.

11.4. Optimization

KRoC relies on the Toolset compiler to generate transputer code and, currently, this contains
no optimization stage. The retargeted code, therefore, not only has to accept the overhead
of not exploiting its full register set for serial computation*, but it also has to be derived
from transputer code that is non-optimal even for transputers.

Given these constraints, it is interesting that KRoC code from pure (but unrolled) occam
is between 45% (in-cache) and 70% (ex-cache) of the performance of gcc, with full
optimization set, from C on code such as daxpy (and is faster than unoptimized gcc). An
optimizing occam Toolset compiler does exist, but this has not been released by SGS-
Thomson Microelectronics. In the meanwhile, inner loops of computationally intensive
processes can be coded in native assembly language or C (separately compiled and
optimized using standard tools) − a practice long familiar for HPC applications
programmed in traditional high-level languages.

Other approaches to optimization are under consideration. The most promising is to use
a peephole optimizer on the target assembly language, since there are a number of common
sequences of instructions that could easily be improved.

* This is, of course, a positive benefit for parallel computation . . .



- 21 -

The UNIX assembler, as, has an optional optimizer, but it is intended for use only with
the output from UNIX compilers, and makes assumptions about the code that KRoC does
not follow.

Another possibility is for the translator to keep a record of the values of constants, rather
than translating ldc instructions literally. In many cases, these values could then be used
as immediate-mode operands. Experiments suggest that the efficiency gained by this
process would not be great, while the cost in complexity in the translator would be
considerable.

The block move routine in the scheduler, used for inter-process communications and by
the move and move2dall instructions, is efficient for copying blocks of words, but,
because of the endian problem, is somewhat slower otherwise. It could be made as efficient
as copying data in the normal order, using shift instructions in a way similar to that used in
the UNIX memcpy routine.

11.5. Debugging

When faced with a component that doesn’t work properly, a bad engineer tries to find out
what’s wrong with it. A good engineer wants to know what’s right with it − what evidence
is there that it has been implemented to meet its specification? The good engineer looks at
the implementation and tries to understand how it does its task. Most faults in a well-
engineered system will not stand close inspection. Faults in a badly-engineered system are
not worth wasting time on − better to throw it away and re-design properly. Occasionally,
subtle faults in a well-engineered design will escape our attention − the implementation
looks good but it still doesn’t work. Only then, as a last resort, do we switch the
component on, attach probes, and watch it in action (i.e. start ‘debugging’).

By virtue of the engineering within the language [13, 14], a vast range of common and
subtle errors (e.g. aliasing problems, race conditions, data and message structure violations,
syntactic/semantic inconsistencies, unexpected type-coercion or loop-exit or operator-
precedence, . . .) simply cannot occur in occam systems. Therefore, the need for
debugging tools is greatly reduced and they are not a high priority in occam-for-all.

Nevertheless, we have resisted the temptation to print the ancient UNIX response (‘Eh?’)
upon hitting a run-time error, and do, at least, say what kind of error (range-violation,
divide-by-zero, . . .) has occurred. Future releases will relate this to the source line-number
and file-name of the offending code. It should be possible, with some effort, to port (or
reconstruct) the post-mortem analyser idebug, but we are waiting to see the level of
demand. An interactive vivisector (capable of setting breakpoints, changing variables, step-
executing processes, . . .) is considered to be of only marginal use and liable to encourage
bad engineering practice.

11.6. Priority Scheduling

The only feature of occam not supported is PRI PAR, which is treated as PAR. Handling
priorities is relevant for ensuring that external communications are started as early as
possible. This allows the exploitation of any capability offered by the underlying hardware
and software for overlapping communications and computation. Priority Scheduling is also
needed in real-time applications to allow high computational loadings to be imposed on
processors and still provide guarantees of meeting real-time deadlines [15].



- 22 -

Using ideas discussed in [15], we are investigating a full implementation of PRI PAR −
i.e. one that allows any number of components (current occam implementations limit this
to two). This will involve significant changes to the Toolset compiler and to the KRoC
kernel. Nothing will be put in that damages the current process management overheads.

11.7. Language Development

After more than a decade of use, the occam programming language has proven remarkably
mature and robust for the design and implementation of efficient multi-processing
applications. It offers a level of security and lightness in overhead that remain unmatched
by current alternatives.

However, despite its achieving widespread industrial and academic acceptance, anecdotal
evidence suggests that this base is diminishing. The main reasons given are perceptions
that occam is a specialist language for the transputer and that it is not (built upon) C or
Fortran. The former is being addressed by both SPoC and KRoC − projects that should, and
technically could, have been started ten years ago. There is not much that can be done
about the latter . . .  except to question continually the wisdom of accepting engineering
methods that allow errors to be made that are preventable with modern tools (and to
consider our legal liabilities concerning such acceptance).

No tool provides universal capability and occam was nev er intended to be the last word
in parallel processing! In one sense, occam is like an assembly language for parallelism.
It provides PAR and ALT constructs and communication primitives, but allows these to be
combined to create any pattern of process interaction − including some that may deadlock
or livelock. Now that we have more experience, it may be time to consider designing
higher level languages that only permit synchronization regimes that can be guaranteed free
from deadlock or livelock (see [16, 17]).

On the other hand, occam is sometimes too conservative and unnecessarily limits the
amount of parallelism available to an application. The chief problem here is its attitude to
sharing. Data that is shared between processes is frozen (i.e. read-only) for the duration of
that sharing; processes only interact through explicit one-to-one communication channels.
This achieves the vital benefit of eliminating accidental race hazards (non-determinism), an
achievement that is not addressed by the available alternatives. However, it is possible to
weaken the rules on sharing (in ways that will allow read/write permissions on shared data
to be more dynamic) and still retain all the previous security. High level concepts to
capture these rules may need to be introduced in the language to make this safe. These
issues will become especially important in the context of shared-memory (or virtual-shared-
memory) multi-processors.

During the period 1989−92, INMOS developed and published proposals for an extended
language called occam3 [18], which included mechanisms for securely SHARED channels,
CALL channels, and programming-in-the-large. Only about 10% of these extensions have
been implemented in the occam2.1 language (which KRoC has inherited from the SGS-
Thomson Microelectronics compiler). The remaining 90% need some serious study into
implementation strategy.

12. Conclusions

The approach to retargeting occam proposed here has been shown to be relatively easy to
implement, and to produce code of acceptable efficiency. Those requiring top performance
can drop into C or assembly language for serial inner loops. Despite the obvious



- 23 -

differences in generating code for different architectures, it is proving easy to retarget to
several machines other than the original SPARC. The original goal that the system should
work with an unmodified occam compiler is satisfied only for programs compiled as a
single unit, but is no longer important now that we can release our own version of the
compiler.

Despite having to use a software (rather than microcoded) kernel, the results in Section
10 show that key properties of the transputer do survive this retargeting. Context-switching
on a 60-MHz SPARC-20 ranges between a half and one microsecond (depending upon
cache hits). Process startup and shutdown (combined) costs range from three-quarters to
one-and-a-half microseconds.

These are somewhat lighter than the overheads incurred by most other systems for
process management on such architectures and raise the prospect of a new use for occam
as a very-lightweight-threads mechanism for a (uni-processor) workstation. Current
lightweight threads libraries require great care from the programmer, as incorrect usage is
not machine checked. In occam, it is simply not possible to write a procedure that is
‘thread-unsafe’ and use it as part of a threads application.

The current results for KRoC on a single processor are a necessary condition for scalable
performance on multi-processors. Work is in hand to extend the KRoC kernel to support
multi-processor platforms in a way that is retargetable to different communications fabric.
If all goes well, the result will be to enable occam applications to be configurable to a wide
range of parallel architectures. On such ‘virtual transputer systems’, occam (or its
descendants) has one further benefit to confer: the efficient reconciliation of application-
specific parallel software with general-purpose parallel hardware, where the software and
hardware parallel structures have no correspondence [19].

KRoC binary releases are freely available from [2]. Source releases of the translator and
kernel are available for academic research (e.g. further retargeting) through contacting the
authors. KRoC is being used at the University of Kent and elsewhere for supporting occam
teaching and parallel computing generally. Teaching materials are included with the binary
releases. We welcome and need feedback from all who experiment with this system.

13. Acknowledgements

We would like to thank all the members of the occam-for-all team at Kent for ideas and
encouragement. In particular: Michael Poole, whose implementation of occam for the PC
[20] proved that this sort of thing was possible, and who modified the occam compiler as
described in Section 8 and ported the KRoC kernel to the DEC Alpha; Carl Lewis, who
retargeted the KRoC translator to the DEC Alpha and who wrote the tool for generating C
interfaces; Kevin Vella, who is investigating the multi-processor implementation for KRoC;
Vedat Demiralp, for repeatedly running the test suite on each new version, and who is also
working on multi-processors; and Dave Beckett, for writing the KRoC driver, controlling
the ever-increasing numbers of different versions, and setting up and managing the public
releases.

We also thank Kneale Rothwell, Graham Shaw, Keith Wollacott, and their supervisor
Andrew Smith, whose student project at Kent produced the first SPARC kernel [21], from
which the KRoC version has evolved.

We are especially grateful to SGS-Thomson Microelectronics, both for making their
compiler sources and test-suites available to this project and for technical advice.



- 24 -

Finally, we also thank Denis Nicole, of the University of Southampton, who first
seriously proposed this approach at the occam Porting Workshop held at the University of
Kent in September, 1992, and who estimated it would be about two weeks’ work.

References

[1] occam-for-all. See <URL:http://www.hensa.ac.uk/parallel/occam/projects/occam-for-all/>.

[2] KRoC release information. See <URL:http://www.hensa.ac.uk/parallel/occam/projects/occam-for-
all/kroc/>.

[3] SGS-Thomson Microelectronics Limited. occam 2.1 Language Reference Manual. See
<URL:http://www.hensa.ac.uk/parallel/occam/documentation/>.

[4] INMOS Limited. The transputer instruction set − a compiler writers’ guide. Prentice Hall, 1988. ISBN
0−13−929100−8.

[5] D. A. P. Mitchell, J. A. Thompson, G. A. Manson, and G. R. Brookes. Inside the Transputer. Blackwell
Scientific Publications, 1990. ISBN 0−632−01689−2.

[6] M. D. May, P. W. Thompson, and P. H. Welch (eds). Networks, Routers, and Transputers. IOS Press,
1993. ISBN 90−5199−129−0.

[7] The T9000 Transputer Instruction Set Manual. INMOS Limited, 1993.

[8] SPARC International. The SPARC Architecture Manual. Prentice Hall, 1992. ISBN 0−13−825001−4.

[9] ANSI/IEEE Std 754−1985, IEEE Standard for Binary Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc, 1985

[10] M. Debbage, M. Hill, S. Wykes and D. Nicole. Southampton’s Portable occam Compiler. In
Proceedings of WoTUG−17: Progress in Transputer and occam Research, edited by R. Miles and A.
Chalmers. IOS Press, April, 1994. ISBN 90−5199−163−0

[11] S. Saini and D. H. Bailey. NAS Parallel Benchmarks Results 3−95. Report NAS−95−011, Numerical
Aerodynamic Simulation Facility, NASA Ames Research Center, Mail Stop T 27A−1, Moffett Field,
CA 94035, USA.

[12] Crisis in HPC Workshop. See <URL:http://www.hensa.ac.uk/parallel/groups/selhpc/crisis/>.

[13] C. A. R. Hoare: The Transputer and occam; a Personal Story. Concurrency: Practice and Experience,
vol.3(4), pp. 249−264. August, 1991.

[14] P. H. Welch: The Role and Future of occam. In Tr ansputer Applications − Progress and Reports,
edited by M. Jane, R. Fawcett, and T. Mawby. ISBN 90−5199−0790. IOS Press, March, 1992.

[15] E. Ploeg, J. P. E. Sunter, A. W. .P. Bakkers, and H. W. Roebbers: Dedicated Multi-Priority Scheduling.
In Proceedings of WoTUG−17: Progress in Transputer and Occam Research, pp 18−31, edited by R.
Miles and A. Chalmers. ISBN 90−5199−163−0. IOS Press, April, 1994.

[16] P. H. Welch, G. Justo, and C. Willcock: High-Level Paradigms for Deadlock-free High-Performance
Systems. In Tr ansputer Applications and Systems ’93, pp 981−1004, edited by R. Grebe et al. ISBN
90−5199−140−1. IOS Press, September, 1993.

[17] J. Martin, I. East, and S. Jassim: Design Rules for Deadlock Freedom. Tr ansputer Communications,
vol.2(3), pp. 121−133. September, 1994.

[18] G. Barrett: occam 3 Draft Language Reference Manual. See
<URL:http://www.hensa.ac.uk/parallel/occam/documentation/>.

[19] P. H. Welch: Parallel Hardware and Parallel Software: a Reconciliation. In Proceedings of the ZEUS’95
& NTUG’95 Conference, Linkoping, Sweden, pp 287−301, edited by P. Fritzson and L. Finmo. ISBN
90−5199−22−7. IOS Press, May, 1995.

[20] M. D. Poole. An Implementation of occam 2 Targetted to 80386, etc. WoTUG News No 18, 1993.

[21] K. Rothwell, G. Shaw, K. Wollacott, and A. Smith. Porting the INMOS occam Compiler to the SPARC
Architecture. In Proceedings of WoTUG−18: Transputer and occam Developments, edited by P.
Nixon. ISBN 90−5199−222−x. IOS Press, April, 1995.


