
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

1

Semantics ofprialt in Handel-CTM

Andrew BUTTERFIELD1 and Jim WOODCOCK2
1 Dublin University

2University of Kent at Canterbury

Andrew.Butterfield@cs.tcd.ie

Abstract. This paper discusses the semantics of theprialt construct in Handel-
C[1]. The language is essentially a static subset of C, augmented with a parallel
construct and channel communication, as found in CSP. All assignments and chan-
nel communication events take one clock cycle, with all updates synchronised with
the clock edge marking the cycle end. The behaviour ofprialt in Handel-C is
similar in concept to that ofoccam [2, 3], and to thep-priority concept of Adrian
LawrenceCSPP[4]. However, we have to contend with both input and output guards
in Handel-C, unlike the situation inoccam, althoughprialt s with conflicting pri-
ority requirements are not legal in Handel-C. This makes our problem simpler than
the more general case including such conflicts considered in [4]. We start with an
informal discussion of the issues that arise when considering the semantics of Handel-
C’s prialt construct. We define a resolution function (R) that determines which
requests in a collection ofprialt s become active. We describe a few properties that
we expect to hold for resolution, and discuss the issue of compositionality.

1 Introduction

This paper discusses the semantics of theprialt construct in Handel-C[1], a language
originally developed by the Hardware Compilation Group at Oxford University Computing
Laboratory. It is a hybrid of CSP [5] and C, designed to target hardware implementations,
specifically field-programmable gate arrays (FPGAs) [6, 7, 8, 9]. The language is essentially
a static subset of C, augmented with a parallel construct and channel communication, as
found in CSP. The type system has been modified to refer explicitly to the number of bits
required to implement any given type. The language targets largely synchronous hardware
with a multiple clock domains. All assignments and channel communication events take
one clock cycle, with all updates synchronised with the clock edge marking the cycle end.
All expression and conditional evaluations are deemed to be instantaneous, effectively being
completed before the current clock-cycle ends.

1.1 Notation

In Handel-C, a typical program fragment showing twoprialt s in parallel might appear as:

par {
prialt {

a!11 : P1 ; break ;
b?x : P2 ; break ;

} ;
prialt {

b!22 : P3 ; break ;
c?y : P4 ; break ;

}
}

2 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

Here,P1, P2, P3, andP4 denote the continuation code that gets executed if the corre-
sponding guard is deemed to be active. InCSPP [4], this could be written as:

((a!11 → P1)
←
2 (b?x → P2(x))) ‖ ((b!22 → P3)

←
2 (c?y → P4(y)))

We adopt a simpler notation, in which we ignore the guard values, variables and continuation
processes, viewing eachprialt simply as a sequence of guards, and thoseprialt s in
parallel simply being collected into a set, to give:

{ 〈a!, b?〉
〈b!, c?〉

}

We do this because the concern here is how the decision is made regardingwhichguards are
deemed to be true. We are not interested in this paper in the consequent actions, both of the
guard communications and the subsequent process actions.

1.2 The Problem

The behaviour ofprialt in Handel-C is similar in concept to that ofoccam [2, 3], and
to thep-priority concept of Adrian LawrenceCSPP [4]. However, we have to contend with
both input and output guards in Handel-C, unlike the situation inoccam. In relation top-
priority, Handel-C does not admit processes with conflicting priorities, so presents a simpler
problem semantically, than that found inCSPP . The synchronous nature of Handel-C also
makes it easy to establish whatprialt statements are participating in a synchronisation
event at any given point in time. A particular consequence of this is that all the key events
are deemed to occur simultaneously.

Our interest is in determining the outcome when a number ofprialt s are simultane-
ously ready to run, i.e the outcome of the following situation:





〈g11, g12, . . . , g1j, . . . , g1m1〉
〈g21, g22, . . . , g2j, . . . , g2m2〉

...
〈gi1, gi2, . . . , gij, . . . , gimi

〉
...

〈gn1, gn2, . . . , gnj, . . . , gnmn〉





The guards can have only one of the following two forms: input guardc? or output guard
c!. Handel-C allows the use of adefault guard as the last guard in aprialt , but again
this is something which we will ignore for current purposes. Another constraint present in
Handel-C is that a channel may appear only once in any givenprialt . Handel-C also
admits communication statements outside ofprialt s (“naked communication”). However
these can be modelled by a singletonprialt with a null continuation process:

c!e ≡ prialt{c!e:break}

In CSPP , semantics is given usingAcceptanceswhich are partial functions from traces
to relations between sets of of offered and accepted events, where the domain of a partial
function equals the set of traces of the process it denotes. A process is therefore described by
describing how, after any of its traces (s), with an environment offering a set of events (E), it
is willing to accept a specific set (A) of events. The notation used for this is

s : E ; A

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 3

However, in Handel-C, it seems to make more sense to view theprialt s as making
specific offers ofsequencesof events, rather than sets of events. We can view theprialt
statement:〈g1, g2, . . . , gn〉 as offering the eventsg1, g2, . . . , gn in that order. In effect what
we have done here is to abstract theprialt notation to reflect precisely the prioritised list
of events that it is willing to offer/accept.

A general resolution mechanism then determines which events actually occur. This pa-
per is a description of the formal semantics of that resolution mechanism, in a form suffi-
ciently general that it can be incorporated into a variety of different semantics for Handel-
C—denotational [10], operational [11] or otherwise. Asprialt resolution in Handel-C is
deterministic, having the form of a total function from sets ofprialt s to their resolution,
we adopt a formal notation most suited to describing functions, that of the “Irish School”
of the VDM (VDM♣) [12]. This can be described briefly as a functional subset of standard
VDM (VDM-SL [13]), using equational reasoning rather than the logic of partial functions.
A notation guide is provided as an appendix, as well as by explanations running through the
text.

Despite the Handel-C language’s superficial similarity to CSP, we did not adopt CSP as
a semantic modelling language here, because it lacks any notion of priority. Also, it was not
clear when the work started if it is possible to capture this at all in CSP. Clear evidence for
this is the work of Adrian Lawrence [14, 4, 15], which requires extensions to CSP in order to
capture the notion of priority, and simultaneous events.

2 Informal Description

We start with an informal discussion of the issues that arising when considering the semantics
of Handel-C’sprialt construct.

We consider the situation where we haven prialt statements which are to be resolved,
and we assume, as already stated, a simplified model whereprialt s consist solely of the
communication statements, hereinafter called requests. Eachprialt is therefore a non-
empty sequence of requests. We assume allprialt s are well-formed, in that any given
channel identifier occurs at most once in any givenprialt .

2.1 Priority: Absolute or Relative ?

Initially, with Handel-C, it was assumed that aprialt of the form

〈g1, g2, . . . , gm〉
assigned priority levels1, 2, . . . m to guardsg1, g2, . . . gm respectively. However all attempts
to reconcile thisabsolute priorityview with Handel-C’s actual behaviour resulted in failure.

After experimenting withprialt s in Handel-C it became very clear that the notion of
absolute priority was completely incorrect. Instead, eachprialt simply defines arelative
priority for the channels to which it refers. This is a strong indicator thatp-priority, rather
thane-priority [14], is the correct way forward. Merging the (locally total) ordering for each
prialt results in either an overall partial order, or a relation with cycles. In the former case
we use the ordering to determine the successful requests. In the latter case Handel-C reports
an error. The simplest example of this is

{ 〈a!, b!〉, 〈b?, a?〉 }
In [4], provision is made to give a meaning to this expression, but in Handel-C, which is
deterministic, this is an un-recoverable compile-time error. If we try to resolve this in the

4 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

Handel-C semantics by nondeterministically choosing to “break” cycles, we end up losing
some nice laws regarding the sequencing inprialt s and the way in which an offered event
masks all subsequent events in a givenprialt :

〈g1, . . . , gi, . . . gm〉 = 〈g1, . . . , gi〉 whengi is “offered”

This law does not hold if we resolve priority conflicts by breaking priority cycles.

2.2 Deriving Channel Partial Ordering

Givenprialt s, we first take each constituentprialt and convert it into the correspond-
ing relation (total linear ordering). We then merge all the relations together, one from each
prialt , using relational union, and take the transitive closure to get one big relation (ρ).
This relation captures the priorities between all participating channels.

We then examine the (graph of) the relation for cycles. If present, we should flag an error
condition at this point—the processes involved all diverge. If there are no cycles, then we
have a partial ordering on all the channels which can then be used as the basis for determining
the successful requests. Also this relation will in general have many minimal elements.

At this stage we have all theprialt s, and an induced partial ordering on the channel
identifiers. We identify active channels (offered events) as being those which appear at least
twice in (different)prialt s, with complementary directions.

2.3 Pathological Cases

Note that a channel may occur multiple times, in multipleprialt s. This is satisfactory as
long as all but two complementary requests for that channel are effectively masked by other
channels with requests at higher priority. An example is:

{ 〈a!〉, 〈a?〉, 〈b!, a?〉, 〈b?, a!〉 }
which is equivalent to:

{ 〈a!〉, 〈a?〉, 〈b!〉, 〈b?〉 }.
In the event that we have one writer to a channel and multiple receivers, as in

{ 〈. . . , c!, . . .〉, 〈. . . , c?, . . .〉, 〈. . . , c?, . . .〉, . . . }
the outcome (assuming all these channel instances are deemed active) is that each reader gets
their own copy of the single written value.

What happens in the case of multiple writers ?

{ 〈. . . , c?, . . .〉, 〈. . . , c!, . . .〉, 〈. . . , c!, . . .〉, . . . }
In Handel-C Version 2.1 [16], the compiler flagged this with a warning, and in simulation, the
value obtained from the channel was the bitwise logical-OR of the underlying representations
of all the inputs ! It is clear that a multiplexor (which ends with a logical OR gate) is getting
multiple input streams switched through simultaneously to the output. This is bizarre, but at
least the compiler (i) informed the user and (ii) maintained the order independence of parallel
composition ofprialt s:

P1 ‖ P2 ≡ P2 ‖ P1

However, in Handel-C Version 3.0 [1], the compiler supplies no warning at all, and pro-
ceeds to accept data for the channel write occurring in theprialt which is first in the
program text ! This means that

{ 〈c?x〉, 〈c!11〉, 〈c!22〉 } 6≡ { 〈c?x〉, 〈c!22〉, 〈c!11〉 }

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 5

The first writes 11 tox , the second writes 22 ! To handle this properly, we would have to
talk about sequences ofprialt s being resolved, rather than sets. Also we would have to
sacrifice the following very nice property of Handel-C (which was true for 2.1, but is now
false for 3.0):

P1 ‖ P2 = P2 ‖ P1

We shall not concern ourselves overly with this case, but rather consider such programs at
present to be ill-formed, with no obligation on our part to supply a formal semantics for
them. They should certainly not be the result of any refinement methodology for calculating
Handel-C programs from specifications, which is the ultimate goal of this work.

2.4 Identifying Active Channels

Once we have identified the minimal active channels and removed them and theprialt s
in which they appear, we repeat the entire process of constructing the ordering afresh, and
selecting the minimal active channels, with the remainingprialt s. We continually repeat
this until no further changes occur.

3 Formal Treatment

We are defining a resolution function (R) that determines which requests in a collection of
prialt s become active.

3.1 Input Types

We start by considering as given a collection of channel identifiers:

c ∈ Ch

With every I/O request in Handel-C there is an associated direction:

d ∈ Dir = { IN, OUT }
This allows us to define an input-output request as a channel/direction pair: Request:

r ∈ Req = Ch × Dir

These “requests” are in fact our guards, as all such guards in Handel-C are of this form. In
general we shall writec! andc? as shorthands for(c, OUT) and(c, IN), respectively.

Having abstracted away from the details of the processes that are guarded inprialt s,
we view them as sequences of requests, where each channel occurs at most once:

ρ ∈ PriAlt = Req+

inv-PriAlt(σ) =̂ (# ◦ elems ◦ π1
?)σ = len σ

The notationinv-PriAlt is theVDM♣ notion of “invariant”, which gives a boolean expression
defining which elements of the space are considered well-formed. which is analagous to the
“healthiness conditions” of CSP/CSPP .

What we are resolving is simply a set ofprialt s:

P ∈ PriGrp = PPriAlt

This structure is the input to our resolution process.

6 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

3.2 Output Types

We now consider the information that needs to be output from the resolution process. Firstly,
we need to know which channels are going to be active, i.e. able to communicate. We need to
know theprialt s with which these channels are associated, so we can identify the specific
guards involved, and consequently which guarded processes will be involved. We cannot
determine this information from knowledge of which channels are active alone, because a
given channel can be active in a proper subset of thoseprialt s in which it is mentioned. To
see this, consider the followingprialt collection, including guarded processes, (ignoring
directions, withprialt s labelled for ease of reference):





1 : 〈a → P1, b → P2〉
2 : 〈a → P3〉
3 : b → P4

4 : b → P5





Here, both eventsa andb will proceed. Eventa will involve prialt s 1 and 2, leading to
the subsequent execution ofP1 andP3. Eventb will involve prialt s 3 and 4, leading to
P4 andP5 being activated subsequently. However, even thoughprialt 1 mentionsb, andb
takes place, it is masked by the higher prioritya event in thatprialt , which is also active.
Hence we need to couple a channel (event) identifier with theprialt s which are actually
involved.

Our key output structure is therefore a map from channels toprialt -sets:

γ ∈ CPMap = Ch → PriGrp

In the example above, we expect to see an output of

{ {a 7→ { 〈a → P1, b → P2〉, 〈a → P3〉 }}
{b 7→ { 〈b → P4〉, 〈b → P5〉 }}

}

We can then determine the active processes by using the channel value as a lookup key in the
associated set ofprialt s. So, for

{a 7→ { 〈a → P1, b → P2〉, 〈a → P3〉 }}

we perform a lookup ofa in both 〈a → P1, b → P2〉 and 〈a → P3〉 to getP1 andP3

respectively.
Of course, in this paper we are ignoring the guards processesPi mentioned in this exam-

ple, but at least this example shows in principle how that information can be incorporated.
A key aspect highlighted by this example is a well-formedness constraint on channel-

prialt -set pairs. We expect the channel component to be present in everyprialt in the
corresponding set:

inv-CPMap : CPMap → B
inv-CPMap γ =̂ ∀c ∈ domγ • inv-CPSetγ(c)

inv-CPSetγ(c) =̂ ∀ρ ∈ γ(c) • c ∈ (elems ◦ π1
?)ρ

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 7

3.3 Intermediate Types

In order to describe the resolution process, it will be necessary to have some key intermediate
structures. Firstly, we note that the input to the resolution process is veryprialt -centric,
but that it will be helpful to have a structure that is more channel-centric.

Each channel present occurs at most once in any givenprialt , in association with a
corresponding direction. With any given channel, over all theprialt s in which it appears,
we would like to associate the directions of the corresponding requests. We therefore map
each channel to a set of the request directions associated with it:

κ ∈ ChReqs = Ch → PDir

As described above, we need build a relation over channels. We choose to model relations
here as set-valued functions, as is conventional inVDM♣:

R ∈ ChRel = Ch → PCh

This formulation, while not very conventional outsideVDM♣, does make it very easy to
extract the minimal elements, which denote the channels of highest priority.

3.4 Intermediate Operators

We now look at some operators for our intermediate semantic domains. We start with a
function that converts the input ofprialt sets into a channel request mapping:

toChReqs : PriGrp → ChReqs

toChReqsP =̂ (©∪ / ◦ P(©∪ / ◦ ı?))P

where
ı(c, d) =̂ {c 7→ { d }}

Basically every entryρ in P of the form

〈(c1, d1), (c2, d2), . . . , (ck, dk)〉

is converted to an entry of the form

{c1 7→ { d1 }, c2 7→ { d2 }, . . . , ck 7→ { dk }}

All of these (one for eachρ ∈ P) are then joined together using©∪ to provide one relation.
The©∪ operator is a lifted (indexed) form of union, and has the effect of acting as relational
union. In particular, we get

{c 7→ { d }}©∪ {c 7→ { d′ }} = {c 7→ { d, d′ }}

Once we have this channel request mapping, it becomes very easy to see if any channel
is active. We simply look it up, and deduce that the channel is active if both directions are
present:

Act : ChReqs → Ch → B
Actκc =̂ κ(c) = { IN, OUT }

8 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

The central intermediate structure is that which captures the partial ordering on channel
priorities induced by the collection ofprialt s. Consider the following input structure:

P =





〈 (c11, d11), . . . , (c1j, d1j), . . . , (c1k1 , d1k1) 〉
...

〈 (ci1, di1), . . . , (cij, dij), . . . , (cik1 , diki
) 〉

...
〈 (cn1, dn1), . . . , (cnj, dnj), . . . , (cnk1 , dnkn) 〉





For each sequence inP , we then discard the direction data (π1
?), and then convert the result-

ing sequence into the corresponding total ordering relation (usingorder), modelled as a set
valued mapping, but shown symbolically here:

S ′ =





{ c11 ≺ c12 ≺ · · · ≺ c1j ≺ c1k1 }
...

{ ci1 ≺ ci2 ≺ · · · ≺ cij ≺ c1ki
}

...
{ cn1 ≺ cn2 ≺ · · · ≺ cnj ≺ cnkn }





We then reduce this set with relational union (©∪) to form a single relation, and take its
transitive closure (TC)1. All of this is combined into the following operator:

toChRel : PriGrp → ChRel

toChRel =̂ TC◦©∪ / ◦ P(order ◦ π1
?)

We can defineorder as follows:

order : C? → (C → PC)

order Λ =̂ θ

order 〈c〉 =̂ {c 7→ ∅}
order (c : c′ : σ) =̂ {c 7→ { c′ }}©∪ order (c′ : σ)

3.5 Input-Output Relation

We now describe the overall relationship between the inputs and outputs of theprialt
resolution process (R). The input is a set ofprialt s, while the output is a pair (Resltn)
consisting of a map from all active channels to the set of associatedprialt s, and the set of
prialt s which are found to be inactive:

(γ, P) ∈ Resltn = CPMap × PriGrp

R : PriGrp → Resltn

As a precondition, we insist that the underlying relation on channels be acyclic (i.e. a partial
order):

pre-R ρ =̂ (¬ ◦ acyclic ◦ toChRel)P

We supply a partial postcondition which captures certain key properties we expect of the
output. Let us assume that applyingR to P results in output(γ,B), i.e

R(P) = (γ, B)

1It is quite likely that the transitive closure is not necessary for this to work

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 9

First considerγ, which is a map from of channel toprialt -set. All theprialt s men-
tioned inγ, given by

A = (∪/ ◦ rng)γ

are activeprialt s. The collection of inactiveprialt s (B) should consist precisely of
those not mentioned inA:

B = /−[A]P.

Secondly, consider the set of all actually active request granted) channels (G):

G = domγ

We expect this to be a subset of the potentially active channels (Q). These are determined by
taking the channel-centric view of the input:

κ = toChReqsP

taking its domain, and then filtering this with the active-channel predicate, itself parame-
terised byκ:

Q = (filter [Actκ] ◦ dom)κ

We expectA ⊆ Q. This is all collected together in the postcondition:

post-R(P) 7→ (γ,B) ⇒ domγ ⊆ (filter [Actκ] ◦ dom)κ ∧ B = /−[A]P

where
κ =̂ toChReqsP

A =̂ (∪/ ◦ rng)γ

Observe that(θ, P) satisfies the above post-condition, and the post-condition does not fully
define the resolution process, but rather serves to specify some well-formedness criteria for
the outcome. In particular, no mention is made of priority.

We can define an invariant on the output tuple(γ,B) which states that theprialt s
occurring inγ do not appear inB:

inv-Resltn : Resltn → B
inv-Resltn(γ, B) =̂ (∪/ ◦ rng)γ ∩B = ∅

3.6 Input-Output Function

We now look at the actual (functional) relationship between the input and outputs for reso-
lution. We shall view resolution as repeatedly applying a resolution step (RS) to an initial
“output value”(θ, P) until no change occurs:

R(P) = iterate (=) RS (θ, P)

Note thatRS preserves the invariantinv-Resltn. We observe thatRS repeatedly transforms
the input as follows:

(θ, P) → (γ1, P1) → (γ2, P2) → · · · → (γi, Pi) → (γn, Pn)

The iteration stops when we reach(γn, Pn) such thatRS(γn, Pn) = (γn, Pn). If we take
(γ0, P0) = (∅, P), we can state thatRS has the following properties:

10 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

1. If RS changes the input, thenγ is larger andP is smaller:

RS(γi, Pi) = (γi+1, Pi+1)⇒ γi ⊂ γi+1 ∧ Pi ⊃ Pi+1

2. If RS does not change its input, thenP contains no active channels, andv.v.:

RS(γn, Pn) = (γn, Pn) ≡ { IN, OUT } /∈ rng (toChReqsPn)

The resolution step function applied to a tuple(γ, P) identifies activeprialt channels
of highest priority inP and removes them, putting the corresponding channel andprialt
information intoγ:

RS(γ, P) = (γ′, P ′)

The key feature is howγ′ andP ′ are computed. First fromP we obtain the partial order (ρ)
and channel-centric view (κ):

ρ = toChRelP and κ = toChReqsP

We then identify all those channels that are active inρ and then filter them to retain only those
which are minimal (A′):

A′ = mins (filter [Actκ]ρ)

Given our representation of the partial order relation byCh → PCh (rather than the more
traditionalP(Ch × Ch)) allows us to give a concise definition ofmins :

mins ρ =̂ /−[(∪/ ◦ rng)ρ](domρ)

We simply take the domain, and remove from it anything that occurs in any of the range
sets, thus leaving every channel which points to (lower priority) channels, but is not itself so
pointed to.

For every channel inA′, we extract and map them to the set of all theprialt s in which
they appear:

(γ′, P ′) = extr γ P A′

Here “extr” scans through channels inA′, using them to identify the relevantprialt s inP
which are then accumulated together with their channel inγ:

extr γ P ∅ =̂ (γ, P)

extr γ P (A t { a }) =̂ extr (γ t {a 7→ /[Ha]P}) (/−[Ha]P) A

Ha ρ =̂ a ∈ (elems ◦ π1
?)ρ

Here/ and/− are parameterised using predicates, rather than sets.
We bring this all in together to obtain:

R(P) =̂ iterate (=) RS (∅, P)

RS (γ, P) =̂ extr γ A′ P
where R = toChRelρ

κ = toChReqsρ

A′ = mins (filter [Act[κ]]R)

Note that the channel partial order is computed afresh for each iteration ofRS. In each
iteration we simply extract all the highest priority active channels (i.e those lowest in the
ordering).

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 11

4 Resolution Properties

We now mention a few properties that we expect to hold for resolution. In what follows we
assume throughout that

κ = toChRelP

and
R P = (γ, B)

and these properties hold if all variables are identically decorated (subscripts or superscripts).

4.1 Termination

R terminates

The key to proving this is to recognise the crucial rôle played byA′ in the definition of
RS. If A′ is empty, then extr leaves its argument unchanged.

extr γ P ∅ = (γ, P)

In this case, theiterate function terminates. IfA′ is non-empty, then extr does at least
one iteration, which increasesγ and decreasesP . As P is finite, its reduction in size must
eventually terminate. This proof is an informal one, but basically boils down to an assertion
that the size ofP supplies the well-founded measure required to show termination.

4.2 Resolution Progress

As long as the set ofprialt s to be processed is non-empty and contains active requests,
thenRS will always make progress by enlargingγ and shrinkingP . If P is empty or has no
active channels, thenRS leaves its input unchanged:

(γ′, P ′) = RS(γ, P)

⇒ domγ′ ⊃ domγ ∧ P ′ ⊂ P ∨ γ′ = γ ∧ P ′ = P

Also:
(γ, P) = RS(γ, P) ≡ (

_

/ ◦ P(filter [Actk]))P = Λ

whereκ is derived fromP in the usual way.

4.3 Resolution Chains

Repeated application ofRS results in the following (finite) chain:

(θ, P0) → (γ1, P1) → · · · → (γi, Pi) → · · · → (γn, Pn)

whereRS(γn, Pn) = (γn, Pn)
So we can define an ordering:

(γ, P) ¹ (γ′, P ′) =̂ ∃n • (γ′, P ′) = RSn(γ, P)

An open question: can we find(γa, Pa) and(γb, Pb), such that neither(γa, Pa) ¹ (γb, Pb),
or vice versa, but there exists(γ′, P ′), and numbersn andm such that

(γ′, P ′) = RSn(γa, Pa) = RS(γb, Pb)

If not, then each member of the chain(θ, P0) → · · · → (γn, Pn) is uniquely determined by
the first element, and hence byP0.

12 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

4.4 Resolution Invariant

The set of allprialt s present is invariant under theRS operation. We can define the set of
prialt s present as:

pAltOf(γ, P) = P ∪ (∪/ ◦ rng)γ

We then assert that:

pAltOf(γ, P) = (pAltOf ◦ RS)(γ, P)

We can extend this to the overall resolution process by asserting:

R(P) = (γ′, P ′) = R(θ, pAltOf(R(P)))

4.5 Resolution Validity

We can define a predicate which determine when aResltn structure is valid, namely that it is
the result of iteratingRS a finite number of times on a starting resolution structure with no
mapping and a set referring to allprialt s present:

isValid : Resltn → B
isValid(γ, P) =̂ ∃n • (γ, P) = RSn(θ, pAltOf(γ, P))

4.6 Active Channel Screening

An active channel at a position in aprialt effectively removes the possibility of a subse-
quent channel in thatprialt being selected.

Actκc ∧ π1(ρ[i]) = c⇒R (P t { ρ }) = R(P t { ρ[1 . . . i] })
where

κ = toChReqs(P t { p })
It is this property which is lost if we admit cycles in the priority relation and then allow for a
non-deterministic breaking of such cycles—consider breaking the above just afterρ[i]. The
entryρ[i+1] (if it exists) is no longer “screened” by theith entry and in fact becomes minimal
in the new relation.

4.7 Disjoint PriAlt Groups

If we have two disjoint collections ofprialt s (channels distinct) then we can resolve them
together or separately.

domκ1 ∩ domκ2 = ∅⇒R(P1 t P2) = (γ1 t γ2, B1 tB2)

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 13

5 Compositionality of prialt

In order to achieve full compositionality, we need to find an operator‡ such that

R(P ∪Q) = R(P) ‡ R(Q)

This property is necessary in order to provide a denotational semantics, and makes it much
easier to produce a set of useful laws for reasoning about Handel-C programs.

It turns out that this is very easy to achieve, at least in a technical sense. Given the output
of a resolution, we can use pAltOf to give us the original input data, so we can define‡ as:

(γ′, P ′) ‡ (δ′, Q′) = R(pAltOf(γ′, P ′) ∪ pAltOf(δ′, Q′))

This definition, while technically correct, seems unsatisfactory, in the sense that it involves
taking both resolutions, undoing them, throwing all the originalprialt s back into the pot,
and redoing the entire resolution process again. This idea that composing resolutions involves
retracting previously granted requests seems a little unsatisfactory.

However, as observed in [14], when processes are combined such that relative priorities
get changed, then events accepted by the combined process my be different from those ac-
cepted by the individual process. This is in fact inherent in the whole concept of priority.
Consider the following example:

P =

{ 〈a!, b?〉
〈b!〉

}
Q =

{ 〈a?, c?〉
〈c!〉

}

In both cases, channela has highest priority, but is inactive, so channelsb andc are selected:

R(P) = ({b 7→ { 〈a!, b?〉, 〈b!〉 }}, ∅)
R(Q) = ({c 7→ { 〈a?, c?〉, 〈c!〉 }}, ∅)

However, when we combineP andQ:

P ∪Q =





〈a!, b?〉
〈b!〉

〈a?, c?〉
〈c!〉





we find the channela is now active, and removing itsprialt s from the pool results in
channelsb andc being inactive, when the leftoverprialt s are considered:

R(P ∪Q) = ({a 7→ { 〈a!, b?〉, 〈a?, c?〉 }}, { 〈b!〉, 〈c!〉 })

It is clear that the phenomenon of retracting previously offered events in the light of new
priority information resulting from the introduction of new processes is an inherent aspect of
priority itself.

We are forced to accept that priority requires, in principle, that we effectively re-compute
our resolutions every time newprialt s are added. However, another question of interest
arises, regarding the possibility of being able to do some form of incremental adding and
re-resolving, and the circumstances under which this is possible. Unfortunately it clear that
very small additions to a large collection ofprialt s can have potentially large effects.
To see this consider a large collection ofprialt s where the active channels happen to be
separable into two disjoint sets such that any channel is cited only in one or other set but not
both. In effect we have two independent sets ofprialt s. Let us also assume that all the

14 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

channels are totally ordered within those disjoint subsets. All we have to do is to add one new
prialt which ranks the highest priority channel from one subset as lower than the lowest
priority channel of the other subset to completely alter the ordering relationship. It appears
very difficult to handle a case like this without re-computing the resolutions for the entire set
of prialt s.

6 Conclusions and Future Work

We have described a formal process for resolvingprialt communication requests, suitable
for handling the type ofprialt s found in the Handel-C programming language. We have
shown this process to be compositional in nature, at least in a technical sense, and we have
described some key properties.

The first task to be done at this stage is to integrate this material with the existing se-
mantics for Handel-C [10, 11] withoutprialt , and then to use the denotational semantics
to validate a collection of useful language-level laws for Handel-C. The long term goal is
to develop a development methodology for deriving Handel-C programs from appropriate
specifications. This involves the development of a suitable refinement calculus, which will
be integrated into the unifying theory of Hoare & He [17], using theCircus refinement cal-
culus [18].

On a more speculative note, we believe that it may be possible to encode a semantics of
Handel-C in standard CSP, by using the functional language component as found in machine
readable CSP (see [19, Appendix C]) to encode the resolution. This would use a mechanism
of first lodging and then resolving requests similar to that described in [10] for non-prialt
communication. The reason that the extra machinery ofCSPP might not be required is
simply the constrained deterministic nature of Handel-C. We do not see this as being possible
for prialt in a more general setting, as described in [4]

References

[1] Celoxica Ltd.Handel-C Language Reference Manual, v3.0, 2002.

[2] A. W. Roscoe. Denotational Semantics foroccam. In S. D. Brookes, A. W. Roscoe, and G. Winskel,
editors,Seminar on Concurrency, volume 197 ofLNCS. Carnegie-Mellon University, Pittsburgh, PA,
Springer-Verlag, July 1984.

[3] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Technical Monograph PRG-53,
Oxford University Computing Laboratory Programming Research Group, February 1986.

[4] A. E. Lawrence. Acceptances, Behaviours and infinite activity in CSPP. InCommunicating Process
Architectures – 2002, Concurrent Systems Engineering, pages 17–38, Amsterdam, Sept 2002. IOS Press.

[5] C.A.R. Hoare. Communicating Sequential Processes. Intl. Series in Computer Science. Prentice Hall,
1990.

[6] I. Page and W. Luk. Compiling Occam into field-programmable gate arrays. In W. Moore and W. Luk, ed-
itors,FPGAs, Oxford Workshop on Field Programmable Logic and Applications, pages 271–283. Abing-
don EE&CS Books, 15 Harcourt Way, Abingdon OX14 1NV, UK, 1991.

[7] M. Spivey and I. Page. How to design hardware with Handel. Technical report, Oxford University
Hardware Compilation Group, December 1993.

[8] J. P. Bowen, He Jifeng, and I. Page. Hardware compilation. In J. P. Bowen, editor,Towards Verified
Systems, volume 2 ofReal-Time Safety Critical Systems, chapter 10, pages 193–207. Elsevier, 1994.

A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C 15

[9] Adrian Lawrence, Andrew Kay, Wayne Luk, Toshio Nomura, and Ian Page. Using reconfigurable hard-
ware to speed up product development and performance. In Will Moore and Wayne Luk, editors,Field-
Programmable Logic and Applications, pages 111–119. Springer-Verlag, Berlin, August/September 1995.
Proceedings of the 5th International Workshop on Field-Programmable Logic and Applications, FPL
1995. Lecture Notes in Computer Science 975.

[10] Andrew Butterfield. Denotational semantics forprialt -free Handel-C. Technical Re-
port TCD-CS-2001-53, Dept. of Computer Science, Trinity College, Dublin University, 2001.
ftp://ftp.cs.tcd.ie/pub/tech-reports/reports.01/TCD-CS-2001-53.pdf .

[11] Andrew Butterfield. Interpretative semantics forprialt -free Handel-C. Technical Re-
port TCD-CS-2001-54, Dept. of Computer Science, Trinity College, Dublin University, 2001.
ftp://ftp.cs.tcd.ie/pub/tech-reports/reports.01/TCD-CS-2001-54.pdf .

[12] Mı́chéal Mac an Airchinnigh.Conceptual Models and Computing. PhD dissertation, University of Dublin,
Trinity College, Department of Computer Science, 1990.

[13] ISO/IEC. Information technology – Programming languages, their environments and system software
interfaces – Vienna Development Method – Specification Language – Part 1: Base language. International
Standard 13817-1, International Standards Organisation, 1996.www.iso.ch .

[14] A. E. Lawrence. CSPP and event priority. In Majid Mirmehdi Alan Chalmers and Henk Muller, editors,
Communicating Process Architectures 2001, Concurrent Systems Engineering, Amsterdam, September
2001. IOS Press.

[15] A. E. Lawrence. HCSP: Imperative State and True Concurrency. InCommunicating Process Architectures
– 2002, Concurrent Systems Engineering, pages 39–55, Amsterdam, Sept 2002. IOS Press.

[16] Embedded Solutions Ltd. (now Celoxica Ltd.).Handel-C Language Reference Manual, v2.1, 2000.

[17] C. A. R. Hoare and He Jifeng.Unifying Theories of Programming. Series in Computer Science. Prentice
Hall, 1998.

[18] Jim Woodcock and Ana Cavalcanti. The Semantics of Circus. volume 2272 ofLNCS. 2nd International
Conference of B and Z Users, Grenoble, France, Springer, January 2002.

[19] A. W. Roscoe.The Theory and Practice of Concurrency. international series in computer science. Prentice
Hall, 1997.

16 A. Butterfield and J. Woodcock / Semantics ofprialt in Handel-C

A Notation and Definitions

We provide a brief glossary of notations and definitions of the less familiarVDM♣ notations
used in this paper.

Symbol Description Examples
Cardinality
Pf Set Mapping Pf{ x, y, z } = { f(x), f(y), f(z) }
elems Sequence Elements elems 〈b, a, c, a〉 = { a, b, c }
len Sequence Length
f ? Sequence Mapping Pf〈x, y, z〉 = 〈f(x), f(y), f(z)〉
πi ith Projection πi(a1, . . . ai, . . . , an) = ai

σ[i] Sequence Indexing
t Map Extension
† Map Override
dom Map Domain
rng Map Range
µ(x) Map Application (lookup)
?/ Set or Sequence Reduction +/〈3, 5, 4〉 = 12
TC Transitive Closure Operator
order Sequence to Total Order
acyclic Acyclic Predicate
filter Sequence Filter
/−[S] Map Removal w.r.t.S /−[{ a, c }]{a 7→ 1, b 7→ 2, c 7→ 3} = {b 7→ 2}
mins Minimal Elements of a P.O.

Given any binary operator? : A× A→ A and an arbitrary indexing setX, we “index”
the operator, calling it©? : (X → A)× (X → A)→(X → A) and defining its action so that:

µ©? {x 7→ a} =

{
µ t {x 7→ a}, if x /∈ domµ
µ † {x 7→ µ(x) ? a}, if x ∈ domµ

Effectively ? has been “lifted” from acting onA to acting onX → A, essentially operating
on the map range elements.

The iterator applicationiterate P f x repeatedly appliesf tox and usesP to examine
the before and after values to determine when to stop:

iterate : (A× A→ B)→ (A→ A)→ A→ A

iterate P f x =̂ let x′ = f(x)

in if P (x, x′) then x′ elseiterate P f x′

