How to Design Deadlock-Free Networks Using CSP
and Verification Tools — A Tutorial Introduction

J.M.R.Martin S.A.Jassim
Ozford Unwversity Computing Services, Department of Mathematics,
18 Banbury Road, Statistics, and Computer Science,
Ozford 0X2 6NN, UK Unwversity of Buckingham,

MK18 1EG, UK

Abstract. The CSP language of C.A.R.Hoare originated as a blackboard mathe-
matical notation for specifying and reasoning about parallel and distributed systems.
More recently sophisticated tools have emerged which provide automated verification
of CSP-specified systems. This has led to a tightening and standardisation of syntax.
This paper outlines the syntax and semantics of CSP as it is now used and then
describes how to design CSP networks, which are guaranteed to be free of deadlock,
through a succession of increasingly complex worked examples, making use of the
verification tool Deadlock Checker.

1 Introduction

CSP, which stands for Communicating Sequential Processes, was introduced by C.A.R.Hoare in 1978[3].
By the time of publication of his textbook in 1985[4] the language had evolved significantly. Since then,
however, it has remained virtually stable!. CSP provides an excellent means of describing and reasoning
about complex communication patterns, for the following reasons.

e It encapsulates the fundamental principles of communication in a simple and elegant manner.

o It is semantically defined in terms of a structured mathematical model which may be used to
deduce system properties rigorously.

e It is sufficiently expressive to enable reasoning about the pathological problems of deadlock and
livelock.

e The principles of abstraction and refinement are central to the underlying theory.
¢ Robust software engineering tools exist for formal verification in CSP([1, 5].

e Certain mainstream programming languages, such as occam, Ada and some dialects of parallel
C are derived directly from the CSP model. CSP-style communications libraries are available for
other languages, such as Java.

In the next section we shall describe briefly the syntax and semantics of CSP. This will be followed
by a series of worked examples of designing complex systems that tackle the specific problem of guar-
anteeing freedom from deadlock, a state which is potentially catastrophic in a safety-critical system.
We shall make use of design rules developed for this purpose and an automatic CSP verification tool.

IThe only significant change has been to drop the requirement for every process to have an alphabet of possible events
defined. Alphabets are now used instead as an integral part of the parallel composition operator.

2 The CSP Language

Basic Syntax and Informal Description

The basic syntax of CSP is described by the following grammar

Process :== STOP ‘
SKIP |
event — Process ‘
Process ; Process ‘
Process | alph| alph]| Process ‘
Process ||| Process ‘
Process M Process ‘
Process O Process ‘

Process \ event ‘

f (Process) ‘
name

Here event ranges over a universal set of events, X, alph ranges over subsets of ¥, f ranges over a
set of function names, and name ranges over a set of process names.

A process describes the behaviour of an object in terms of the events in which it may engage. The
simplest process of all is STOP. This is the process which represents a deadlocked object. It never
engages in any event. Another primitive process is SKTP which does nothing but terminate successfully;
it only performs the special event 1/, which represents successful termination.

An event may be combined with a process using the prefix operator, written —. The process
bang — UNIVERSFE describes an object which first engages in event bang then behaves according to
process UNIVERSE. If we want to give this new process the name CREATION we write this as an
equation

CREATION = bang - UNIVERSE

Processes may be defined in terms of themselves using the principle of recursion. Consider a process
to describe the ticking of an everlasting clock.

CLOCK = tick - CLOCK

CLOCK is a process which performs event tick and then starts again. (This is a somewhat abstract
definition. No information is given as to the duration or frequency of ticks. We are simply told that
the clock will keep on ticking.)

The recursive notation is commonly extended to a set of simultaneous equations where a number of
processes are defined in terms of each other. This is known as mutual recursion, examples of which
will be found in later sections.

There are a number of CSP operations which combine two processes to produce a new one. The
first of these that we shall consider is sequential composition.

UNIVERSE = EXPAND; CONTRACT

is the process which first behaves like EXPAND, but when EXPAND is ready to terminate it continues
by behaving like CONTRACT. However it may also be possible that EXPAND will never terminate.

It is rather more complicated to compose two processes in parallel than in sequence. It is necessary
to specify a set of events for each process, known as its alphabet. The process denoted

PANTOMIMEHORSE = FRONT |[{forward,backward,nod} | {forward,backward,wag}] BACK

represents the parallel composition of two processes: FRONT with alphabet {forward, backward,nod}
and BACK with alphabet {forward,backward,wag}?. Here each process behaves according to its own
definition, but with the constraint that events which are in the alphabet of both FRONT and BACK,
i.e. forward and backward, require their simultaneous participation. However they may progress
independently on those events belonging solely to their own alphabet. If a situation were to arise
where FRONT could only perform event forward and BACK could only perform event backward then
deadlock would have occurred.

Parallel composition may be extended to three or more processes; given a sequence of processes
V = (Py,.., Pn) with corresponding alphabets (A;,..Ay) we write their parallel composition as

PAR(V) = |liz; (Pi; Ai)

Note that it is implicitly assumed that the termination event 1/ requires the joint participation of each
process P;, whether or not it is included in their process alphabets.

An alternative form of parallel composition is interleaving, where there is no communication between
the component processes. In the parallel combination

BRAIN ||| MOUTH

the two processes, BRAIN and MOUTH, progress independently of each other and no cooperation is

required on any event, except for 4/, the termination event. Any other actions which are possible for
both processes will only be performed by one process at a time. Interleaving is a commutative and
associative operation and so we may extend the notation to various indexed forms, such as

W=z P> llzix Pe

A useful feature of CSP is the ability to describe nondeterministic behaviour, which is where a
process may operate in an unpredictable manner. The process

BUFFER = TWOPLACEN THREEPLACE

may behave either like process TWOPLACE or like process THREEPLACE, but there is no way

of telling which in advance. The purpose of the M operator is to specify concurrent systems in an
abstract manner. At the design stage, there is no reason to provide any more detail than is necessary
and, where possible, implementation decisions should be deferred until later.

This operation is known as internal choice. CSP also contains an ezternal choice operator O which
enables the future behaviour of a process to be controlled by other processes running along side it in
parallel, which, collectively, we call its environment.

The process

MW = DEFROSTO COOK

may behave like DEFROST or like COOK. Its behaviour may be controlled by its environment
provided that this control is exercised on the very first event. If an initial event button! is offered by
DEFROST that is not an initial event of COOK, then the environment may coerce MW into behaving
like DEFROST, by performing button! as its initial event. If, however, the environment were to offer
an initial event that is allowed by both DEFROST and COOK then the choice between them would
be nondeterministic.
Both the choice operators may be extended to indexed forms. We write

Opaz— Py

2 A pantomime is a traditional British theatrical entertainment which often features a “horse” consisting of two actors
in a single costume, one of whom plays the front legs and head while the other plays the hind legs and tail.

to represent the behaviour of an object which offers any event of a set A to its environment. Once
some initial event z has been performed the future behaviour of the object is described by the process
P,. However, the process

Mg.a 2 — Py

(where, for technical reasons, A must be finite) offers exactly one event z from A to its environment,
the choice being non-deterministic.

Sometimes it is useful to be able to restrict the definition of a process to a subset of relevant events
that it performs. This is done using the hiding operator (\). The process

CREATION \ bang

behaves like CREATION, except that each occurrence of event bang is concealed. Note that it is not
permitted to hide event +/.

Concealment may introduce nondeterminism into deterministic processes. It may also introduce the
phenomenon of divergence. This is a drastic situation where a process performs an endless series of
hidden actions. Consider, for instance, the process

CLOCK \ tick

which is clearly a divergent process.

It is conventional to extend the notation to P \ A, where A is a finite set of events.

Finally let us briefly consider process relabelling. Let f be an alphabet transformation function
f : X — X, which satisfies the property that only finitely many events may be mapped onto a single
event. Then the process f(P) can perform the event f(e) whenever P can perform event e. As an
example consider a function new which maps tick to tock. Then we have

new(CLOCK) = tock — new(CLOCK)

Denotational Semantics

The meaning of a CSP process is defined in terms of the circumstances under which it might deadlock
or diverge. This is the Failures-Divergences model.

A trace of a process P is any finite sequence of events that it may initially perform. A divergence
of a process is a trace after which it might diverge. A failure of a process P consists of a pair (s, X)
where s is a trace of P and X is a set of events which if offered to P by its environment after it has
performed trace s, might be completely refused.

Each CSP process is then uniquely defined by a pair of sets (F, D), corresponding to its failures and
divergences.

The failures and divergences of the fundamental CSP terms are defined by equations such as

divergences(STOP) = {}
failures(STOP) = {()} xPZX
divergences(z — P) = {(z)"s|s € divergences(P)}
failures(z — P) {((), X)| X CZ—{z}}
{({z)" s, X)|(s, X) € failures(P)}

(but there is not room for the complete set of equations here). These particular equations define the
meaning of STOP and the event-prefix operator —. First we are told that STOP does not diverge,
but refuses to perform any event whatever set of events is offered to it. Then we are told that the
divergent traces of £ — P are the divergent traces of P with event z prefixed to them, and the failures
of x — P to be the failures of P with z prefixed to the trace part of each failure, together with pairings
of the empty trace with all subsets of ¥ which exclude z.

This model is also used for formal reasoning about the behaviour of concurrent systems defined by
CSP equations. There is a natural partial ordering on the set of all processes given by

(F1,D;) E(F2,D2) <= F; D Fs AND; 2 Dy

The interpretation of this is that process P; is worse than Py if it can deadlock or diverge whenever
P, can®. This partial ordering is very important to the stepwise refinement of concurrent systems.
Starting from an abstract non-deterministic definition, details of components may be independently
fleshed out whilst preserving important properties of the overall system such as freedom from deadlock
and divergence. The FDR tool of Formal Systems Europe[l] can automatically verify this refinement
relation in the failures-divergences model.

A process P is deadlock-free if there is no trace after which it might refuse to perform any event, i.e.
As. (s,X) € failures(P). It is divergence-free if it has an empty set of divergences. A particularly
important point to stress is that when a network of CSP processes is composed in parallel it becomes
a single CSP process. So these definitions apply equally well to parallel networks of processes as they
do to single sequential processes, for which deadlock and divergence are not usually a problem.

Algebraic Semantics

From the failures-divergences model can be deduced a complete set of algebraic laws which govern
CSP processes, for instance

(P;Q);R = P;(Q;R)
(a—=P);Q = a—(P;Q)
PAIB]l @ = QIB|A]lP
PIAIBUC] (Q [[BIC] R) = (P|A[B] Q) [[AUB|C] R
PO(QNR) = (POQ)N(POR)
Pn(QOR) = (PNQ)O(PMNR)

POSTOP = P

There are many more such rules, but there is insufficient room for their inclusion here. The rules are
used to derive correctness properties of CSP systems using algebraic manipulation. See [4] for more
details.

Operational Semantics

So far we have encountered two ways of looking at communicating processes: firstly as algebraic
expressions and secondly in terms of abstract mathematical sets based on their observable behaviour.
There is no obvious way of seeing from either of these representations how CSP might be realised on
a machine. A more concrete approach is given by operational semantics. The operational semantics
of CSP is a mapping from CSP expressions to transition systems. For example, figure 1 illustrates
the transition system for the process a — (b — STOP O ¢ — STOP). (There is insufficient room to
explain the mapping here but the curious reader should refer to [5] for further explanation.)

The behaviour of a process predicted by its failures and divergences will be the same as that which
can be observed of its operational representation. So we may use the operational semantics of CSP in
order to prove properties of process behaviour which are phrased in the Failures-Divergences model.
This feature turns out to be particularly useful when the operational representation of a process is
finite although its failures and divergences are infinite, as is usually the case in practice. Therefore
this is the representation of processes which is used inside the various CSP verification programs, such
as FDRJ[1] and Deadlock Checker[7].

3This ordering is in fact a complete partial order. The bottom, or worst, element | represents the process which
always diverges.

Figure 1: CSP Transition System

[a =(b=STOP Oc = STOP) J

a

[b—= STOP Oc %STOP}
b c

STOP

Language Extensions

The core CSP syntax described above is very abstract, and lacks certain useful features found in

conventional sequential and parallel programming languages. The extensions outlined below are useful

for writing more detailed specifications and may be defined in terms of the core constructors.
Sometimes we define processes with parameters, such as

BUFF(in, out) = in — out — BUFF(in, out)

This is a process-schema, rather than an actual process. It defines a CSP process for each combination
of parameter values. CSP parameters may be integers, real numbers, events, sets, matrices, etc.

A communication is a special type of event described by a pair c.v, where ¢ is the name of the
channel on which the event takes place, and v is the value of the message that is passed.

The set of messages communicable on channel c¢ is defined

type(c) = {v|c.v € T}

Input and output are defined as follows. A process which first outputs v on channel ¢, then behaves
like P is defined simply as
(v = P)=(c.v = P)

Outputs may involve expressions of parameters such as P(z) = c!z® — Q. The expressions are
evaluated according to the appropriate laws.
A process which is initially prepared to input any value z communicable on the channel ¢, then
behave like P(z) is defined.

(c?z = P(z)) =Oy.type(c) (c-v = P(v))

It is usual for a communication channel to be used by at most two processes at any time: one for
input and the other for output. This restriction, which is known as triple-disjointedness, is not enforced
in the modern version of CSP but it applies to all the classes of network which are discussed in this
paper.

Another important aspect to real programming languages is the use of conditionals. Let b be a
boolean expression (either true or false). Then

Pabr> @ (“P if b else Q")

is a process which behaves like P if the value of expression b is true, or like () otherwise.

These extensions are especially useful for specifying fine detail during the later stages of program
refinement. At the design stage we shall tend to stick to more abstract, non-deterministic definitions of
processes. The deadlock issue will usually be addressed at this point. In this way we can build robust
programs for which deadlock-freedom cannot be compromised by implementation decisions made at a
later stage.

3 Example 1 — A Client Server System

We consider an application where computing-intensive tasks are performed in parallel using a standard
farm network configuration. A farmer employs n foremen each of whom is responsible for m workers.
When a worker process becomes idle it reports the result of any work done to its foreman, using channel
a.1.j, where j denotes worker and i denotes foreman. The foreman reports this on channel c.i to the
farmer who, in turn, replies with a new task using channel d.i, The foreman then assigns the new task
to the worker with channel b.i.j. The process-channel connection diagram for this network is given in
figure 2.

Figure 2: Connection Diagram for Process Farm

a.0.0 WORKER(0.0)
b.0.0 L]
FOREMAN(0) :
a.0.(m-1) *
c.0
10 b.0.(m-1) WORKER(0,m-1)
FARMER .
b o oo WORKER(n-1,0)
. b.(n-1).0 .
FOREMAN(n-1) :
a.(n-1).(m-1) *
b.(n-1).(m-1) WORKER(n-1,m-1)

The CSP communication patterns of the component processes are given as follows.

FARMER = 0%} c.i— d.i— FARMER
FOREMAN(i) = 07! a.ij — c.i — d.i — b.i.j — FOREMAN(3)
WORKER(i,j) = a.i.j — b.i.j = WORKER(s,j)

Because we are to compose these processes in parallel we need to declare their alphabets.

aFARMER = {c.0,..,c(n—1),d.0,..,d.(n— 1))}
aFOREMAN(3) {a.i.0,..,a.5.(m — 1),b.1.0,..,b.5.(m — 1), c.i,d.i}
aWORKER(i,j) = {a.i.j,b.i.j}
WORKER(0,0),.., WORKER(n — 1,m — 1), >
FOREMAN(0), .., FOREMAN (n — 1), FARMER

FARM = PAR <

This system is a very simple example of a client-server network. The client-server protocol is a widely
used design technique for building deadlock-free concurrent systems which is explained formally in [5]
and [8]. It may be described in simple terms as follows.

In a client-server network all channels between processes are partitioned into channel bundles. These
consist either of single channels which are used by clients to send commands to servers, or pairs of

channels which are used for requests which require answers. Processes may communicate with some
neighbours as a client and with others as a server but the following protocol must be obeyed.

e All the component processes should be non-terminating and deadlock-free

e When a server is ready to receive a request or command from a client it must be willing to do
so on all such channels.

e No process should ever try to communicate on an answer channel out of sequence, i.e. there must
always be a request first.

e When a client sends a request to a server it must guarantee to accept the answer.

If these conditions are satisfied within a network then it is guaranteed deadlock-free as long as there
is no cycle of client-server relationships, i.e. a sequence of processes (P;,..P,) where each process is
a client of its successor and P, is also a client of P;.

In the FARM network the relationship between worker and foreman and the relationship between
foreman and farmer are both client to server so there is no cycle of client-server relationships. We can
verify that the farm network is deadlock-free (for particular values of n and m) by running it through
the SDD (State Dependence Digraph) test of the CSP verification tool Deadlock Checker[7], as shown
in figure 3. We can also use this tool to explore the process transition systems and to draw a pictorial
representation of the network process topology, as shown in figure 4.

Figure 3: Verifying Deadlock Freedom for FARM

File Help
“* 3DD Deadlock-Freedom Test ~ FSDD Deadlock-Freedom Test
+w %DD3 Deadlock-Freedow Test + Cyclic-P0 Conformance Test
+ CSDD Deadlock-Freedow Test ~ Livelock-Freedom Test
Load I-ietuur'kl Hun,:"flhur'tl Uiew I'-Ietunr'kl Begin Hnalysisl
##% SELECTED fv0/=zdg/jeremy/java/DCHECK/farw.net i

#%% STARTING 3DD DEADLOCKE AMALYSIS

Calculating comsunication graph...

Calculating state pairs for each edge...
Galculating 3DD. ..

Checking SDD (200 arcs 86 wertices) for circuits...
#41% DEADLOCK FREE

|

4 Example 2 — A User-Resource System

In this example we consider a system based on the client-server protocol which is then extended using
the resource allocation protocol, thus merging two separate design rules for deadlock-freedom.

Figure 4: Exploring the FARM Process Structure

Proceszes:

11 WORKER(3, 1)
12 WORKER{Z, 20
13 WORKER(4, 0}
14 WORKER(4, 1)
15 WORKER(4, 23

16 FOREMAN(O) State 5 \\

1T FOREMAN(L) 1

=

File

19 FOREMAN(3) o
20 FOREMAH (43

2
Z
18 FOREMAN(Z) \ /20

. 21
/ ig— - fa—"" \
[— i8——=
Minimal acceptance sets: Tranzitions: 1 - \\\
9

fc.0,0.1,0.2,0.3,c,4F .0 = State 1

C
c.l —» State 2
c.2 -» State 3
c,3 —» State 4
c.d —» State §

| I—
S
3
/

=]

= = = I

Dismizs | Display graphically |

We consider a college with five philosophers who spend their time sitting around a table, thinking
and challenging each other to arm-wrestling bouts. They are linearly ordered in terms of seniority,
and observe the rule that a philosopher may only challenge his seniors to a contest. In this way a
client-server hierarchy is imposed on the philosophers and deadlock-freedom can be guaranteed.

A flaw in this scenario, however, is that the philosophers may become very hungry after a while.
In order to remedy this problem we shall mate the network with its more famous cousin, the Dining
Philosophers. Forks are added to the system, one between each pair of philosophers, and an everlasting
bowl of spaghetti in the middle of the table. In order to eat some spaghetti a philosopher must pick
up both his adjacent forks. The connection diagram for the resulting network is shown in figure 5.

It is well known that the Dining Philosophers network, which is an illustration of a user resource
system, is prone to deadlock. The deadlock arises if all the philosophers pick up one fork at the same
time. In a user resource network processes are either active user threads or passive resource objects.
Each resource waits to be claimed by a user for some purpose and then to be released again. Deadlock
is prevented if the resource allocation protocol is adhered to. This means that a linear ordering is
placed on the resources and each user process may only ever claim resources below those it is already
holding. (Full details of the resource allocation protocol are given in [5].) In this case we shall number
the forks from 0 to 4 around the table and make sure that each philosopher always picks up his forks
in descending order.

If the user processes within a user resource system can also communicate amongst themselves then
a further stipulation is that they are not allowed to do so whilst holding a resource. So we also need to
restrict arm-wrestling contests to being held between meals. (The subnetwork of users must, of course,
itself be deadlock-free.)

The following CSP code defines the dining, arm-wrestling philosophers network, taking on board
these design rules.

Let

PHIL(0) takes.0.4 — takes.0.0 — eats.0 —) A

drops 0.4 — drops.0.0 — PHIL(0)
1 , wrestles.0.i — PHIL(O))

takeszz—)takesz(z—l)—)eatsi—> -
dropsz i — 1) — drops.i.i — PHIL(%) 0O

PHIL(i)
ni_ iy1 wrestles.i.k — PHIL(i))

(EI i1 wrestles.k.i — PHIL(3)) 1=1,2,3

Figure 5: Connection Diagram for Arm-Wrestling Philosophers

takes.2.2 takes.3.2
drops.2.2 drops.3.2

PHIL(2) PHIL(3)
takes.2.1

wrestles.2.3 takes.3.3
drops.2.
restles.2.4
tles.1.2
wresties wrestles.3.4
restles.1.3

takes. 1.1 drops.1.1
wrestles.0.2

wrestles. 1.4

PHIL(1) wrestles.0.3 PHIL(4)
wrestles.0.1 wrestles.0.4
takes. 1 .dmp 5.1.0 drops.4.4 / takes.4.4
drops.0.0 drops.0.4,
takes.0.0 t

takes.4.4 — takes.4.3 — eats.4 —
PHIL(4) = (drops.j.f)’ — drops.44.4 — PHIéu)) =
(07—, wrestles.k.4 — PHIL(4))
FORK(i) = takes.i.i — drops.i.i > FORK(7) O
takes.(i + 1).1 — drops.(i + 1).5 = FORK(4)
aPHIL(i) = {takes.i.i,takes.i.(i — 1), eats.i, drops.i.(i — 1), drops.i.i}
U {wrestles.i.k|k > i} U {wrestles.k.i|lk < i}
aFORK(i) = {takes.i.i,drops.i.i, takes.(i + 1).i, drops.(i + 1).1}

PHIL(0), PHIL(1), PHIL(2), PHIL(3), PHIL(4)>

ARMPHILS = PAR< FORK(0), FORK(1), FORK(2), FORK(3), FORK(})

where integer arithmetic is modulo 5. This network may also be verified as deadlock-free using the
SDD technique from the Deadlock Checker tool.

The user resource model is very similar to the concept of monitors used for parallel programming
in java. A realistic analogy to the arm-wrestling philosophers network might be a java distributed
system, where the forks represent object monitors and the philosophers represent cooperating threads
of computation.

5 Example 3 — Simulating a Physical System

Finally we consider a network which operates an interactive simulation of a bunjee-jump, based on an
occam program due to P. H. Welch[8, 9].

The computationally-intensive core of the system consists of a chain of ROPFE processes which
represent various discrete points along the length of the bunjee cord. These processes communicate
with each other according to the cyclic-po protocol[6].

This is a design rule which relates to networks where each process runs cyclically, communicating on
all its channels once each cycle according to some partial ordering. We define the channel dependency
graph to be the aggregate of the partial orderings for each process. The network is deadlock-free if,
and only if, the channel dependency graph contains no circuit.

In the case of the rope subnetwork, we shall instruct each component process to communicate on its
two channels to the left in parallel (unless it is the leftmost component) and then on its two channels to
the right in parallel (unless it is the rightmost component). The overall channel dependency relationship
that this defines is clearly acyclic.

A client-server network is then superimposed over the cyclic-po core. Each ROPE process communi-
cates as a client to a graphics handler GRAPHICS. and also as a server of USER_INTERFACE. This
is a process which alters the control parameters for the simulation when instructed to do so by pro-
cesses KEYBOARD or MOUSE and sends messages to a user console process SCREEN. The network
connection diagram is shown in figure 6.

Figure 6: Connection Diagram for Bunjee-Jump Simulation

’ MOUSE ‘ ’ KEYBOARD‘ SCREEN

from_keyboard
from_mouse to_screen

’ USER_INTERFACE ‘

control.Q control.n-1

| gl { right.n-1

Cy;‘é’gggf ’ROPE ROPE|_| ROPE| eee-| ROPE|_| ROPE
[left.] left.n-1
dump.0 \ //ump.n—l
GRAPHICS

This time we shall present the CSP in the machine readable format of B. Scattergood that is
understood by verification tools FDR[1] and Deadlock Checker. (See [7] for details.)

-— Define the set of indices for ROPE elements
indices = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}
n = 20

-- Declare the various channels and channel arrays
pragma channel left, right, dump, control:indices
pragma channel from_mouse, from_keyboard, to_screen

-- Each rope process has four distinct phases on each cycle
ROPE(i) = ROPEA(i);ROPEB(i) ;ROPEC(i);ROPED (i) ;ROPE(i)
-- First it polls USER_INTERFACE (this construction cannot get blocked)
ROPEA(i) = control.i -> SKIP [] SKIP
-- Then, unless it is the leftmost process, it communicates to the left
ROPEB(i) = if (0 < i) then left.i -> right.i -> SKIP []
right.i -> left.i -> SKIP
else SKIP
-- Then, unless it is the rightmost process, it communicates to the right
ROPEC(i) = if (i < n-1)then left.(i+1) -> right.(i+1) -> SKIP []
right.(i+1) -> left.(i+1) -> SKIP
else SKIP

-- Finally it sometimes dumps its state to GRAPHICS
ROPED(i) = dump.i -> SKIP |~| SKIP

-- The USER_INTERFACE process may decide non deterministically
-- to send new parameters to the ROPE processes or to communicate
-- with SCREEN, MOUSE or KEYBOARD
USER_INTERFACE = ((|~| i:indices @ comtrol.i -> USER_INTERFACE) |~|
to_screen -> USER_INTERFACE) []
from_mouse -> USER_INTERFACE []
from_keyboard -> USER_INTERFACE

—-- User-controlled mouse process
MOUSE = from_mouse -> MOUSE

-- User’s console
SCREEN = to_screen -> SCREEN

-- Keyboard input
KEYBOARD = from_keyboard -> KEYBOARD

-— Graphical display
GRAPHICS = [] i:indices @ dump.i -> GRAPHICS

-— Define the network for Deadlock Checker

-— BUNJEE = PAR <

-—+ MOUSE,KEYBOARD,SCREEN,USER_INTERFACE,

--+ ROPE(0), ROPE(1), ROPE(2), ROPE(3), ROPE(4),
--+ ROPE(5), ROPE(6), ROPE(7), ROPE(8), ROPE(9),
--+ ROPE(10) ,ROPE(11) ,ROPE(12),ROPE(13) ,ROPE(14),
--+ ROPE(15) ,ROPE(16) ,ROPE(17) ,ROPE(18) ,ROPE(19),
-—+ GRAPHICS

- >

It is not generally safe to superimpose client-server communications over an existing cyclic-po net-
work. Special precautions need to be taken[8]. If, in this case, we regard the rope subnetwork as
being a single process so that only the client-server communications remain visible then we can see
that it breaks the protocol in one respect. When it is ready to receive a command as a server it is
not necessarily ready to communicate on all such channels, because the individual ROPE processes
are only loosely synchronised. We circumvent this problem by using polling for these communications.
The rope subnetwork can never get blocked waiting for a command from USER_INTERFACE.

Once again it is no problem for Deadlock Checker to prove this system deadlock-free using the SDD
algorithm. (See figure 7.)

6 Related Issues

We have shown how to build fairly complex CSP deadlock-free networks using design rules[5, 6, 8, 9] and
automatic verification with Deadlock Checker[7]. There are, of course, many other useful properties
that can be verified using CSP. The FDR tool of Formal Systems Europe is to be recommended as
an excellent means of proving general properties of CSP systems[1]. Its sole function is to verify the
refinement condition SPEC' C PROCESS. Due to the completely partially ordered structure of all
CSP processes this is a very general condition.

The advantage of Deadlock Checker over FDR for proving deadlock-freedom is in scalability. FDR
uses exhaustive state checking which severely limits the size of networks that it can analyse. Deadlock
Checker takes some shortcuts (described in [7]) which enable it to analyse arbitrarily large networks.

Many designers of concurrent systems will wish to build timing constraints into their networks. For
this purpose a variant of CSP exists, timed CSP[2]. As yet there are no model checkers for timed
CSP so all proofs that involve real time have to be done by hand. However it is often possible to
approximate real time systems using discrete time, and FDR can then be used to prove properties of
their behaviour.

Figure 7: Deadlock Analysis of Bunjee Jump Simulation

File Help
“* 80D Deadlock-Freedom Test <~ FEDD Deadlock-Freedom Test
+s 8DD3 Deadlock-Freedom Test + Cyclic-P0 Conformance Test ile
+* CEDD Deadlock-Freedom Test < Livelock-Freedom Test
Load Netunrkl Runfﬁhnrtl Uiew Hetunrkl Begin Hnalgsis]
2% SELECTED /vﬂ!xzdgfjerely/]ava/DCHECK/hunJee net 5

#%% STARTING SDD DEADLOCK AHALYST

Calculating communication graph..

Calculating state pairs for each edge...

Calculating SDD. ..

Checking SDD {7956 arcs 199 vertices) for circuits...
#%% DEADLOCK FREE

|]

References

[1] FDR User Manual and Tutorial Formal Systems (Europe) Ltd. 3 Alfred Street, Oxford OX1 4EH.
Version 1.4 1994

2] J. Davies, Specification and Proof in Real Time CSP, Cambridge University Press 1993

[
[3] C. A. R. Hoare Communicating Sequential Processes, Communications of the ACM 21(8) 1978.
[4] C. A. R. Hoare Communicating Sequential Processes, Prentice-Hall 1985.

[

5] J. M. R. Martin The Design and Construction of Deadlock-Free Concurrent Systems. D. Phil.
Thesis, University of Buckingham 1996,also available at
http://www.hensa.ac.uk/parallel/theory/formal/csp

[6] J. M. R. Martin, I. East and S. Jassim Design Rules for Deadlock-Freedom, Transputer Commu-
nications, September 1994.

[7] J. M. R. Martin and S. A. Jassim A Tool for Proving Deadlock Freedom in this volume

[8] J. M. R. Martin and P. H. Welch A Design Strategy for Deadlock-Free Concurrent Systems to
appear in Transputer Communications

[9] P. H. Welch, G. R. R. Justo, and C. J. Willcock High-Level Paradigms for Deadlock-Free High-
Performance Systems, Transputer Applications and Systems ’93, IOS Press 1993.

