
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

223

View-Centric Reasoning for Linda
and Tuple Space Computation

Marc L. SMITH
Computer Science Department, Colby College, Waterville, ME, 04901-8858, USA

Rebecca J. PARSONS
ThoughtWorks, Inc., Chicago, IL, 60661, USA

Charles E. HUGHES
School of EE and CS, University of Central Florida, Orlando, FL, 32816-2362, USA

Abstract. In contrast to sequential computation, concurrent computation gives rise
to parallel events. Efforts to translate the history of concurrent computations into se-
quential event traces result in the potential uncertainty of the observed order of these
events. Loosely coupled distributed systems complicate this uncertainty even further
by introducing the element of multiple imperfect observers of these parallel events.
Properties of such systems are difficult to reason about, and in some cases, attempts
to prove safety or liveness lead to ambiguities. We present a survey of challenges of
reasoning about properties of concurrent systems. We then propose a new approach,
view-centric reasoning, that avoids the problem of translating concurrency into a se-
quential representation. Finally. we demonstrate the usefulness of view-centric rea-
soning as a framework for disambiguating the meaning of tuple space predicate opera-
tions, versions of which exist commercially in IBM’s T Spaces and Sun’s JavaSpaces.

1 Introduction

The greatest problem with communication is the illusion it has been accom-
plished — George Bernard Shaw.

Commonly employed models of concurrent systems fail to support reasoning that ac-
counts for multiple inconsistent and imperfect observers of a system’s behavior. We over-
come these limitations with a new framework, called View-Centric Reasoning (VCR), that
addresses issues arising from inconsistent and imperfect observation.

The nondeterminism of multiple communicating distributed processes leads to a poten-
tially intractable combinatorial explosion of possible behaviors. By considering the sources
of nondeterminism in a distributed system, the policies and protocols that govern choice, and
the possible traces and views that result, one can utilize the VCR framework to reason about
the behavior of instances of extremely diverse distributed computational models.

The organization of this paper is as follows. Section 2 discusses background information
concerning Linda and Tuple Space, CSP and VCR concepts. Sections 3 and 4 present details
of VCR the model — uninstantiated, instantiated for Linda and Tuple Space, and in support
of tuple space composition. Section 5 covers concurrency, its associated challenges, and
the event-based reasoning of CSP and VCR. Section 6 concludes with a demonstration of
the usefulness of VCR to reason about properties of computation in tuple space that do not
appear to be amenable to traditional CSP models.

224 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

2 Background

This section provides a brief background in several areas from which the remainder of this
paper builds. Section 2.1 introduces the Linda coordination language and Tuple Space, the
environment for Linda programs. Section 2.2 discusses CSP, and its abstractions and tech-
niques for reasoning about concurrency. Finally, Section 2.3 introduces concepts and ab-
stractions for View-Centric Reasoning, a framework that builds upon CSP’s contributions to
reasoning about concurrency.

2.1 Linda and Tuple Space

The tuple space model and Linda language are due to Gelernter [1]. Linda is distinct from
pure message passing-based models (e.g., Actors [2]). Unlike message passing models, tuple
space exhibits what Gelernter called communication orthogonality, referring to interprocess
communications decoupled in destination, space, and time. The tuple space model is espe-
cially relevant to discussion of concurrency due to the current popularity of commercial tuple
space implementations, such as Sun’s JavaSpaces [3] and IBM’s T Spaces [4].

Linda is not a complete programming language; it is a communication and coordination
language. Linda is intended to augment existing computational languages with its coordina-
tion primitives to form comprehensive parallel and distributed programming languages. The
Linda coordination primitives arerd(), in(), out(), andeval(). The idea is that multiple
Linda processes share a common space, called a tuple space, through which the processes are
able to communicate and coordinate using Linda primitives.

A tuple space may be viewed as a container of tuples, where a tuple is simply a group of
values. A tuple is considered active if one or more of its values is currently being computed,
and passive if all of its values have been computed. A Linda primitive manipulates tuple
space according to the template specified in its argument. Templates represent tuples in a
Linda program. A template extends the notion of tuple by distinguishing its passive values
as eitherformal or actual, where formal values, orformals, represent typed wildcards for
matching. Primitivesrd() and in() are synchronous, or blocking operations;out() and
eval() are asynchronous.

The rd() andin() primitives attempt to find a tuple in tuple space that matches their
template. If successful, these primitives return a copy of the matching tuple by replacing
any formals with actuals in their template. In addition, thein() primitive, in the case of
a match, removes the matching tuple from tuple space. In the case of multiple matching
tuples, a nondeterministic choice determines which tuple therd() or in() operation returns.
If no match is found, these operations block until such time as a match is found. Theout()
operation places a tuple in tuple space. This tuple is a copy of the operation’s template.
Primitivesrd(), in(), andout() all operate on passive tuples.

All Linda processes reside as value-yielding computations within the active tuples in tuple
space. Any Linda process can create new Linda processes through theeval() primitive.
Execution of theeval() operation places an active tuple in tuple space, copied from the
template. When a process completes, it replaces itself within its respective tuple with the
value resulting from its computation. When all processes within a tuple replace themselves
with values, the formerly active tuple becomes passive. Only passive tuples are visible for
matching by therd() andin() primitives; thus active tuples are invisible.

Communication orthogonality refers to three desirable attributes that seem particularly
well-suited for distributed computing. Tuple space acts as a conduit for the generation, use,
and consumption of information between distributed processes. First, unlike message passing
systems, where a sender must typically specify a message’s recipient, information generators

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 225

do not need to know who their consumers will be, nor do information consumers need to
know who generated the information they consume. Gelernter called this attributedesti-
nation decoupling. Next, since tuples are addressed associatively, through matching, tuple
space is a platform independent shared memory. Gelernter called this attributespace decou-
pling. Finally, tuples may be generated long before their consumers exist, and tuples may be
copied or consumed long after their generators cease to exist. Gelernter called this attribute
time decoupling. Distinct from both pure shared memory and message passing paradigms,
Gelernter dubbed Linda and Tuple space to be a form ofgenerative communication.

2.2 Communicating Sequential Processes

How do we represent concurrency in models of computation? Currently the dominant ap-
proach is one developed by C.A.R. Hoare [5] that treats concurrency as a group of com-
municating sequential processes (CSP). CSP is a model for reasoning about concurrency; it
provides an elegant mathematical notation and set of algebraic laws for this purpose. The
inspiration for developing VCR based on observable events and the notion of event traces
comes from CSP.

CSP views concurrency, as its name implies, in terms of communicating sequential pro-
cesses. A computational process, in its simplest form, is described by a sequence of observ-
able events. In general, process descriptions also benefit from Hoare’s rich process algebra.
The CSP process algebra is capable of expressing, among other things, choice, composition,
and recursion. The history of a computation is recorded by an observer in the form a sequen-
tial trace of events. Events in CSP are said to be offered by the environment of a computation;
therefore, they occur when a process accepts an event at the same time the event is offered
by the environment.

When two or more processes compute concurrently within an observer’s environment,
the possibility exists for events to occur simultaneously. CSP has two approaches to express
event simultaneity in a trace, synchronization and interleaving. Synchronization occurs when
an evente is offered by the environment of a computation, and evente is ready to be accepted
by two or more processes in the environment. When the observer records evente in the trace
of computation, the interpretation is that all those processes eligible to accepte participate in
the event.

The other form of event simultaneity, where two or more distinct events occur simultane-
ously, is recorded by the observer in the event trace via arbitrary interleaving. For example,
if eventse1 ande2 are offered by the environment, and two respective processes in the en-
vironment are ready to accepte1 ande2 at the same time, the observer may record eithere1

followed bye2, ore2 followed bye1. In this case, from the trace alone, we can not distinguish
whether eventse1 ande2 occurred in sequence or simultaneously. CSP’s contention, since
the observer must recorde1 ande2 in some order, is that this distinction is not important.

CSP’s algebraic laws control the permissible interleavings of sequential processes, and
support parallel composition, nondeterminism, and event hiding. Important sets within the
CSP algebra are the traces, refusals, and failures of a process. The set of traces of a processP
represents the set of all sequences of events in whichP can participate if required. A refusal
of P is an environment — a set of events — within whichP can deadlock on its first step. The
set of refusals ofP represents all environments within which it is possible forP to deadlock.
The set of a failures ofP is a set of trace-refusal pairs, indicating the traces ofP that lead to
the possibility ofP deadlocking.

Reasoning about a system’s trace is equivalent to reasoning about its computation. CSP
introduces specifications, or predicates, that can be applied to individual traces. To assert
a property is true for a system, the associated predicate must be true for all possible traces

226 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

of that system’s computation. Examples of elegant CSP predicates include those that test
for properties of nondivergence or deadlock-freedom in a system. Hoare’s CSP remains an
influential model for reasoning about properties of concurrency. Recent contributions to the
field of CSP research include Roscoe [6] and Schneider [7].

2.3 VCR Concepts

VCR [8] is a new model of computation that extends the CSP metaphor of an event trace.
VCR uses a convergence of tools and techniques for modeling different forms of concur-
rency, including parallel and distributed systems. It is designed to improve upon existing
levels of abstraction for reasoning about properties of concurrent computation. The result is
a model of computation with new and useful abstractions for describing concurrency and rea-
soning about properties of such systems. This section discusses important concepts needed
to understand VCR’s features and the motivations for their inclusion.

VCR models concurrency using a parameterized operational semantics. The reasons for
choosing operational semantics to develop VCR are twofold. First, an operational semantics
describes how computation proceeds. Second, an operational semantics permits choosing
an appropriate level of abstraction, including the possibility for defining a parameterized
model. The motivation for including parameters is to make VCR a general model that can
be instantiated. Each such instance can be used to study and reason about the properties of
some specific parallel or distributed system within a consistent framework.

From CSP we borrow the practice of event-based reasoning and the notion of event traces
to represent a computation’s history. The first concept to discuss is that of events, or, more
precisely,observable events. The events of a system are at a level of abstraction meaningful
for describing and reasoning about that system’s computation. Events are the primitive ele-
ments of a CSP environment. CSP events serve a dual purpose; they describe the behavior
of a process, and they form an event trace when recorded in sequence by an observer. CSP
represents concurrency by interleaving the respective traces of two or more concurrently ex-
ecuting processes. CSP is a process algebra, a system in which algebraic laws provide the
mechanism for specifying permissible interleavings, and for expressing predicates to reason
about properties of computation.

One of the great challenges of developing a general model concerns the identification of
common observable behavior among the variety of possible systems. Interprocess commu-
nication is one such common behavior of concurrent systems, even if the specific forms of
communication vary greatly. For example, in message passing systems, events could be mes-
sage transmission and delivery; in shared memory systems, events could be memory reads
and writes. Even among these examples, many more possibilities exist for event identifica-
tion. Since VCR is to be a general model of concurrency, event specification is a parameter.

CSP is a model of concurrency that abstracts away event simultaneity by interleaving
traces; the CSP algebra addresses issues of concurrency and nondeterminism. This event
trace abstraction provides the basis for our work. VCR extends the CSP notion of a trace in
several important ways. First, VCR introduces the concept of aparallel event, an event ag-
gregate, as the building block of a trace. A trace of parallel events is just a list of multisets of
events. Traces of event multisets inherently convey levels of parallelism in the computational
histories they represent. Another benefit of event multiset traces is the possible occurrence of
one or more empty event multisets in a trace. In other words, multisets permit a natural rep-
resentation of computation proceeding in the absence of any observable events. The empty
multiset is an alternative to CSP’s approach of introducing a special observable event (τ) for
this purpose.

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 227

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

A parallel event:

�����
�����
�����
�����

���
���
���
���

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

Some observable, sequential events:

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

 �
 �
 �
 � !�!�!�!�!"�"�"�"�" #�#�#�#�#$�$�$�$�$ %�%�%�%�%&�&�&�&�&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

)�)
)�)
)�)
)�)

�
�
�
�

+�+
+�+
+�+
+�+
+�+

,�,
,�,
,�,
,�,
,�,

-�-
-�-
-�-
-�-

.�.
.�.
.�.
.�.

/�/�/�/ 0�0�0�0 1�1�1�1 2�2�2�2
3�3
3�3
3�3
3�3

4�4
4�4
4�4
4�4

5�5
5�5
5�5
5�5

6�6
6�6
6�6
6�6

7�7
7�7
7�7
7�7

8�8
8�8
8�8
8�8

9�9
9�9
9�9
9�9

:�:
:�:
:�:
:�:

Some possible, corresponding ROPEs:

Figure 1: VCR Concepts: events, parallel event, and ROPEs.

In concurrent systems, especially distributed systems, it is possible for more than one ob-
server to exist. Furthermore, it is possible for different observers to perceive computational
event sequences differently, or for some observers to miss one or more event occurrences.
Reasons for imperfect observation range from network unreliability to relevance filtering in
consideration of scalability. VCR extends CSP’s notion of a single, idealized observer with
multiple, possibly imperfect observers, and the concept ofviews. A view of computation im-
plicitly represents its corresponding observer; explicitly, a view is one observer’s perspective
of a computation’s history, a partial ordering of observable events. Multiple observers, and
their corresponding views, provide relevant information about a computation’s concurrency,
and the many partial orderings that are possible.

To describe views of computation in VCR, we introduce the concept of a ROPE, a ran-
domly ordered parallel event, which is just a list of events from a parallel event. The concepts
of observable events, parallel events, and ROPEs are depicted — using shape primitives for
events — in Figure 1. Because VCR supports imperfect observation, the ROPE correspond-
ing to a parallel event multiset need not contain all — or even any — events from that mul-
tiset. Indeed, imperfect observation implies some events may be missing from a view of
computation.

Another consideration for ROPEs is the possibility of undesirable views. VCR per-
mits designating certain event sequences as not legitimate, and then constraining permissible
ROPEs accordingly. Views of a computation are derived from that computation’s trace, as
depicted in Figure 2. While a trace is a list of event multisets, a corresponding view is a list of
lists (ROPEs) of events. The structure of a view, like that of a parallel event, preserves con-
currency information. An important parameter of VCR is the view relation, which permits
the possibility of imperfect observation and the designation of undesirable views.

Parallel events, ROPEs, and the distinction of a computation’s history from its views are
abstractions that permit reasoning about computational histories that cannot, in general, be
represented by sequential interleavings. To see this, assume perfect observation, and assume
different instances of the same event are indistinguishable. Given these two assumptions, it
is not possible to reconstruct the parallel event trace of a computation, even if one is given all
possible sequential interleavings of that computation. Thus, while it is easy to generate all
possible views from a parallel event trace, the reverse mapping is not. in general, possible.
For example, consider the sequential interleaving〈A, A, A, A〉, and assume this trace rep-
resents all possible interleavings of some system’s computational history. It is not possible

228 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
���
���
���

	�	�	
	�	�	
	�	�	

�

�

�

�����
�����
�����
���
���
���

�

�

�

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

A trace:

�����
�����
�����
�����
�����
�����������������

���
���
���
���
���
��� ��������������

���
���
���
 �
 �
 � !�!�!�!"�"�"�"

#�#�#
#�#�#
#�#�#
$�$�$
$�$�$
$�$�$ %�%�%&�&�&

'�'
'�'
'�'
(�(
(�(
(�(

)�)�)
)�)�)
)�)�)
��*
��*
��*
+�+�+�+,�,�, -�-

-�-
-�-

.�.
.�.
.�.
/�/�/�/0�0�0�0

1�1�1
1�1�1
1�1�1
2�2�2
2�2�2
2�2�2

3�3
3�3
3�3
4�4
4�4
4�4

5�5�5
5�5�5
5�5�5
6�6
6�6
6�6

7�7
7�7
7�7
8�8
8�8
8�8

One possible view:

9�9�9
9�9�9
9�9�9
:�:�:
:�:�:
:�:�:;�;�;�;<�<�<

=�=
=�=
=�=
>�>
>�>
>�>?�?�?�?@�@�@

A�A�A
A�A�A
A�A�A
B�B
B�B
B�B C�C�CD�D�D

E�E�E
E�E�E
E�E�E
F�F
F�F
F�F

G�G
G�G
G�G
H�H
H�H
H�H

I�I
I�I
I�I
J�J
J�J
J�J

K�K�K�K L�L�L�LM�M
M�M
M�M
M�M

N�N
N�N
N�N
N�N

O�O
O�O
O�O
P�P
P�P
P�P

Another possible view:

Q�Q�Q
Q�Q�Q
Q�Q�Q
R�R�R
R�R�R
R�R�RS�S�S�ST�T�T

U�U
U�U
U�U
V�V
V�V
V�VW�W�W�WX�X�X�X

Y�Y�Y
Y�Y�Y
Y�Y�Y
Z�Z�Z
Z�Z�Z
Z�Z�Z [�[�[\�\�\

]�]
]�]
]�]
^�^
^�^
^�^

�
�
�
`�`
`�`
`�`

a�a�a�ab�b�b c�c�c�cd�d�d�de�e
e�e
e�e
f�f
f�f
f�f

g�g
g�g
g�g
h�h
h�h
h�h

A 3rd possible view:

Figure 2: VCR Concepts: trace and views.

to determine from this trace alone whether the parallel event trace of the same computation
is 〈{A,A, A}, {A}〉 or 〈{A,A}, {A,A}〉, or some other possible parallel event trace.

The phenomenon of views is not the only concept that derives from parallel event traces;
there is also the concept oftransition density. Consider a VCR trace as a labeled, directed
graph, where the parallel events represent nodes, the possible sequences of parallel events
in the trace define the directed edges of the graph, and the cardinality of each parallel event
multiset serves as a weight with which to label the corresponding node’s incoming transition.
In other words, we can represent a VCR trace as a labeled transition system, where each label
measures the number of observable events that occur during that node’s corresponding tran-
sition. Thus, transition density is a measure of parallelism in each transition of a concurrent
system, or, when aggregated over an entire trace, is a measure of overall concurrency. Alter-
natively, transition density serves as a parameter in VCR. A transition density of one models
sequential computation; those greater than one specify permissible levels of parallelism.

The concepts described to this point are the primitive elements of trace-based reasoning
within VCR. What remains are descriptions of the concepts our operational semantics em-
ploys to generate parallel events, traces, and views of concurrent computation. To define an
operational semantics requires identifying the components of a system’s state, and a state
transition function to describe how computation proceeds from one state to the next. In the
case of an operational semantics for parallel or distributed computation, a transition relation
often takes the place of a transition function due to inherent nondeterminism. When multiple
independent processes can make simultaneous computational progress in a single transition,
many next states are possible; modeling to which state computation proceeds in a transition
reduces to a nondeterministic choice from the possible next states.

Several general abstractions emerge concerning the components of a system’s state in
VCR. The first abstraction is to represent processes as continuations. A continuation rep-
resents the remainder of a process’s computation. The second abstraction is to represent
communications as closures. A closure is the binding of an expression and the environment
in which it is to be evaluated. The third abstraction is to represent observable behavior from
the preceding transition in a parallel event set, discussed earlier in this section. The final
abstraction concerning components of a VCR state is the next (possibly unevaluated) state
to which computation proceeds. Thus, the definition ofstatein VCR is recursive (and, as
the next paragraph explains, lazy). The specifics of processes and communications may dif-
fer from one instance of VCR to another, but the above abstractions concerning a system’s
components frame the VCR state parameter.

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 229

σ

σ σ σ

σσσ

σ σ σ

Figure 3: VCR computation space: a lazy tree.

Lazy evaluation — delaying evaluation until the last possible moment — is an important
concept needed to understand the specification of a VCR transition relation. Lazy evaluation
emerges in VCR as an effective approach to managing the inherent nondeterminism present
in models of concurrency. The computation space of a program modeled by VCR is a lazy
tree, as depicted in Figure 3. Nodes in the tree represent system configurations, or states;
branches represent state transitions. A program’s initial configuration corresponds to the root
node of the tree. Branches drawn with solid lines represent the path of computation, or the
tree’s traversal. Nodes drawn with solid circles represent the elaborated configurations within
the computation space. Dashed lines and circles in the tree represent unselected transitions
and unelaborated states, respectively. The transition relation only elaborates the states to
which computation proceeds (i.e., lazy evaluation). Without lazy evaluation, the size of our
tree (computation space) would distract us from comprehending a system’s computation, and
attempts to implement an instance of VCR without lazy evaluation would be time and space
prohibitive, or even impossible in the case of infinite computation spaces.

Each invocation of the transition relation elaborates one additional state within the VCR
computation space. The result is a traversal down one more level of the lazy tree, from the
current system configuration to the next configuration. The abstraction for selecting which
state to elaborate amounts to pruning away possible next states, according to policies speci-
fied by the transition relation, until only one selection remains. The pruning occurs in stages;
each stage corresponds to some amount of computational progress. Two examples of stages
of computational progress are the selection of a set of eligible processes and a set of com-
munication closures, where at each stage, all possible sets not chosen represent pruned sub-
trees of the computation space. Two additional stages involve selecting a sequence to reduce
communication closures, and a sequence to evaluate process continuations. Once again, se-
quences not chosen in each of these two steps represent further pruning of subtrees. The
transition relation assumes the existence of a meaning function to abstract away details of the
internal computation of process continuations. As well, during the stages of the transition re-
lation, it is possible to generate one or more observable events. The generated events, new or
updated process continuations, and new or reduced communication closures contribute to the

230 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

Table 1: VCR Notation

Notation Meaning
S A concurrent system
S Model ofS
σ, σi Computation space (lazy tree) ofS, or a decorated state within

treeσ
Λ Set of communication closures
λ A communication closure
Υ Set of views
υ A view
ρ A ROPE

configuration of the newly elaborated state. Since the number of stages and the semantics of
each stage may differ from one instance of VCR to another, the specification of the transition
relation is a parameter.

One additional VCR parameter transcends the previous concepts and parameters dis-
cussed in this section. This parameter is composition. Implicitly, this section presents VCR
as a framework to model a single concurrent system, whose configuration includes multiple
processes, communications, and other infrastructure we use to support reasoning about com-
putational properties. However, especially from a distributed system standpoint, a concurrent
system is also the result of composing two or more (possibly concurrent) systems.

Since the desire exists to model the composition of concurrent systems, one of VCR’s
parameters is a composition grammar. The degenerate specification of this parameter is a
single concurrent system. In general, the composition grammar is a rewriting system capa-
ble of generating composition graphs. In these graphs, a node represents a system and an
edge connecting two nodes represents the composition of their corresponding systems. Each
system has its own computation space, communication closures, and observers. One possi-
ble composition grammar — presented in Section 4 — generates string representations of a
composition tree, where each node is a system, and a parent node represents the composition
of its children. Other composition grammars are possible.

3 View-Centric Reasoning

This section presents the VCR framework in two parts. First, Section 3.1 introduces the
uninstantiated VCR model. Next, Section 3.2 presents VCR instantiated for Linda and Tuple
Space. Appendix A consists of figures that contain the operational semantics described in
Section 3.2. The topic of composition arises in this section, but is otherwise deferred until
Section 4.

3.1 VCR Uninstantiated

This section formalizes the concepts presented previously in Section 2.3. The notation and
definitions provided lay the foundation for further formal discussion in this section’s remain-
ing subsections. The uninstantiated VCR model presented in this section is denotedS, and
the components forS are described in Table 1. The bar notation is used to denote elements
in the modelS which correspond to elements in some concurrent systemS.

In the absence of composition,S is represented by the 3-tuple〈σ, Λ, Υ〉, whereσ repre-
sents the computation space ofS, Λ represents the set of communication closures withinσ,

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 231

andΥ represents the set of views of the computation withinσ. The remainder of this section
discusses in greater detail the concepts embedded withinS. In turn, we cover computation
spaces, communication closures, observable events, traces, and views.

The stateσ is a lazy tree of state nodes. When we refer to the treeσ, we refer toS ’s
computation space. Each node in the tree represents a potential computational state. Branches
in the tree represent state transitions. The root nodeσ is S ’s start state, which corresponds
to a program’s initial configuration in the system being modeled byS. State nodes carry
additional information to support the operational semantics. The specific elements ofσ vary
from instance to instance of VCR.

Each level of treeσ represents a computational step. Computation proceeds from one
state to the next inσ throughS ’s transition function. Given a current state, the transition
function randomly chooses a next state from among all possible next states. At each tran-
sition, the chosen next state inσ is evaluated, and thus computation proceeds. The logic of
the transition function may vary, but must reflect the computational capabilities of the system
being modeled byS.

Two special conditions exist in which the transition function fails to choose a next state
in σ: computational quiescence and computation ends. Computational quiescence implies
a temporary condition under which computation cannot proceed; computation ends implies
the condition that computation will never proceed. Both conditions indicate that, for a given
invocation, the transition function has no possible next states. The manner of detecting, or
even the ability to detect, these two special conditions, may vary.

To model the variety of approaches to parallel and distributed computation, VCR needs
to parameterize communication. The set of communication closuresΛ is the realization of
this parameter, where the elements ofΛ, the individual closure forms,λ, vary from instance
to instance of VCR.

These concepts are illustrated in Figures 1 and 2, and we formally define them next. We
define an observable event formally as follows:

Definition 1 (observable event) An observable event is an instance of input/output (including
message passing) behavior.

In our research, we further distinguish sequential events from parallel events, and define
them formally as follows:

Definition 2 (sequential event) A sequential event is the occurrence of an individual, ob-
servable event.

Definition 3 (parallel event) A parallel event is the simultaneous occurrence of multiple
sequential events, represented as a set of sequential events.

We borrow the notion of atracefrom Hoare’s CSP [5], with one significant refinement for
distributed systems: itis possible for two or more observable events to occur simultaneously.
The history of a program’s computation withinS is manifested by a stream whose input is
the computation spaceσ and whose output is a parallel event trace. We define sequential and
parallel event traces as follows:

Definition 4 (sequential event trace) A sequential event trace is an ordered list of sequential
events representing the sequential system’s computational history.

Definition 5 (parallel event trace) A parallel event trace is an ordered list of parallel events
representing the parallel system’s computational history.

232 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

One additional concept proves to be useful for the definition of views. We introduce the
notion of a randomly ordered parallel event, or ROPE, as a linearization of events in a parallel
event, and define ROPE formally as follows:

Definition 6 (ROPE) A randomly ordered parallel event, or ROPE, is a randomly ordered
list of sequential events which together comprise a subset of a parallel event.

VCR explicitly represents the multiple, potentially distinct, views of computation within
S. The notion of a view in VCR is separate from the notion of a trace. A view of sequential
computation is equivalent to a sequential event trace, and is therefore not distinguished. We
define the notion of a view of parallel computation formally as follows:

Definition 7 (view) A view, υ, of a parallel event trace,tr , is a list of ROPEs where each
ROPE,ρ, in υ is derived fromρ’s corresponding parallel event in atr .

Thus, views of distributed computation are represented at the sequential event level, with
the barriers (context) of ROPEs, in VCR; while traces are at the parallel event level.

There are several implications of the definition of ROPE, related to the concept of views,
that need to be discussed. First, a subset of a parallel event can be empty, a non-empty
proper subset of the parallel event, or the entire set of sequential events that represent the
parallel event. The notion of subset represents the possibility that one or more sequential
events within a parallel event may not be observed. Explanations for this phenomenon range
from imperfect observers to unreliability in the transport layer of the network. Imperfect
observers in this context are not necessarily the result of negligence, and are sometimes
intentional. Relevance filtering, a necessity for scalability in many distributed applications,
is one example of imperfect observation.

The second implication of the definition of ROPE concerns the random ordering of se-
quential events. A ROPE can be considered to be a sequentialized instance of a parallel event.
That is, if an observer witnesses the occurrence of a parallel event, and is asked to record what
he saw, the result would be a list in some random order: one sequentialized instance of a par-
allel event. Additional observers may record the same parallel event differently, and thus
ROPEs represent the many possible sequentialized instances of a parallel event.

ElementΥ of S is a set of views. Eachυ in Υ is a list of ROPEs that represents a possible
view of computation. Letυi be a particular view of computation inΥ. Thejth element of
υi , denotedρj, is a list of sequential events whose order represents observerυi ’s own view of
computation. Elementρj of υi corresponds to thejth element ofS ’s trace, or thejth parallel
event. Any ordering of any subset of thejth parallel event ofS ’s trace constitutes a ROPE,
or valid view, of thejth parallel event.

We express the view relation with two functions as shown in Figure 4. Instances of the
view relation differ only by the definitions of their respective statesσ. The view relationFυ

traverses its input viewυ and treeσ, until an unelaborated ROPE is encountered inυ. Next,
Fυ calls relationV to continue traversingσ, for some random number of transitions limited
so as not to overtake the current state of computation. WhileV continues to traverseσ, it also
constructs a subsequent viewυ′ to return toFυ. For each state traversed, the corresponding
ρi in υ′ is a random linearization of a random subset ofP. Upon return,Fυ appendsυ′ to the
end ofυ, thus constructing the new view.

Finally, one useful way to characterize the computation space and transition function of
S is as a labeled transition system (LTS). An LTS is a labeled, directed graph. We can map
the trace ofS to an LTS as follows: each state in the trace maps to a node; each transition
between states maps to a directed edge between the corresponding nodes; and each label on
a state transition denotes a weight. The weight of each edge represents itstransition density,
which we define as:

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 233

Fυ : view × state −→ view
Fυ(υ, σ) =

if υ empty
V (σ)

else
append((head(υ)),Fυ(tail(υ), nextstate(σ)))

V : state −→ view
V (σ) =

if σ undefined
()

else
let viewSet ⊆ getP(σ)
in let ρ = list(viewSet)
in random choice of{

append((ρ),V (nextstate(σ)), or

(ρ)

Figure 4: VCR View Functions

Definition 8 (transition density) Let M represent an LTS, andt represent a transition within
M . The transition density oft is the number of observable events that occur whent is chosen
within M .

Transition density is an attribute of LTS-based models of computation. For different
instances of VCR, transition density may vary. Transition density exists both as a parameter
and an attribute, as a specification for and a measure of parallelism. VCR doesn’t require
the services of an idealized observer to produce a trace precisely because our model supports
parallel events, and thus a transition density greater than one.

3.2 VCR for Linda, Tuple Space

This section presents VCR’s operational semantics instantiated for Linda and tuple space
(VCRTS). We describe the operational semantics for Linda using the programming lan-
guage Scheme. For an equivalence proof between our semantics and theTSspec operational
semantics by Jensen [9], see Smith [8]. Sections 3.2.1 and 3.2.2 present the definitions,
notation, and operational semantics ofVCRTS.

3.2.1 Definitions and Notation

Let S denote tuple spaceS ’s correspondingVCRTS representation. It remains to define
the structure of statesσ within S, the transition relationFδ of S, and what constitutes an
observable event inS. We begin our discussion with the structure ofσ. A stateσ is repre-
sented by the 4-tuple〈A, T ,P , σnext〉, whereA represents the multiset of active tuples,T
represents the multiset of passive tuples,P represents the parallel event multiset, andσnext

is eitherundefined , or the state to which computation proceeds, as assigned by the transition
function.

We introduce a mechanism to refer to specific tuples in a multiset of a state. To access
members of theith state’s multiset of active tuples, considerσi = 〈Ai , T i ,P i , σi+1 〉. El-
ements ofAi can be ordered1, 2, . . . , |Ai |; let t1, t2, . . . , t|Ai | represent the corresponding

234 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

tuples. The fields of a tupletj, for 1 ≤ j ≤ |Ai |, can be projected astj[k], for 1 ≤ k ≤ |tj|.
See Figure 5 for the domain specification of states, tuples, and fields.

VCRTS classifies the type of a tuple field as either active, pending, or passive. An active
field is one that contains a Linda process making computational progress. A pending field
contains a Linda process executing a synchronous primitive, but still waiting for a match. A
passive field is one whose final value is already computed. Tuplet is active if it contains at
least one active or pending field, otherwiset is passive. An active tuple becomes passive,
and thus visible for matching in tuple space, when all of its originally active or pending fields
become passive.

Multiple possible meanings of an individual Linda process’s computation exist, when
considered in the context of the multiple Linda processes that together comprise tuple space
computation. Each state transition inVCRTS represents one of the possible cumulative
meanings of the active or pending tuple fields making computational progress in that transi-
tion. We address these many possible individual and cumulative meanings when we describe
the transition relation.

3.2.2 Operational Semantics for Linda

VCRTS extends the syntax of the Linda primitives with a tuple space handle prefix. This
handle can refer to the tuple space in which the issuing Linda process resides (i.e. “self”),
or it can be a tuple space handle acquired by the issuing Linda process during the course of
computation. The use of a tuple space handle is consistent with commercial implementations
of tuple space. The existence of this handle is explained when we discuss tuple space com-
position later in this section. Tuple space handles are nothing more than values, and may thus
reside as fields within tuples in tuple space. In the absence of composition, acquiring a tuple
space handleh reduces to matching and copying a tuple that containsh as one of its values.

We present the Scheme-based semantics ofVCRTS in detail in this section. Not all
functions are discussed at the same level of detail. We give an overview of the transition and
view relations, focusing on important aspects of tuple space computation and view genera-
tion. Figure 5 contains the domain specification for the operational semantics described in
this section.

Computation proceeds in this instance of VCR through invocation of the transition re-
lation F-delta. F-delta takes a pair of arguments, treeσ and the set of communication
closuresΛ, and elaborates the next state in the trace ofσ. There are two phases in aVCRTS

transition: the inter-process phase and the intra-process phase. The inter-process phase, or
communication phase, specified byF-LambdaBar, concerns the computational progress of
the Linda primitives inΛ. The intra-process phase, specified byG, concerns the computa-
tional progress of active Linda processes withinσcur . F-delta returns the pair containing
the elaborated treeσnew and the resulting new set of communication closuresΛnew .

During the first phase of aVCRTS transition, functionF-LambdaBar chooses a random
subset of communication closures fromΛ to attempt to reduce. InVCRTS, each com-
munication closure represents the computational progress of an issued Linda primitive. The
domain specification for the different closure forms is included in Figure 5. From the perspec-
tive external toF-LambdaBar, these closures make computational progress in parallel. Linda
primitives are scheduled via a randomly ordered list to model the nondeterminism of race
conditions and the satisfaction of tuple matching operations among competing synchronous
requests.F-LambdaBar returns aσ-Λ pair representing one possible result of reducing the
communication closures.

To better understand the functions that reduce closures inΛ, we take a moment to exam-
ine more closely theclosure domain from Figure 5. The closure domains that formclosure
characterize the stages through which communication activity proceeds in tuple space. The

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 235

Var Domain Domain Specification
S system state × closureSet × viewSet
sigma (σ) state tupleSet × tupleSet × parEventSet × state

| undefined
LBar (Λ) closureSet S(closure)

Υ viewSet P (view)

state-LBar, 〈σ, Λ〉 SCSPair state × closureSet
ABar (A), TBar (T) tupleSet S(tuple)

PBar (P) parEventSet S(seqEvent)

LProcs LprocSet P (int×int)

t, tsubj, template tuple list(field)
field fieldtype × data
seqEvent etype × tuple
etype {’Ecreated, ’Ecopied, ’Econsumed,

’Egenerating, ’Egenerated}
field .type fieldtype {’Active, ’Pending, ’Passive}
field .contents data beh

⋃
Base

⋃
Formal

beh continuation (unspecified)
Base base types (unspecified)
Formal ?Base

closure, lambda, λ closure asynchCl
⋃

synchCl
⋃

sendCl
⋃

matchCl
⋃

reactCl
⋃

asynchLPrim
asynchCl {“send(handle, delay(lambda))” |

handle denotes tuple space
∧

lambda ∈ asynchLPrim }
synchCl {“send(handle, delay(lambda))” |

handle denotes tuple space
∧

lambda ∈ sendCl }
sendCl {“send(self, force(lambda))” |

self denotes tuple space
∧

lambda ∈ matchCl }
matchCl {“(let t = force(lambda)

in delay(lambda2))” |
lambda ∈ synchLPrim

∧
lambda2 ∈ reactCl }

reactCl { “react(j,k,t)” }
asynchLPrim {eval(template), out(template)}
synchLPrim {rd(template), in(template)}

upsilon, υ view list(ROPE)
rho, ρ ROPE list(seqEvent)

Figure 5:VCRTS Domain Specification.

236 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

form of closure domainsasynchCl , synchCl , andsendCl specifies that a lambda expression
λ be sent to a designatedΛ set. Closures from domainsasynchCl andsynchCl explicitly de-
lay the evaluation ofλ; domainsendCl explicitly forces the evaluation ofλ. The designation
of theΛ set is through a tuple space handle. The notion of sending a closure, and the notion
of tuple space handles, both derive from our ongoing research in tuple space composition.
The processing of thesend closure results in the set union of theΛ designated byhandle
and the singleton set containing elementλ.

Functionsreduce-out and reduce-eval both take an asynchronous communication
closure and aσ-Λ pair as arguments, and return aσ-Λ pair. Thereduce-out function adds a
passive tuple to tuple space, and generates event’Ecreated. Similarly, reduce-eval adds
an active tuple to tuple space, and generates event’Egenerating.

Functionreduce-send returns an updatedσ-Λ pair. In the case of delayed evaluation,
reduce-send adds the send argument ofλ to Λ. Otherwise, evaluation of the send argu-
ment ofλ is forced, andreduce-send attempts to reduce the let expression containing a
synchronous Linda primitive. The let expression fails to reduce if there is no match in tuple
space for the underlyingrd() or in() operation’s template. If the let expression can’t be
evaluated,reduce-send addsλ back toΛ. Adding λ back toΛ permits future reduction
attempts. Otherwise, the let expression reduces,reduce-send adds the new closure toΛ,
andσ, upon return, reflects the reduced let expression (for example, a tuple might have been
removed from tuple space).

Functionsreduce-rd andreduce-in both take a synchronous communication closure
and aσ-Λ pair as arguments, and return either a tuple-state pair, or null. Both functions
attempt to find a matching tuple in tuple space, and if unsuccessful, return null. If a match
exists,reduce-rd returns a copy of the matching tuple, and generates event’Ecopied.
Similarly, reduce-in returns a copy of matching tuplet, but also removest from tuple
space, while generating event’Econsumed.

The reactivate form of a communication closure specifies which field of which tuple
contains a pending Linda process that is to be reactivated. Specifically, thereduce-react

function updatestsubj[k] to make it an active Linda process, and fills its evaluation con-
text with redext. reduce-react is applied to a closure and aσ-Λ pair, where the closure
containsj, k, andt. Theσ-Λ pair returned byreduce-react contains the updated tuple.

During the second phase of aVCRTS transition, functionG chooses a random subset
of active Linda processes to make computational progress. From the perspective external to
F-LambdaBar, these processes make computational progress in parallel. Internal toG, Linda
processes are scheduled via thegenMeaning function. The sequence doesn’t matter, since
during this intra-process phase of transition, no tuple space interactions occur.G returns a
σ-Λ pair representing one possible cumulative meaning of the random subset of active Linda
processes making computational progress.

A closer look atgenMeaning is in order. Within a concurrent system, in general, it is pos-
sible for individual processes to make simultaneous computational progress at independent,
variable rates. Thus, forVCRTS, it is incumbent upongenMeaning to be capable of reflect-
ing all possible combinations of computational progress among a list of Linda processes in
theσ-Λ pair it returns. With the help ofF-mu, genMeaning satisfies this requirement. For
each Linda process,F-mu randomly chooses a meaning from the set of all possible meanings
Lm could return;i.e. each process proceeds for some random amount of its total potential
computational progress.

FunctionLm is the high-level Linda meaning function for a processtj[k] in σ-Λ. Lm han-
dles three general cases. Either processtj[k] makes computational progress involving no
Linda primitives, but still has remaining computation; processtj[k] makes computational
progress involving no Linda primitives, and replaces itself with a typed return value; or pro-

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 237

cesstj[k] makes computational progress, the last part of which is a Linda primitive.Lm

assumes the existence of helper functionLm-comp to return all possible meanings of internal
Linda process computation (that is, up to, but not including, a Linda primitive function). A
random choice determines howtj[k] gets updated. In the case of the final active process
within tj becoming passive,Lm movestj from the set of active tuples to the set of passive
tuples, and generates event’Egenerated.

In the case wheretj[k]’s computational progress includes a Linda primitive, function
Lm-prim finishes the workLm started. The two main cases of Linda primitives are asyn-
chronous and synchronous. In either case,Lm-prim constructs the appropriate closure forms
and adds the closure containing the primitive request toΛ. In the case of the synchronous
primitive, Lm-prim also changestj[k] from active to pending.

The careful reader may question the need for a double choice of meanings amongLm

andF-mu, for a given Linda processtj[k]. Briefly, Lm selects a random meaning fortj[k];
F-mu constructs the set of all possible meanings thatLm could return fortj[k], only to select
from this set a random meaning fortj[k]. Clearly, we could have structured a single random
choice; but not doing so permits us to isolate and investigate different scheduling policies
and protocols. For each transition, the number of possible next states is combinatorially
large. Recall thatLm andF-mu are part of the function that generates children, one of which
the transition function chooses to elaborate, in lazy treeσ. Each random choice the transition
function makes prunes subsets of possible next states, until one remaining state is finally
elaborated. SinceLm-comp is a helper function, the double choice of meanings emphasizes
the possibilities for a single Linda process, and is consistent with the other random choices
made during transition.

This concludes our description of the Scheme functions associated with transition in
VCRTS. The functional nature of Scheme gives a precise and elegant description of the
operational semantics for Linda and tuple space. Equally precise and elegant is the Scheme
implementation of theVCRTS view relation, not shown in Appendix A, because the view
relation forVCRTS is equivalent to the view relation presented in Figure 4 of Section 3.1.
The transition and view relations together allow us to reason about all possible behaviors
of a distributed system’s computation, and all possible views of each of those behaviors.
Thus we have a powerful tool for identifying and reasoning about properties of distributed
computation.

4 Composition

The decision to model tuple space composition inVCRTS stemmed largely from commer-
cial tuple space implementations that are based on multiple tuple spaces. The decision to
express the operational semantics ofVCRTS in Scheme was motivated by a desire to gain
a stronger intuition into howVCRTS could be implemented. Also, operational semantics
permits the choice of level of abstraction, which includes the expression of the semantics
itself. An additional benefit of using Scheme was the language’s support for closures.

The semantics of Linda primitives with explicit tuple space handles led to wrapping the
primitive expressions in closures, along with their corresponding handles. Each closure ex-
plicated the routing requirements for a Linda primitive based on the primitive’s tuple space
handle and the handle of the tuple space from which the primitive was issued. Since VCR
is a model for concurrency, we needed an abstraction to support the evaluation of multiple
simultaneous Linda primitives, or in general, multiple simultaneous communications. This
need evolved into the introduction of VCR’s set of message closures,Λ.

238 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

S1 ⇒ 〈 S2 S3 σ, Λ, Υ 〉1
⇒ 〈 〈 S4 S5 σ, Λ, Υ 〉2 S3 σ, Λ, Υ 〉1
⇒ 〈 〈 S4 S5 σ, Λ, Υ 〉2 〈 σ, Λ, Υ 〉3 σ, Λ, Υ 〉1
⇒ 〈 〈 〈 σ, Λ, Υ 〉4 S5 σ, Λ, Υ 〉2 〈 σ, Λ, Υ 〉3 σ, Λ, Υ 〉1
⇒ 〈 〈 〈 σ, Λ, Υ 〉4 〈 σ, Λ, Υ 〉5 σ, Λ, Υ 〉2 〈 σ, Λ, Υ 〉3 σ, Λ, Υ 〉1

Figure 6: Example derivation forS

Evolving the definition ofS from that of a triple to a grammar gives us two things. First,
S, itself, becomes a parameter of VCR! Second,S represents not just the model of an indi-
vidual concurrent system we wish to reason about, but rather, the model for an infinite variety
of composed systems. Depending on the particular composition argument used for parameter
S, different composition relationships are possible. For example, consider the grammar par-
tially specified by production ruleS → 〈 S ∗

σ, Λ, Υ 〉. One possible derivation is shown in
Figure 6. Each nonterminalS is labeled with unique numeric subscripts corresponding to the
tuples they derive. The order of derivation is according to the subscripts of the nonterminals.
The final string of Figure 6 corresponds to the composition tree of Figure 7.

The grammar produces two kinds of nodes: leaf nodes and composition (interior) nodes.
Leaf nodes look like the old definition ofS, 〈 σ, Λ, Υ 〉; composition nodes are instances of
〈 S +

σ, Λ, Υ 〉. Technically, composition nodes contain their children nodes. By extension,
the root noder of a composition tree contains the entire tree rooted byr. Thus, representation
of r as a tree is really an expansion of root noder, whose origin is one possible string
generated by our grammar.

Trees are a meaningful abstraction for reasoning about composition. Consider a nodeS i

within a composition tree. NodeS i is a tuple containing a computation spaceσ, a set of
message closuresΛ, and a set of viewsΥ. The scope ofΛ andΥ is the subtree with root
nodeS i. Now consider a composition tree in its entirety. Sinceσ, Λ, andΥ are parameters,
VCR can model composition of heterogeneous distributed systems. That is, different leaves
of the composition tree may represent different instances of a concurrent system, as specified
by their respectiveσ, Λ, andΥ parameter values.

One of the advantages of event-based reasoning is the ability – through parameterization
– to define common events across heterogeneous systems. Within each leaf node, multiple
simultaneous views of its respective local computation are possible, just as is possible in
VCR without composition. Taking the leaf nodes as an aggregate, though, composition in
VCR now supports a natural partitioning of parallel event traces, and their respective views.
There is not necessarily a temporal relationship between corresponding elements of the com-
putational traces of a composition tree’s leaf nodes. Such temporal relationships must be
reasoned about using a common composition node.

S1 = 〈 S2 S3 σ, Λ, Υ 〉1

©©©©©©©©©

HHHHHHHHH

S2 = 〈 S4 S5 σ, Λ, Υ 〉2

©©©©©©©

HHHHHHH

S4 = 〈 σ, Λ, Υ 〉4 S5 = 〈 σ, Λ, Υ 〉5

S3 = 〈 σ, Λ, Υ 〉3

Figure 7: Example composition tree from derivation ofS

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 239

Finally, consider the composition nodes. A composition node, like a leaf node, represents
the possibility for multiple simultaneous views of its own local computation. Further, since
the scope of a composition nodec represents that of the entire subtree rooted atc, a subset of
events present inc’s parallel event trace, and corresponding views, may represent some subset
of the aggregate events found in the subtrees ofc’s children. The extent to which events from
the subtrees of nodec’s children occur inc is itself a parameter. For example, one may wish
to compose two or more systems according to certain security policies. Alternatively, or
additionally, one may wish to compose systems in a way that allows for relevance filtering to
promote greater scalability. In both of these examples, the ability to limit event occurrence in
composition nodes through parameterization supports modeling composition at a desirable
level of abstraction.

To specify tuple space composition inVCRTS requires adding one further production
rule to grammarS: σ → 〈 A, T ,P , σ 〉. Tuple space composition also requires a change to
reduce-send, the part of the transition relation that reduces message closures inΛ. Further
details of tuple space composition forVCRTS, and for VCR in general, are beyond the scope
of this paper, but can be found in Smith [8].

5 Abstraction, Models, and Event-based Reasoning

The remainder of this paper shifts focus from the specifics of VCR, its abstractions, and
instantiations, to the context within which it was developed, and the manner in which the
VCR framework can be used. This section ultimately discusses reasoning about properties of
computation with VCR. Section 5.1 looks beyond sequential computation to considerations
of modeling concurrency. Section 5.2 discusses the classifications of properties we wish to
reason about in concurrent systems. Sections 5.3 and 5.4 discuss motivations for developing
VCR and in what sense VCR’s abstractions permit reasoning beyond the capabilities sup-
ported by CSP. Finally, Section 5.5 discusses how treating policies as parameters of VCR’s
operational semantics facilitates investigating properties of concurrency.

5.1 Beyond Sequential Computation

New computational paradigms give rise to new classes of models. Without concurrent com-
putation, there is no need to distinguish computation assequential. Classifications of se-
quential and concurrent computation do not represent a partitioning of computation; rather,
there exists a relationship between the two classifications such that concurrent computation
subsumes sequential computation. Within the paradigm of event-based reasoning, we can
define sequential computation as being restricted to allowing at most one event at a time,
and concurrent computation as permitting zero or more events at a time. Multiple concur-
rent events suggest multiple concurrent processes, and with concurrency comes the need for
communication and coordination among those processes.

A thread of execution refers to the individual path of a computational process. Single-
threaded (sequential) computation consists of an individual computational process. Multi-
threaded (concurrent) computation consists of multiple computational processes. In this
sense, sequential computation is the degenerate case of concurrency, where multi-threaded
reduces to single-threaded computation.

The concepts of interprocess communication and coordination do not exist when reason-
ing about sequential computation. These concepts require new, meaningful abstractions to
create useful parallel and distributed models of computation. One of these abstractions is
that of communication coupling, a term that refers to levels of speed and reliability of com-

240 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

munication among threads of execution. Tightly-coupled processes exhibit properties of fast,
reliable, interprocess communication behavior. Loosely-couple processes exhibit properties
of slower, less reliable, interprocess communication behavior. Parallel computation and dis-
tributed computation are special cases of concurrency, each representing opposite ends of a
concurrency continuum with respect to their degrees of communication coupling. Parallel
computation is composed of tightly-coupled processes; distributed computation is composed
of loosely-coupled processes.

Interest in reasoning about concurrency ranges from the desire to take computational
advantage of available computer network infrastructures, such as the Internet, to the need
for modeling concurrent phenomena in the real world. When reasoning about events, many
real world systems or human endeavors require simultaneously occurring events. For some
examples, see Smith [8].

5.2 Properties of Concurrent Computation

The increasingly pervasive Internet, and subsequent demand for Internet applications, ap-
pliances, resources, and services, compels us to reason about properties of decentralized,
loosely-coupled systems. In this context, loosely-coupled refers to more than communica-
tion; it refers more generally to the interoperability of open systems. We are in an age of
open systems development. Distributed objects provide protocols, and middleware provides
both frameworks and protocols, for heterogeneousn-tier and peer-to-peer application devel-
opment.

The need to manage shared resources and maintain system integrity in the decentralized
environment of Internet applications emphasizes the importance of formal reasoning to de-
scribe and verify such complex systems. Indeed, we are concerned with safety and liveness
properties of distributed systems. Scheduling policies prescribe how access among compet-
ing processes to shared system resources proceeds, based on some criteria. To this end, we
are interested in modeling scheduling policies of processes and their respective communica-
tions to determine their effect on system properties. Furthermore, given a set of properties
that hold for a system, we wish to identify and model varying notions of fairness.

The questions we ask when reasoning with VCR concern properties of computation. A
property of a program is an attribute that is true of every possible history of that program and
hence of all executions of the program [10]. Many interesting program properties fall under
the categories of safety, liveness, or some combination of both safety and liveness. A safety
property of a program is one in which the program never enters a bad state; nothing bad
happens during computation. A liveness property of a program is one in which the program
eventually enters a good state; something good eventually happens. These properties are of
primary concern in concurrent systems, and CSP endures as a powerful and elegant frame-
work for addressing such properties of concurrent systems from specification to verification.

5.3 Why VCR?

With all the benefits that CSP provides for reasoning about concurrency, including event
abstraction and event traces, what motivated the development of VCR? One motivation is
that there are occasions when a higher level of abstraction is desired. In general, the CSP
model does not directly represent event simultaneity (i.e., event aggregation). Two exceptions
are synchronized events common to two or more interleaved processes, or abstracting a new
event to represent the simultaneous occurrence of two or more designated atomic events. CSP
does not provide extensive support for imperfect observation; CSP supports event hiding,
or concealment, but this approach is event specific and all-or-nothing, which amounts to

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 241

filtering. Since CSP represents concurrency through an arbitrary interleaving of events, it
provides no support for multiple simultaneous views of an instance of computation.

To build upon CSP’s existing abstractions and capabilities, VCR extends CSP with the
notion of parallel events. Parallel event traces don’t require interleaving to represent concur-
rency. Also, VCR replaces CSP’s idealized observer with the notion of multiple, possibly
imperfect observers. Multiple observers inspire the existence of views of computation. Thus,
VCR distinguishes a computation’s history – its trace – from the multiple possible views of
a computation.

VCR differs from CSP in other important ways. CSP is an algebraic model; VCR utilizes
a parameterized, operational semantics. As an operational semantics, instances of VCR re-
quire definition of a transition relation to describe how computation proceeds from one state
to the next. The notion of state in VCR, across instantiations, is essentially composed of pro-
cesses and communication closures – a potentially unifying characterization of concurrency.
Finally, VCR introduces, as one of its parameters, the notion of a composition grammar. The
composition grammar is an elegant mechanism for specifying rules of composition across
instances of VCR.

5.4 Beyond CSP

VCR is not restricted to standard CSP abstractions for reasoning about computation, though
we certainly can instantiate VCR to be capable of generating event traces like those of CSP,
and restrict reasoning about traces to a single view. VCR is capable of generating parallel-
event traces and multiple views of a given parallel-event trace, abstractions that don’t exist
in standard CSP. Multiple views permit reasoning about multiple perspectives of a compu-
tation, such as those of distinct users of a distributed system (e.g., distributed interactive
simulations, virtual worlds). Multiple perspectives of a system’s computational trace include
the possibility for imperfect observation by design.

The purpose of VCR is to provide an overall higher level of abstraction for reasoning
about distributed computation, a model that more closely approximates the reality of concur-
rency. VCR differs in two significant ways from CSP: its traces preserve the concurrency
inherent in the history of computation, and its semantics are operational rather than alge-
braic. CSP imposes the restriction that an idealized observer record arbitrary, sequential total
orderings of simultaneously occurring events, and in so doing, does not preserve event si-
multaneity. These differences impact reasoning about properties of computation in important
ways, as will be demonstrated in Section 6.

We introduce one last VCR notion for reasoning about properties of computation, the
unsuccessful event, orun-event. There are two categories of events in VCR: successful and
unsuccessful. By default, events refer to successful events. An un-event is an attempted
computation or communication activity, associated with an event, that fails to succeed. The
ability to observe successful and unsuccessful events within the context of parallel events
and views permits us to reason directly about nondeterminism and its consequences. Parallel
events that include un-events allows us to reason not only about what happened, but also
about what might have happened.

CSP has a notion similar to VCR un-events that it calls refusal sets. Refusal sets rep-
resent environments in which a CSP process might immediately deadlock. The notion of
refusal sets is from a passive perspective of event observation. Since VCR utilizes an opera-
tional semantics, our model employs the active notion of event occurrence, where designated
computational progress corresponds to the events abstracted. The purpose of refusal sets in
CSP and un-events in VCR is the same, to support reasoning about properties of concurrent
computation.

242 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

5.5 Policies and Properties

We now discuss the implications of parameterized policies as they concern reasoning about
properties of concurrent computation. Policies dictate the selection of processes to make
computational progress during a transition, and the selection of communication activities to
proceed during a transition. Policies are also parameters within a VCR transition relation.
These parameters specify the sequence in which chosen processes attempt to make compu-
tational progress, and the sequence in which selected communication activities attempt to
occur. When we choose policies for the transition relation, we can reason about resulting
system behavior, and use VCR to prove properties of distributed systems with those policies.

Policies may determine access to critical regions, or specify the resolution of race con-
ditions. The outcome of such shared resource scenarios, and the policies that lead to that
outcome, influence what views are possible, and meaningful. In determining process and
communication selection, one policy could be pure randomness, and another policy could
prioritize according to a particular scheme. The choice of a selection policy impacts the na-
ture of nondeterminism in a concurrent system. We consider examples of policies for tuple
space computation in Section 6.1.

Depending on the presence or absence of mutual exclusion in a distributed system, and the
policies in effect, we can use VCR to reason about a variety of safety and liveness properties.
The following is a brief discussion of how elements of VCR contribute to new and meaningful
approaches to reasoning about such systems.

Important safety properties — that bad states are never reached — include whether or not
a system is deadlock free, whether or not race conditions exist, and whether or not transi-
tion density remains within a desired threshold. Consider the problem of deadlock, and the
canonical dining philosophers example. An instantiation of VCR very naturally represents
a trace where all five philosophers pick up their left forks in one parallel event — including
all 120 (5!) possible views (ROPEs) of that event. In the next transition, VCR demonstrates
very elegantly the un-events of five (or fewer) philosophers attempting to pick up their right
forks. Reasoning about the trace of this history, or any of the views, a condition exists where
after a certain transition, only un-events are possible. VCR’s decoupling of distributed pro-
cesses’ internal computations from their communication behavior, using the abstraction of
communication closures, helps us reason that the dining philosophers are deadlocked.

Liveness properties — that good states are eventually reached — are also important.
Some examples of particular interest include true concurrency of desired events, eventual
entry into a critical section, guarantee of message delivery, and eventual honoring of requests
for service. Liveness properties are especially affected by system policies, such as those
discussed in the previous section. Instances of VCR, with their parallel events and ROPEs,
readily handle properties of true concurrency. The un-events of VCR also facilitate reasoning
with traces about properties of message delivery and eventual entry as follows. Guarantee
of message delivery is the property that, for all traces where a delivery un-event occurs, a
corresponding (successful) delivery event eventually occurs. Similar descriptions exist for
entry into critical sections, requests for service, etc. Just as in CSP, in cases where infinite
observation is possible, or required, undecidability results still apply.

Properties that are both safety and liveness, such as levels of parallelism, including max-
imal and minimal, are particularly well suited for VCR. The magnitude of parallel events in
traces of computation can be transformed to our notion of transition density, a measurable
quantity. Once we have done this, we can reason about possible traces, and ask whether,
for each transition, all communication closures are chosen to be reduced, and whether this
ensures that these closures all reduce successfully (i.e., no inappropriate un-events). The
existence of un-events in a trace does not necessarily preclude the possibility of maximal
parallelism, since un-events can be due to system resource unavailability. The absence of

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 243

un-events from a trace is not sufficient to conclude the property of maximal parallelism, ei-
ther. As just discussed, all communication closures must be chosen for possible reduction,
and all eligible processes must be chosen to make internal computational progress. The latter
condition requires that we abstract non-communication behavior as observable events.

6 Demonstration of Reasoning with VCR

To demonstrate the utility of reasoning with parallel events and views, we present a case study
of two primitive operations from an early definition of Linda. Section 6.1 reveals sources of
nondeterminism in Linda and tuple space, and discusses policies that can be specified through
parameters in VCR that affect nondeterministic behavior. The remainder of the section is the
demonstration.

6.1 Policies for Tuple Space Computation

For the Linda instance of VCR, transitions from one state of computation to the next consist
of individual processes making internal computational progress, or communications (Linda
primitives) that lead to instances of tuple space interaction. During each transition, the set of
possible next states depends on the current state and the policies of the transition relation.

Consider policies that effect the level of parallelism in a tuple space, including maximal
parallelism, minimal parallelism, and levels somewhere in between. A policy of selecting
only one Linda process per transition to make computational progress, or one communi-
cation activity per transition to proceed, results in singular transition density, or sequential
computation. In contrast, a policy that requires selecting every eligible Linda process and ev-
ery communication activity is part of a set of policies needed to model maximal parallelism.
The ability to model all possible transitions in a distributed system requires a policy that se-
lects a random subset of Linda processes and communication activities. Other properties of
distributed systems we wish to reason about may limit or bound the level of parallelism possi-
ble, for example, based on the number of processors available. VCR permits the specification
of appropriate policies for all the levels of parallelism discussed herein.

An important set of policies in tuple space systems concerns different protocols for match-
ing tuples. Tuple matching is a significant source of nondeterminism in Linda programs, and
it comes in two varieties. First, two or more matching operations, at least one of which is an
in(), compete for a single, matching tuple. The second kind of nondeterminism involves just
one synchronous primitive, but its template matches two or more tuples. In both cases, the
outcome of the subsequent tuple space interactions is nondeterministic, but tuple matching
policies can influence system properties. For example, a policy that attempts to match oper-
ations with the most specific templates first, and saves matching the most general templates
for last, is likely to match more tuples than if the sequence of attempted matches is reversed.
Another example of maximizing tuple space interactions would prioritizeout() operations
before anyrd() andin() operations, and then attempt to match therd() operations before
anyin()’s.

6.2 Linda Predicate Operations

In addition to the four primitivesrd(), in(), out(), andeval(), the Linda definition once
included predicate versions ofrd() andin(). Unlike therd() andin() primitives, predicate
operationsrdp() andinp() were nonblocking primitives. The goal was to provide tuple
matching capabilities without the possibility of blocking. The Linda predicate operations

244 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

seemed like a useful idea, but their meaning proved to be semantically ambiguous, and they
were subsequently removed from the formal Linda definition.

First, we demonstrate the ambiguity of the Linda predicate operations when our means of
reasoning is restricted to an interleaved sequential event trace semantics like that provided by
CSP. The ambiguity is subtle and, in general, not well understood. Next, we demonstrate how
reasoning about the same computation with an appropriate instance of VCR disambiguates
the meaning of the Linda predicate operations.

6.3 Ambiguity

Predicate operationsrdp() andinp() attempt to match tuples for copy or removal from tuple
space. A successful operation returns the value one (1) and the matched tuple in the form of
a template. A failure, rather than blocking, returns the value zero (0) with no changes to the
template. When a match is successful, no ambiguity exists. It is not clear, however, what it
means when a predicate operation returns a zero.

The ambiguity of the Linda predicate operations is a consequence of modeling concur-
rency through an arbitrary interleaving of tuple space interactions. Jensen noted that when
a predicate operation returns zero, “only if every existing process is captured in an interac-
tion point does the operation make sense.” [9]. Suppose three Linda processes,p1, p2, and
p3, are executing concurrently in tuple space. Further suppose that each of these processes
simultaneously issues a Linda primitive as depicted in Figure 8.

?

Tuple Space

?

out(t).p3inp(t′).p2rdp(t′).p1

t :

Figure 8: Case Study for Linda predicate ambiguity: an interaction point in tuple space involving three pro-
cesses.

Assume no tuples in tuple space exist that match templatet′, except for the tuplet being
placed in tuple space by processp3. Together, processesp1, p2, andp3 constitute an interac-
tion point, as referred to by Jensen. There are several examples of ambiguity, but discussing
one possibility will suffice. First consider that events are instantaneous, even though time is
continuous. The outcome of the predicate operations is nondeterministic; either or both of
therdp(t′) andinp(t′) primitives may succeed or fail as they occur instantaneously with the
out(t) primitive.

For this case study, let the observable events be the Linda primitive operations themselves
(i.e., the communications). For example,out(t) is itself an event, representing a tuple placed
in tuple space. The predicate operations require additional decoration to convey success

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 245

or failure. Let bar notation denote failure for a predicate operation. For example,inp(t′)
represents the event of a successful predicate, returning value1, in addition to the tuple
successfully matched and removed from tuple space;rdp(t′) represents the event of a failed
predicate, returning value0.

The events of this interaction point occur in parallel, and an idealized observer keeping a
trace of these events must record them in some arbitrary order. Assuming perfect observation,
there are six possible correct orderings. Reasoning about the computation from any one of
these traces, what can we say about the state of the system after a predicate operation fails?
The unfortunate answer is “nothing.” More specifically, upon failure of a predicate operation,
does a tuple exist in tuple space that matches the predicate operation’s template? The answer
is, it may or it may not.

This case study involves two distinct levels of nondeterminism, one dependent upon the
other. Since what happens is nondeterministic, then the representation of what happened is
nondeterministic. The first level concerns computational history; the second level concerns
the arbitrary interleaving of events. Once we fix the outcome of the first level of nondeter-
minism, that is, determine the events that actually occurred, we may proceed to choose one
possible interleaving of those events for the idealized observer to record in the event trace.
The choice of interleaving is the second level of nondeterminism.

Suppose in the interaction point of our case study, processp1 andp2’s predicate operations
fail. In this case, the six possible orderings an idealized observer can record are the following:

1. rdp(t′) −→ inp(t′) −→ out(t)

2. rdp(t′) −→ out(t) −→ inp(t′)

3. inp(t′) −→ rdp(t′) −→ out(t)

4. inp(t′) −→ out(t) −→ rdp(t′)

5. out(t) −→ rdp(t′) −→ inp(t′)

6. out(t) −→ inp(t′) −→ rdp(t′)

The idealized observer may choose to record any one of the six possible interleavings in
the trace. All but the first and the third interleavings make no sense when reasoning about
the trace of computation. Depending on the context of the trace, the first and third inter-
leavings could also lead to ambiguous meanings of failed predicate operations. In cases 2,
4, 5, and 6, anout(t) operation occurs just before one or both predicate operations, yet the
events corresponding to the outcome of those predicates indicate failure. It is natural to ask
the question: “This predicate just failed, but is there a tuple in tuple space that matches the
predicate’s template?” According to these interleavings, a matching tuplet existed in tuple
space; the predicates shouldn’t have failed according to the definition of a failed predicate
operation. The meaning of a failed predicate operation breaks down in the presence of con-
currency expressed as an arbitrary interleaving of atomic events. This breakdown in meaning
is due to the restriction of representing the history of a computation as a total ordering of
atomic events. More specifically, within the context of a sequential event trace, one cannot
distinguish the intermediate points between concurrent interleavings from those of events
recorded sequentially. Reasoning about computation with a sequential event trace leads to
ambiguity for failed Linda predicate operationsrdp(t′) andinp(t′).

246 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

6.4 Clarity

Recording a parallel event sequentially does not preserve information regarding event si-
multaneity. With no semantic information about event simultaneity, the meaning of a failed
predicate operation is ambiguous. The transformation from a parallel event to a total order-
ing of that parallel event is one-way. Given an interleaved trace – that is, a total ordering of
events, some of which may have occurred simultaneously – we cannot in general recover the
concurrent events from which that interleaved trace was generated.

A fundamental principle, that of entropy, underlies the problem of representing the con-
currency of multiple processes by interleaving their respective traces of computation. The
principle of entropy provides a measure of the lack of order in a system; or alternatively, a
measure of disorder in a system. The system, for our purposes, refers to models of compu-
tation. There is an inverse relationship between the level of order represented by a model’s
computation, and its level of entropy. When a model’s computation has the property of being
in a state of order, it has low entropy. Conversely, when a model’s computation has the prop-
erty of being in a state of maximum disorder, it has high entropy. We state theloss of entropy
property for interleaved traces.

Property: (Loss of Entropy) Given a concurrent computationc, let tracetr be
an arbitrary interleaving of atomic events fromc, and lete1 ande2 be two events
within tr , such thate1 precedese2. A loss of entropy due totr precludes identi-
fying whethere1 ande2 occurred sequentially or concurrently inc.

By interleaving concurrent events to form a sequential event trace we lose concurrency
information about its computation. Interleaving results in a total ordering of the events of a
concurrent computation, an overspecification of the order in which events actually occurred.
Concurrent models of computation that proceed in this fashion accept an inherent loss of
entropy. A loss of entropy is not always a bad thing; CSP has certainly demonstrated its utility
for reasoning about concurrency for a long time. But loss of entropy does limit reasoning
about certain computational properties, and leads to problems such as the ambiguity of the
Linda predicate operations in our case study.

The relationship between the trace of a computation and the multiple views of that com-
putation’s history reflects the approach of VCR to model multiple possible losses of entropy
(i.e., views) from a single high level of entropy (i.e., parallel event trace). Furthermore, VCR
views differ from CSP trace interleavings in two important ways. First, VCR distinguishes
a computation’s history from its views, and directly supports reasoning about multiple views
of the same computation. Second, addressing the issue from theloss of entropyproperty, a
view is a list of ROPEs, not a list of interleaved atomic events. The observer corresponding
to a view of computation understands implicitly that an event within a ROPE occurred con-
currently with the other events of that ROPE (within the bounds of the time granularity), after
any events in a preceding ROPE, and before any events in a successive ROPE.

The parallel events feature of VCR makes it possible to reason about predicate tuple copy
and removal operations found in commercial tuple space systems. A parallel event is capa-
ble of capturing the corresponding events of every process involved in an interaction point
in tuple space. This capability disambiguates the meaning of a failed predicate operation,
which makes it possible to reintroduce predicate operations to the Linda definition without
recreating the semantic conflicts that led to their removal.

Consider, once again, the six possible interleavings a perfect observer might record for
the interaction point in tuple space shown in Figure 8, but this time, as recorded by six con-
current (and in this case, perfect) observers, as shown in Figure 9. The additional structure

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 247

1. . . . [previous ROPE] −→
[
rdp(t′) −→ inp(t′) −→ out(t)

]
−→ [next ROPE] . . .

2. . . . [previous ROPE] −→
[
rdp(t′) −→ out(t) −→ inp(t′)

]
−→ [next ROPE] . . .

3. . . . [previous ROPE] −→
[
inp(t′) −→ rdp(t′) −→ out(t)

]
−→ [next ROPE] . . .

4. . . . [previous ROPE] −→
[
inp(t′) −→ out(t) −→ rdp(t′)

]
−→ [next ROPE] . . .

5. . . . [previous ROPE] −→
[
out(t) −→ rdp(t′) −→ inp(t′)

]
−→ [next ROPE] . . .

6. . . . [previous ROPE] −→
[
out(t) −→ inp(t′) −→ rdp(t′)

]
−→ [next ROPE] . . .

Figure 9: Six views (lists of ROPEs) of the same interaction point in tuple space

within a view of computation, compared to that of an interleaved trace, permits an unam-
biguous answer to the question raised earlier in this section: “This predicate just failed, but
is there a tuple in tuple space that matches the predicate’s template?” By considering all the
events within the ROPE of the failed predicate operation, we can answer yes or no, without
ambiguity or apparent contradiction. In our case study from Figure 8, given both predicate
operations nondeterministically failed within a ROPE containing theout(t) and no other
events, we know that tuplet exists in tuple space. The transition to the next state doesn’t oc-
cur between each event, it occurs from one parallel event to the next. For this purpose, order
of events within a ROPE doesn’t matter; it is the scope of concurrency that is important.

6.5 Importance

Our case study of the Linda predicate operations is important for several reasons. First, we
demonstrated the power and utility of view-centric reasoning. Second, we provided a frame-
work that disambiguates the meaning of the Linda predicate operationsrdp() andinp(),
making a case for their reintroduction into the Linda definition. Third, despite the removal
of predicate operations from the formal Linda definition, several tuple space implementa-
tions, including Sun’s JavaSpaces and IBM’s T Spaces, provide predicate tuple matching
primitives. VCR improves the ability to reason formally about these commercial tuple space
implementations by providing a framework capable of modeling the Linda predicate opera-
tions.

7 Conclusions

In the first four sections, we introduced View-Centric Reasoning (VCR), a new framework
for reasoning about properties of concurrent computation. VCR extends CSP with multiple,
imperfect observers and their respective views of the same computation. VCR is a general
framework, capable of instantiation for different parallel and distributed paradigms. This
paper presents one example of VCR instantiation, for the Linda coordination language and
tuple space, including a discussion of tuple space composition

In the remaining sections, we pointed out the difficulties associated with reasoning di-
rectly about event simultaneity using interleaved traces, an approach supported by CSP. In

248 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

particular, we identified the loss of entropy property. We then characterized VCR’s entropy-
preserving abstractions of parallel events and ROPEs. VCR is a new framework for reasoning
about properties of concurrency. We demonstrated the usefulness of VCR by disambiguating
the meaning of Linda predicate operations. Finally, we pointed out how the relevance of
Linda predicate operations, variations of which exist in commercial tuple space implementa-
tions by Sun and IBM, compels us to create new instantiations of VCR to reason about safety
and liveness properties of such systems. Future work on such instantiations will also require
further investigation into tuple space composition.

The authors wish to thank all the referees who reviewed this paper. We are especially
grateful to the anonymous referee who reviewed the longer version of this manuscript, and
provided us with valuable corrections, insights, and future directions. In particular, an al-
ternative expression of VCR in the alphabetized relational calculus would facilitate drawing
VCR into Hoare and He’s Unifying Theories of Programming [11], and provide for a more
formal comparison between VCR and CSP.

References

[1] David Gelernter. Generative communication in linda.ACM Transactions on Programming Languages
and Systems, 7(1), January 1985.

[2] Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The MIT Press
Series in Artificial Intelligence. The MIT Press, Cambridge, Massachusetts, 1986.

[3] Eric Freeman, Susanne Hupfer, and Ken Arnold.JavaSpaces Principles, Patterns, and Practice. The Jini
Technology Series. Addison Wesley, 1999.

[4] Peter Wyckoff, Stephen W. McLaughry, Tobin J. Lehman, and Daniel A. Ford. T spaces.IBM Systems
Journal, 37(3):454–474, 1998.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International Series in Computer
Science. Prentice-Hall International, UK, Ltd., UK, 1985.

[6] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall International Series in Computer
Science. Prentice Hall Europe, 1998.

[7] Steve Schneider.Concurrent and Real-time Systems: The CSP Approach. Worldwide Series in Computer
Science. John Wiley & Sons, Ltd., 2000.

[8] Marc L. Smith. View-centric Reasoning about Parallel and Distributed Computation. PhD thesis, Uni-
versity of Central Florida, Orlando, Florida 32816-2362, December 2000.

[9] Keld K. Jensen.Towards a Multiple Tuple Space Model. PhD thesis, Aalborg University, November 1994.
http://www.cs.auc.dk/research/FS/teaching/PhD/mts.abstract.html.

[10] Gregory R. Andrews.Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-
Wesley, 2000.

[11] C.A.R. Hoare and Jifeng He.Unifying Theories of Programming. Prentice Hall, 1998.

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 249

A VCR Operational Semantics for Linda and Tuple Space

This appendix contains VCR for Linda and Tuple Space’s Scheme language-implemented
operational semantics, as described in Section 3.2.

(define F-delta

(lambda (state-LBar)
(let ((sigma (get-state state-LBar)) (LBar (get-LBar state-LBar)))

(let ((sigmaCur (get-cur-state sigma)))
(let ((new-state-LBar (G (F-LambdaBar

(list sigmaCur LBar)))))
(let ((newsigma (get-state new-state-LBar))

(newLBar (get-LBar new-state-LBar)))
(list (elaborate-sigma sigma newsigma) (newLBar))))))))

(define get-cur-state

(lambda (sigma)
(let ((next-sigma (get-next-state sigma)))

(if (null? next-sigma)
sigma
(get-cur-state next-sigma)))))

(define elaborate-sigma

(lambda (sigma newsigma)
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma))
(next-sigma (get-next-state sigma)))

(if (null? next-sigma)
(make-state Abar Tbar Pbar newsigma)
(make-state Abar Tbar Pbar

(elaborate-sigma
next-sigma newsigma))))))

(define F-LambdaBar

(lambda (state-LBar)
(let ((sigma (get-state state-LBar))

(LBar (get-LBar state-LBar)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(randclosures

(get-rand-subset LBar)))
(reduce-all

(as-list randclosures)
(list (make-state Abar Tbar ’() ’())

(set-diff LambdaBar randclosures)))))))

(define reduce-all

(lambda (closures state-LBar)
(if (null? closures)

(state-LBar)
(reduce-all (cdr closures) (reduce-1 (car closures) state-LBar)))))

Figure 10:VCRTS Operational Semantics. Functions:F-delta, get-cur-state, elaborate-sigma,
F-LambdaBar, reduce-all

250 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

(define reduce-1

(lambda (closure state-LBar)
(cond

((out? closure)
(reduce-out closure state-LBar))

((eval? closure)
(reduce-eval closure state-LBar))

((send? closure)
(reduce-send closure state-LBar))

((react? closure)
(reduce-react closure state-LBar)))))

(define reduce-out

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar)) (t (get-template closure)))

(let ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((newTbar (union Tbar (singleton t)))
(newPbar (union Pbar (singleton

(make-event ’Ecreated t)))))
(list (make-state Abar newTbar newPbar ’())

(get-LBar state-LBar)))))))

(define reduce-eval

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar)) (t (get-template closure)))

(let ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((newAbar (union Abar (singleton t)))
(newPbar (union Pbar (singleton

(make-event ’Egenerating t)))))
(list (make-state newAbar Tbar newPbar ’())

(get-LBar state-LBar)))))))

(define reduce-react

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar)) (LBar (get-LBar state-LBar)))

(let ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((tuple-j (get-tuple Abar (get-j closure))))
(let ((field-k (get-field tuple-j (get-k closure))))

(let ((new-field-k (set-field-type
(bind field-k (get-t closure)) ’Active)))

(let ((new-tuple-j (add-field (remove-field
tuple-j field-k) new-field-k)))

(let ((newAbar (union (set-diff Abar
(singleton tuple-j))
(singleton new-tuple-j))))

(list (make-state newAbar Tbar Pbar ’())
LBar))))))))))

Figure 11: VCRTS Operational Semantics. Functions:reduce-1, reduce-out, reduce-eval,
reduce-react

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 251

(define reduce-send

(lambda (closure state-LBar)
(let ((send-arg (get-send-arg closure)))

(if (delayed? send-arg)
(let ((LBar1 (union (cadr state-LBar)

(singleton (strip-delay send-arg)))))
(list (car state-LBar) LBar1))

(let ((closure-state
(reduce-let (strip-force send-arg) state-LBar)))

(if (null? closure-state)
(list (car state-LBar)

(union (cadr state-LBar) (singleton closure)))
(let ((LBar1 (union (cadr state-LBar)

(car closure-state))))
(list (cadr closure-state) LBar1))))))))

(define reduce-let

(lambda (closure state-LBar)
(let ((Lprim (get-forced closure)) (react (get-delayed closure)))

(let ((tuple-state
(if (rd? Lprim)

(reduce-rd closure state-LBar)
(reduce-in closure state-LBar))))

(if (null? tuple-state)
’() ;prim failed
(let ((bound-closure (bind (car tuple-state) react))

(newstate (cadr tuple-state)))
(list bound-closure newstate)))))))

(define exists?

(lambda (TBar f)
(if (null? TBar)

(’())
(let ((tuple (car TBar)))

(if (f tuple)
(tuple)
(exists? (set-diff TBar (singleton tuple)) f))))))

(define reduce-rd

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar))

(template (get-template closure)))
(let ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))

(Pbar (get-Pbar sigma)))
(let ((f ((lambda t) (match? template t))))

(let ((t (exists? Tbar f)))
(if (null? t)

(’())
(let ((newPbar (union Pbar (make-event ’Ecopied t))))

(let ((newsigma
(make-state Abar Tbar newPbar ’())))

(list t newsigma))))))))))

Figure 12: VCRTS Operational Semantics. Functions:reduce-send, reduce-let, exists?,
reduce-rd

252 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

(define reduce-in

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar))

(template (get-template closure)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((f ((lambda t)
(match? template t))))

(let ((t (exists? Tbar f)))
(if (null? t)

(’())
(let ((newTbar (set-diff

Tbar (singleton t)))
(newPbar (union Pbar

(make-event ’Econsumed t))))
(let ((newsigma (make-state

Abar newTbar newPbar ’())))
(list t newsigma))))))))))

(define G

(lambda (state-LBar)
(let ((sigma (get-state state-LBar))

(LBar (get-LBar state-LBar)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((Lprocs (get-active-procs Abar)))
(let ((randsub (get-rand-subset Lprocs)))

(genMeaning (as-list randsub)
(list (make-state

Abar Tbar Pbar ’())
LBar))))))))

(define genMeaning

(lambda (Lprocs state-LBar)
(if (null? Lprocs)

state-LBar
(let ((jk-pair (car Lprocs))

(sigma (get-state state-LBar)))
(let ((j (get-j jk-pair))

(k (get-k jk-pair))
(Abar (get-Abar sigma)))

(let ((tsubj (get-tuple j Abar)))
(genMeaning (cdr Lprocs)

(F-mu tsubj k state-LBar))))))))

(define F-mu

(lambda (tsubj k state-LBar)
(let ((meanings-of-tsubj-k (gen-set Lm tsubj k state-LBar)))

(car (as-list meanings-of-tsubj-k)))))

Figure 13:VCRTS Operational Semantics. Functions:reduce-in, G, genMeaning, F-mu

M. L. Smith et al. / VCR for Linda and Tuple Space Computation 253

define Lm

(lambda (tsubj k state-LBar)
(let ((sigma (get-state state-LBar))

(LBar (get-LBar state-LBar)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((tsubj1 (tupleUpdate tsubj k
(composition rand Lm-comp))))

(if (exists-active-field? tsubj1)
(let ((Abar1 (union

(set-diff Abar (singleton tsubj))
(singleton tsubj1))))

(process-redex tsubj1 k
Abar1 Tbar Pbar LBar))

(let ((Abar1 (set-diff Abar
(singleton tsubj)))

(Tbar1 (union Tbar
(singleton tsubj1)))

(Pbar1 (union Pbar
(singleton (make-event

’Egenerated tsubj1)))))
(process-redex tsubj1 k

Abar1 Tbar1 Pbar1 LBar))))))))

(define process-redex

(lambda (tsubj k Abar Tbar Pbar LBar)
(let ((redex (get-redex tsubj k)))

(if (linda-prim? redex)
(Lm-prim tsubj k

(list (make-state Abar Tbar Pbar ’())
LBar))

(list (make-state Abar Tbar Pbar ’())
LBar)))))

Figure 14:VCRTS Operational Semantics. Functions:Lm, process-redex

254 M. L. Smith et al. / VCR for Linda and Tuple Space Computation

(define Lm-prim

(lambda (tsubj k state-LBar)
(let ((sigma (get-state state-LBar)) (LBar (get-LBar state-LBar)))

(let ((Abar (get-Abar sigma)) (Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)) (redex (get-redex tsubj k)))

(let ((handle (get-handle redex))
(lprim (get-Linda-prim redex))
(template (get-template redex)))

(if (asynch-prim? lprim)
;asynchronous primitive
(let ((lambda3 (list lprim template)))

(let ((lambda2 (list ’force lambda3)))
(let ((lambda1 (list (’send handle

(list ’delay lambda2)))))
(let ((LBar1 (union LBar

(singleton lambda1)))
(tsubj1 (tupleUpdate

tsubj k reduce-asynch)))
(let ((Abar1 (union

(set-diff Abar
(singleton tsubj))

(singleton tsubj1))))
(list (make-state

Abar1 Tbar Pbar ’())
LBar1))))))

;synchronous primitive
(let ((lambda4 (list lprim template)))

(let ((lambda3 (list ’let t
(list ’force lambda4)
’in (list ’delay (list

’react tsubj k t)))))
(let ((lambda2 (list ’send

(get-self-handle state-LBar)
(list ’force lambda3))))

(let ((lambda1 (list ’send handle
(list ’delay lambda2))))

(let ((LBar1 (union LBar
(singleton lambda1)))

(tsubj1 (tupleUpdate
tsubj k
make-pending)))

(let ((Abar1 (union (set-diff
Abar (singleton tsubj))

(singleton tsubj1))))
(list (make-state

Abar1 Tbar Pbar ’())
LBar1)))))))))))))

Figure 15:VCRTS Operational Semantics. Function:Lm-prim

