Communicating Process Architectures 2002 167
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
10S Press, 2002

Reconnetics: A System for the Dynamic

Implementation of Mobile Hardware
Processes in FPGAs

Ralph MOSELEY

Computing Laboratory, University of Kent, Canterbury, KENT CT2 7NF
rm27@ukc.ac.uk

Abstract. The capacity to utilise FPGA designs in such a way that they are
compositional, mobile, and ‘interactive’, offers many new possibilities. This holds
true for both research and commercial applications. With the system described here,
hardware becomes as easy to distribute as software and the mediating links between
the two domains allow for manipulation of physical resources in real time. Designs
are no longer monolithic ‘images’ downloaded at one time, but mobile entities that
can be communicated over a distance and dynamically installed at run-time many
times and at many places. Such twin domain designs can be as complex as a
processor, or as small in scale as a few logic gates. The run-time system,
Reconnetics, provides an environment of high-level control over such elements,
which requires little knowledge of the underlying hardware technology.

1 Introduction

Field Programmable Gate Array (FPGA) technology is improving rapidly in terms of gate
size, on-chip memory and support infrastructure [1]. Conventional cycles of design for
such large devices can prove to be time-consuming and inflexible. It is now possible to
interact with reconfigurable devices in such a way that dynamic configuration is fast and
unobtrusive, even to an active unit.

The run-time system and associated infrastructure presented here allows the user to
control FPGAs locally or remotely. This functionality is further enhanced by the utilisation
of special design entities. These are developed using any conventional design tool and
further processed by software which generates a program. In this new form the design has
both a software and physical hardware component. The software part provides a mediating
link to communicating systems and the means to implement the circuit, which is detailed
within its code.

This paper details how the system is constructed, its basic model and its functionality. It
also introduces the ideas behind its transferable components, here defined as mobile
hardware processes (MHP).

Firstly, the background of the work is detailed and its relation to the current research in
the area. The system itself is then presented in overview, together with a more detailed
explanation of the main sub-systems. An exploration of the uses of the system is then
given, together with examples. Finally, some further developments and direction are noted.

168 R. Moseley / Reconnetics

2 Background

From the early developments of programmable electronics, the goal has always been to
capture some of the flexibility of logic and memory present in conventional software based
systems. FPGA technology took this a step further by being able to implement complex
circuits, logic and memory, in ways that were easily modifiable. A FPGA can be visualised
as a 2D-matrix, which contains a great many controllable resources. Using these resources,
complex logic circuits can be built up. Normally the user of a system will develop at a
high-level, utilising a design environment that has either Hardware Description Language
(HDL) or graphic design capability. The languages used can describe the -circuits
structurally or behaviourally. It has become possible, using languages based on C and
occam, to describe the functionality of a circuit algorithmically, that is, there becomes little
difference between a program written for a conventional computer and a FPGA. Where the
conventional computer program may be compiled to native code, the FPGA-targeted
program is synthesised to gates and finally placed on to the surface of the matrix. For a
large design this can take many minutes. Normally, a design is a discrete block, not
divisible or alterable, fed into the FPGA at some point, such as power-up.

Relatively recent developments allow configuration of these devices to take place while
it is active, modifying only specific areas. For example, a circuit may take up half of a
device’s resources in a roughly rectangular area, on one side of the matrix. This may be
active, in the sense that it is powered up and functioning, while the free half of the circuit is
configured with a new design.

There is still a large gap between the design capabilities of FPGA hardware and the
software which supports it. Designs are, in the main, usually downloaded as one large
image. Even though the general view of the engineer is based on components or modules,
this is relegated to a ‘static’ design-time.

Previous work in this area has realised both the difficulties and possible applications of
such devices to be configured on-the-fly [2]. The work has primarily focused on
developing a means of mapping designs at run-time[3], introducing ideas such as logic
caching [4][5] and dynamic synthesis [6]. Compton and Hauck offer an overview of
reconfigurable systems to date [7].

The work detailed in this paper builds upon efforts by Xilinx and others, utilising the
dynamic reconfiguration capabilities in the Virtex series ICs [8]. The scope of this work is
centrally defined by the concept of introducing flexibility to the FPGA design process in
the form of mobility. For example, it should be possible to place a design as a reusable
compositional unit anywhere on the surface of a FPGA, or transfer it over networks. Going
a step further than this, the work attempts to bridge the gap between the physical circuit
and any software which engages with it. This may be for information exchange, mobility
of the entity itself, or for manipulating the actual form of the hardware object.

To allow access to low-level resources and fast manipulation of the bitstream, Xilinx
JBits Java classes were used, as well as other techniques, developed as the system evolved.
It is beyond the scope of this paper to explain the usage of JBits or discuss the hardware
mechanisms of low-level dynamic reconfiguration [9]. Such information is available
elsewhere — particularly through the Xilinx website [10] and its accompanying library of
applications papers.

While JBits provided a means of low-level access to resources and to dynamic
reconfiguration options, methods had to be developed for manipulating processes as a
whole and the individual components contained within them. With the JBits classes
providing access to low-level resources and routing, there is still a question of handling
various collections of resources which form a process; a very complex, physical object.

R. Moseley / Reconnetics 169

Methods were required for copying CLBJII and associated wiring within and outside of
their original bitstreams. Mechanisms were also added for manipulating connection trees,
BRAMSs™[11], physical pads and the capability to read in hex data files.

Many high-level features of JBits were not required, but can be integrated if so desired;
for example, ‘cores’ can be turned into MHPs for manipulation in real time at a high level.

3 System Overview
Reconnetics System

Device
Design
Control
TCP/IP Desi Program
Link esign / DCP
Server > oot | 4—p| Ensine -
System Supervisor
(DES) *a
Pool
Device
Node
Capture
Bitstream |—| System ol

Figure 1. Reconnetics overview

The Reconnetics system allows dynamic interaction with a reconfigurable device. The
user supplies designs, as a synthesised ‘bitstream’, written with any suitable HDL or
graphic tool. The design itself can be as large and as complex as required, although it
would make more sense to build from smaller blocks, compositionally. These are captured
and placed in an archive for later utilisation by the design engine. The engine is directed by
a high-level user program, to load, place and interact with these processes, as well as
manage on-board resources.

Develop Submit Develop Run DCP in
design, produced Design Design
synthesise Ly bitstreamto | 3| Control L »! Engine/

and Capture Program Supervisor
target system (DCP) (DES)

Figure 2. Development cycle

The language used to control the engine is deliberately simple and focused at a high
level; all low-level wiring and resource handling is taken care of by the system itself. A
user needs only to decide which processes need to be connected together and what kind of
interaction is required. It may be that only placement is desired, or diagnostic work. This is
possible but a wider scope of control and communication is also offered. For example,
processes can be interacted with by Reconnetics in such a way that a user can supply input

' Configurable Logic Block, a programmable unit containing logic, flip-flops and multiplexors.
* Block Random Access Memory, a discrete memory unit, separate to the main programmable matrix area.

170 R. Moseley / Reconnetics

directly to the hardware without external I/O connections or other methods. This is true
also for collecting output, making the system particularly suitable for development work.

The capture system analyses a bitstream, which can be the product of any design
method or language (HDL, schematic etc.). Its task is to produce a Java class which can
rebuild the circuit at any given point on the surface of an FPGA. This includes status of
clocked logic, routing and any other necessary resource usage. The class is primarily
produced for use by the run-time system but is sufficiently self-contained to be
incorporated into any user written Java program too. After capture, the class is placed in an
archive known as the pool, which is simply a directory. Together, when instantiated in
their appropriate environments, they are known as a MHP.

The generated Java program’s principal function is to act as a vehicle for the circuit and
to reproduce it at any given point on an FPGA matrix. Another function of the Java
program is to act as a mediator between the Design Engine/Supervisor (DES) and the
physical circuit. A user can communicate with the process in this way, collecting
information or directly manipulating the circuit’s form or connections.

DES manages the device itself, along with organisation of the processes. It can run user-
written scripts which direct activities, these are known as design control programs (DCP).
All low-level resource management is left to DES, making the actual command language
very simple, an example of which is given later. The language also includes various
diagnostics, if required.

The server system provides the ability to communicate over TCP/IP to device nodes on
the current machine which is running Reconnetics, or a device at a remote location —
identified by an IP address. It is the job of the server system to synchronise between
Reconnetics’ internal representation of a device and the device itself.

4 Capture

This section considers the capture Eiys‘[em in detail; if you do not require a low-level
perspective, then re-join at section 5-.

As stated above, the main task of the capture sub-system is to produce Java classes
which can reproduce a circuit at some other location. It must capture all essential design
data, such as the status of multiplexors, look-up tables (LUTs) and routing. A large number
of resource types are available in devices — some of which are not mapped into JBits at this
time.

During analysis of a circuit this discrepancy led to incomplete route tracings. This was
resolved by building in a certain amount of design knowledge. A first scan by the system
makes a list of incomplete nets. Solutions to an incomplete net can be found by recognising
specific attributes of the end resource and by being aware of disrupted routes elsewhere,
which conform to certain criteria. In this way, the system can apply a patch to fix an
incomplete tracing.

This method has not yet been known to fail in its attempt to re-establish a problem
design. It is possible that this technique could be applied to correct corrupted bitstreams, or
instantiated designs, up to a certain point.

A further optional stage is available, called pre-capture, which adds connection points
to a process, allowing several modes of communication with other processes, or external
I/O. Further details are provided below.

3 A suitable starter guide is available from Xilinx [12].

R. Moseley / Reconnetics 171

4.1 Scanning

Here resource usage is determined and mapped. Three different areas are checked: the
CLBs, BRAMs and external I/O. The supplied bitstream is analysed and each resource
found to be in use within the design is marked for further examination.

When the entire matrix bitstream has been scanned, an object is built which contains the
details of the used resources and their relationships to each other, such as positioning. This
object is a sub-matrix of the larger containing matrix within the bitstream. The sub-matrix
can be manipulated in terms of its geometry; it can use its default shape, or have new
positioning imposed on it, while still maintaining correct connections.

4.2 Code Production

The scanning procedure gives a basic map of the CLB and BRAM usage. This map is then
used to analyse, in greater depth, specific resources and their settings. Finally, a program is
generated which describes the implementation. There are many types of resource contained
within each of the basic areas, whose state has to be captured and translated into program
statements, such as multiplexors, switches, LUT arrays and routing, some of which may be
to external I/O points.

The Java program produced is made up of several key methods. These allow a control
program to build, destroy, communicate and route a process’s physical circuit. From the
point of view of the average user of the system, this method information is not required.
DES and the command language take care of such detail.

The basic ‘shape’ of the design is kept intact; that is, the map which shows resource
usage also holds the basic relational details. At the time of code production such detail is
captured by producing offset row and column data between each CLB and a point of
origin. The entire design can then be relocated anywhere on the surface of an FPGA, while
maintaining its relational and connection constraints. This ensures that issues such as
timing and gate propagation are met, as they were when initially compiled. It is possible to
override positioning data for CLBs if necessary.

Used BRAMs are analysed and separate methods built for their construction. As before,
in the case of the other resources, appropriate statements are generated to implement
correct settings. Data content in the BRAM is translated into an array format, held in the
method, which is downloaded at build-time. Finally, statements are written for output
wiring. This connects the BRAM to its owning process. It is important to note here that it
is possible to position the BRAM at any BRAM location and it will still be wired to
correctly. This makes it easy for a run-time system to place and route such resources in
whatever way is most suitable at the time.

In all the above produced code, no routing data is generated that leads to external IOB
positions, however, details are stored and checked, for uniqueness and integrity. Only end
point IOB information is used as default connection data, stored in the generated program.

4.3 Design Considerations and Constraints

A process is extracted from a configuration bitstream by analysing resource usage and I/O
requirements. Nets which lead to I/O points are viewed as the process-to-be’s main
interface points to the outside world. If such points are named in an accompanying User
Constraints File (UCF), in the usual format, then the name persists through from the
design/programming stage to run-time.

172 R. Moseley / Reconnetics

There are few alterations necessary when supplying a design to the capture system;
BRAMs will be automatically captured and available for run-time loading. Bi-directional
wires are simply split into two uni-directional wires.

While processes can easily be used on devices they were originally compiled for, there
is also a degree of device independence. Re-use capability is determined by three main
parameters: the actual device type, clock speed and clock routing. Using this system the
device type (currently within the Xilinx Virtex series) can be changed quite easily. A
design originally intended for a small device (such as a XCV50), can easily be transferred
to a much larger device and vice versa, resources allowing. The clock speed can be
maintained at its old frequency, or changed within the DCP. The clock routing for a
specific bitstream can also be altered, with the supplied tools.

A process owns its output routing but not any wires connected to external inputs. When
the process is unloaded, its internal logic and routing is released, as well as any output
links that it owns. Routing to a process’s input port persists after its destruction and must
be unrouted (if required) by the owning unit.

4.4 Input / Output Connection Points

It is possible to pre-process a bitstream, so that any I/O is passed through a special
connection point. This pre-processing stage is particularly useful for designs which
already exist (for example, as a legacy design) and there is a need to turn it into a fully self-
contained process. It is also possible (though not as simple), to manually add a connection
point, using the system itself at run-time. In both cases a special system object known as
procio is used. This unit added in is actually very small, being only a quarter of a CLB
for each wire.

clock in

PROCIO —» direct_out
input ———P

—» clocked_out

Figure 3. PROCIO unit showing main connections

There are three functions for the I/O points: to decouple, to simplify routing to other
processes, and finally to act as a controllable gateway to the world. The idea here is to
allow a degree of control and buffering at I/O points. When this is done it is possible to
control the connection point with DCP commands, such as inputON and inputOFF. The
functionality of the procio object allows I/O signals to be disconnected, clocked, or fed
straight through.

4.5 Recapture

Recapture is the name given to the ability to capture a process at run-time. Many of the
techniques used in the pre-run-time capture stage are reused within recapture, although
obviously initial design details are not available (such as the data contained in the UCF,

R. Moseley / Reconnetics 173

giving port labels). Information for capture at run-time is gathered from two sources; the
instantiated circuit and the encapsulating Java program, via communication with its
port () method. These two units that make up an MHP provide current resource details,
structure, and port I/O information. Together, the information gathered allows a new entity
to be produced. This contains any changes made to it since its initial instantiation, captured
in real time, while maintaining persistence of initial design semantics and high-level user
details, such as port names.

This generated program is then dynamically compiled and its separate files organised
into the appropriate directories: .java to the design directory and .class to the pool
directory. This all occurs at run-time, automatically, without the user intervening in any
way. The new MHP can then be used in the same user program, if so desired.

5 Design Engine / Supervisor

When DES runs a user-supplied program, it initialises a device model, which is a
representation of the external physical device. The processes, initially in the form of the
Java classes, are loaded into memory via a Java class loader from the archive pool.
Processes can then be directed to instantiate onto the FPGA, route to I/O and interact.

DCP
I
Host
System I | Pool
I | Desien
¢ ¢ ¢ Engine/Supervisor
N N N Processes
| | Model
Readback Implement
) Server
Device System
Node

S Physical

Device

Figure 4. Run-time visualisation

This is visualised in figure 4. The readback and implementation loop, which in reality takes
place over a local or network TCP/IP connection, occurs only when necessary, such as an
event instigated on either side. Any exchange of data is limited to packets rather than
whole bitstreams, to enable fast update or information retrieval.

174 R. Moseley / Reconnetics

One of the main tasks of DES is to run the DCP script written by the user. There are
several areas that this control language deals with:

e [nitialising device and internal representation model. This includes commands
which configure the system to a connected device (which may be local or remote),
so the model, for example, conforms to the correct type.

e Location or port definitions. Locations can be assigned names which can be used
for referencing within the program. Some locations, such as a process’s ports, have
already defined names associated with them.

e Device control. This includes such commands as resetting the device, clock
stepping, and forcing a ‘readback’.

e Process control. A number of commands are available for the placing and routing
of processes. They may be automatically placed, or organised within a user-
specified pattern. Various ports (or locations) can be defined on a process, then
observed or linked to the I/O of other processes or external device pads. Processes
can be unloaded and the resources associated with them can be freed for further
use. A process’s I/O can be controlled and switched on and off for isolation. A
process may also be ‘re-captured’, for storage and transport to another location.

e [nterconnect. This set of commands allows defined locations to be routed or
unrouted. Locations can be device pads, IOBs or process 1/O.

e [Interaction. Using defined locations it is possible to collect data from active
processes, which can then be acted on.

e Program sequence and control. A range of repetition and control structures exist.

e Diagnostics. Although most low-level activity is shielded from the user, it is still
possible to use diagnostic functions, if required, to check circuits. A good example
of this is the tree command, which enables a user to view a hierarchical tracing of
connections from a defined point.

6 Communication

Interaction is possible between the processes themselves and between the processes and the
system. Inter-process communication is, of course, wire-based. Such wire connections can
be controlled within the user-written DCP.

The system itself can observe and interact with the instantiated design, by the user
defining locations, usually registers, in the circuit. These usually are clocked registers,
which may be, for example, buffered I/O points. As well as collecting data from such
points, it is also possible to set values at inputs.

Processes can be placed (using load()), interacted with and destroyed (using
unload()). If a design as a whole is to function properly during its manipulation (in
particular, its destruction), then certain protocols need to be adopted.

A problem could occur, for example, when some communication may be taking place
between processes and the system wants to extract one of them. This situation necessitates
the use of communication signals to determine the state of a process at a given time. A
protocol in this way could be used to interact with the run-time system to make its safe
extraction possible. This is also true during the re-capture of a process when it must first
enter a ‘safe’ state that must be signalled, via defined points.

The least interfering and non-invasive way to achieve safe extraction is to isolate the
process. This involves switching off any inputs to the process and possibly generating a

R. Moseley / Reconnetics 175

stand-by signal to the connected units. Input isolation is achieved through the
inputOFF () command. It would be a simple matter to provide the correct hand-shaking
protocol and routing for a stand-by signal in processes, if this is required.

7 Using the System

There are several ways that the system can be used. At the most simplistic level it can be
used to build designs, controlling placing and routing to a specific pattern. This may
include no dynamic interaction. The bitstream produced can then be used, as is normally
the case, to configure devices. A further simple use of the system would be as a distributor
of updates to hardware.

The main use of the system is for dynamic design, which envisages a design cycle
extending into run-time. Instantiated processes can be interacted with, verified and data
downloaded from. The device can be amended, as required, on specific events taking
place. A device may also request certain processes to be instantiated; for example, on a
fault condition arising.

Program Description Tests
Pulse Counter Two processes (pulse generator and pulse Basic functioning of
counter) plus link system
Microcontroller 1 Larger more complex process (third party Handling and placement
design). Program runs on hardware and of larger processes.
interacts with DES Interaction
Microcontroller 2 As above but utilising multiple processes Installation of multiple
placed dynamically at staggered points in complex processes,
time dynamically
Flash Process to link to various external pads External IOB linking
Datalink Setup various processes experiment with Inter-process
communication protocols communication
Generator One process communicates with DES to FPGA initiated control
request loading of new processes
Reconfigurable Computer | On-going computer design, based on | Large application. Tests
reconfigurable components data sharing, swapping
various units, sharing of
data with host system

Table 1. Test programs

Table 1 shows a suite of test programs devised to experiment with various possibilities.
More information on these is available at the Reconnetics website [13].

176 R. Moseley / Reconnetics

8 Performance

Table 2 shows averaged performance figures in milliseconds of various activities with the
system. They are intended to give a rough idea of system capabilities rather than precise
information. The system, as currently implemented, is pure Java with JBits API extensions.
There are identifiable areas for optimisation and various techniques could be used to
achieve speed-up. If speed is the critical factor, rather than adherence to the platform
independence of Java, then certain functionality can be sped up using the Java Native
Interface (JNI) to a pre-compiled language. All data was gathered on 1GHz computers and
a Celoxica RC1000-PP board incorporating an XCV1000 Xilinx FPGA.

RC1000-PP Board (XCV1000 device)

Local Over LAN 100Mbps

Process 1 Process 2 Process 1 Process 2
CLB size 2 35 2 35
Auto place 2000 8300 2600 8930
User place 1890 8000 2200 8812
Destroy 140 420 250 600
Recapture 4000 12000 5580 13200
Recapture
and deploy 7500 15000 8570 16500
Single wire
link 1000 1200 1580 1780
Variable
Read 800 1200 1500 1320

Table 2. Performance
9 Example 1

Example 1, below, shows a DCP which loads a microcontroller (labelled kprocessor in
the archive), with a defined output port named REGOUT and a width of 8. This
microcontroller is available from Xilinx in Electronic Design Interchange Format (EDIF)
[14]. The hardware design could have equally been developed by the user with a structural,
behavioural or algorithmic language, inside an electronic design environment.

We will now step through the program. Initialisation concerns selecting the correct
internal representation model, initial bitstream (or canvas) and choice of connection to the
physical device over a network or locally. This is done with the device () statement. In

R. Moseley / Reconnetics 177

this case the device is a XCV300, with an appropriate blank bitstream and an IP address of
192.168.0.168. Once connected, the device is reset and the clock frequency selected.

Two processes are then defined using the process () statement. This takes the form of
an identifying name and the name of the archived process class in the pool. The first
process is then loaded up using an automatic placing method. The Java program builds the
circuit and stays resident to act as mediator between the run-time system and its physical
side. A variable is then defined for use in the program; this is associated with an output
register on the process and its bit size defined. Names set at design-time are still available
and persist through to run-time programming. In this case the var statement consists of the
variable name reg0, on processorl, with a port named REGOUT and the width being 8
bits.

The next step involves loading a program into the BRAM, which is connected to the
processor using the readHex () command. In the example, a simple counting program
was fed to the processor. This increments the register, which is then printed for
confirmation. Note here how it is the process’s Java program which is collecting the value
from the physical circuit and passing it back to the run-time system.

When the loop is terminated, the second process, defined earlier, is then loaded. A
wait () is used to keep the hardware processes running until the reg0 variable reaches
the value 200. Finally, both processes are unloaded. Unloading first releases used resources
on the FPGA matrix and then used resources within the host, such as the running process
object.

// initialise device

device (xcv300, null300GCLK1l, 192.168.0.168) ;
reset () ;

frequency (10); // set a clock speed of 10MHz

//get the processes

process (processorl, kprocessor) ;
process (processor2, kprocessor) ;
//load a process

load (processorl) ;

//define test location
var (reg0, processorl, REGOUT, 8);

// load program into BRAM
readHex (0, 0,16, “test.hex") ;

do {
message (“reg0:") ;
print (rego) ;

} while (reg0 < 10);

// load the next process
load (processor2) ;

wait (reg0,200) ;

unload (processorl) ;
unload (processor2) ;

Example 1. Simple DCP

178 R. Moseley / Reconnetics

10. Example 2

This example shows the two different kinds of communication, between processes and
between process and the run-time system.

DESIGN ENGINE / SUPERVISOR (Run-Time system)

A A
v v
Counter Pulse Generator
(Java object) (Java object)
finishAt freqSetup
currentCount done
Counter < pulseln pulseOut Pulse Generator
(hardware process) (hardware process)
g
stop startStop

Figure 4. Communicating processes

Two processes are used; a 16-bit counter and a pulse generator. Figure 4 clearly shows
how the Java program acts as a mediator between the run-time system and its hardware
circuit, once instantiated. The counter counts pulses on its pulseIn port. The current
value appears on its currentCount port. When the value (programmed via finishAt)
has been reached, a stop signal is generated. The pulse generator process can be
programmed with a frequency rate and stopped through its startStop port.

Using a DCP, the system is initialised and processes loaded with manual place this time:

device (xcv1000, nulll000GCLK3, localhost) ;
reset () ;
frequency(3.5); // set a clock speed of 3.5 MHz

process (counter, counterlé6) ;
process (generator, pulsegen) ;

loadAt (counter, 10,10);
loadAt (generator, 20,10);

//define test variables

var (currentCount, counter, COUNTOUT, 16) ;
var (finishAt, counter, COUNTIN, 16);

var (stop, counter, STOPOUT, 1);

var (pulseIn, counter, PULSEIN, 1);

var (done, counter, FINISHED, 1) ;

var (fregSetup, generator, FSETUP 8);
var (pulseOut, generator, PULSEOUT, 1) ;
var (startStop, generator, ONOFF, 1);

R. Moseley / Reconnetics 179

Links are established:

link (stop, startStop) ;
link (pulseOut, pulseln) ;

The frequency and counter are programmed using the inputVval () command:

inputvVal (fregSetup, 10);
inputval (finishAt, 1000) ;

The process counts the pulses, taking done high when it has received the amount of
specified pulses. During the counting time, the run-time system simply waits:

wait (done, 1);
To show the transport of a process from one location to another we can capture it:

recapture (counter, new_ counterlé6) ;
then release resources:

unlink (stop) ;
unlink (pulseOut) ;
unload (counter) ;

Finally, re-deploying somewhere else:
process (counter2, new counterlé6) ;

load (counter2); // using auto-place

Variables can be then defined again and links re-established. The counter can be told the
required amount of pulses and another wait () statement executed. When finished, the
program can end with resources being released, through unlink () and unload ().

11. Further Development

Besides on-going improvements to the system, there are two main enhancements that
research has brought to light. They are worth mentioning, although it is beyond the scope
of this paper to detail them fully here.

The first concerns the ability of such run-time systems to be embedded into devices
themselves, allowing self-reconfiguration.

The second idea follows from this, in allowing the processes themselves some degree of
autonomy, providing access to configuration features. These have been named intelligent
Mobile Hardware Processes (iIMHP).

Such work as described here implies a merging of the software and hardware domains,
creating entities that are composites of both worlds and realising the benefits of each.

12. Acknowledgements

Thanks to Xilinx for developing the Virtex hardware and most all to the JBits team who
have been very helpful in my endeavours. Thanks also to my supervisor, David Wood, and
the University of Kent Computing Laboratory for supporting this project.

180 R. Moseley / Reconnetics

References
[1] Xilinx. Virtex 2.5V Field Programmable Gate Arrays Data Sheet, Xilinx Inc. 2001.

[2] N.McKay and S. Singh, Dynamic Specialisation of XC6200 FPGAs by Partial Evaluation, Field
Programmable Logic and Applications. Tallinn, Estonia. Springer-Verlag, 1998.

[3] M. Wirthlin and B. Hutchings. Sequencing Run-Time Reconfigured Hardware with Software, Dept. of
Electrical and Computer Engineering, Brigham Young University, Utah, 1996.

[4] P. Lysaght and J. Dunlop. Dynamic Reconfiguration of FPGAs, Dept. of Electronic and Electrical
Engineering, University of Strathclyde, 1995.

[5] K. Compton and S. Hauck. Configuration Caching Techniques for FPGA, University of Washington,
Seattle, 2000.

[6] N. McKay and S. Singh. Debugging Techniques for Dynamically Reconfigurable Hardware,
Proceedings: IEEE Symposium on FPGAs for Custom Computing Machines: April 21-23,1999, Napa
Valley, California, edited by K.L. Pocek and J.M. Arnold (IEEE Computing Society,1999).

[7] K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems and Software, Dept. Of
Electrical Engineering, University of Washington, Seattle, 2000.

[8] Xilinx. Technical Overview, Xilinx Application Notes XAPP097, Xilinx Inc. 2000.
[9] Xilinx. Dynamic Reconfiguration, Xilinx Application Notes, XAPP(093, Xilinx Inc. 1998.

[10] Xilinx. Xilinx Home Page. Available at:
http://www.xilinx.com

[11] Xilinx. Using the Virtex Block SelectRAM+ Features, Xilinx Application Notes XAPP130, Xilinx Inc.
2000.

[12] Xilinx. Xilinx FPGAs: A Technical Overview for the First-Time User, Xilinx Application Notes,
XAPP097, Xilinx Inc. 1998.

[13] R. Moseley. Reconnetics Home Page, 2000. Available at:
http://www.ralph-moseley.co.uk/reconnetics

[14] Xilinx. 8-Bit Microcontroller for Virtex Devices, Xilinx Application Notes XAPP213, Xilinx Inc. 2000.

