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Abstract. occam-pi is a programming language based on the CSP process algebra and
the pi-calculus, and has a powerful syntax for expressing concurrency. occam-pi does
not however, come with interfaces to a broad range of standard libraries (such as those
used for graphics or mathematics). Programmers wishing to use these must write their
own wrappers using occam-pi’s foreign function interface, which can be tedious and
time consuming. SWIG offers automatic generation of wrappers for libraries written in
C and C++, allowing access to these for the target languages supported by SWIG. This
paper describes the occam-pi module for SWIG, which will allow automatic wrapper
generation for occam-pi, and will ensure that occam-pi’s library base can be grown
in a quick and efficient manner. Access to database, graphics and hardware interfacing
libraries can all be provided with relative ease when using SWIG to automate the bulk
of the work.

Introduction

This paper presents a tool for rapid and automated wrapping of C libraries for occam-π [1],
a small and concise language for concurrent programming. While occam-π already has a
foreign function interface (FFI)[2], which provides the means for extensibility, creating and
maintaining large scale foreign library support manually is time consuming. However, by
automating the wrapping of foreign libraries, access can be provided to a large existing code-
base from within occam-π, without a prohibitively large investment in time. Both language
developers and users will benefit, as both will be able to easily add support for new libraries.

SWIG (Simple Wrapper and Interface Generator)[3] is a multi-language foreign func-
tion interface generator, providing the infrastructure needed for automatic library wrapping.
Support for the generation of wrappers for individual languages is provided by self-contained
modules, which are added to SWIG. This paper describes the occam-π module1, which was
created by the authors to enable automatic generation of occam-π wrappers for C code.

We start the paper by providing details on the background and motivation for this work
and the tools used. In section 2 we give a brief overview of the occam-π foreign function
interface, followed by implementation details of the occam-π module for the SWIG frame-
work in section 3. Section 4 provides an overview of using SWIG, and section 5 has exam-
ples of using SWIG to wrap a simple fictitious C library as well as how occam-π can be
integrated with the OpenGL library. Finally, section 6 provides concluding remarks and ideas
for future work.

1The occam-π module is not at the time of writing part of the official SWIG distribution.
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1. Background and Motivation

occam-π is a programming language designed explicitly for concurrent programming and
is a concise expression of the CSP[4][5] process algebra. It also incorporates ideas from the
pi-calculus[6]. While occam-π is a small language, it is nevertheless powerful enough to
express applications ranging from control systems for small robots[7] to large applications
modelling aspects of the real world[8]. It is not however, always feasible to program an
entire solution exclusively in occam-π. Applications needing to deal with file I/O, graphical
user interfaces, databases or operating system services, are not possible unless a very large
existing code-base is rewritten in occam-π, or made available to occam-π through existing
foreign libraries implementing such services.

occam-π’s foreign function interface allows users to reuse existing C code or write
certain portions of an application in C. It does however require a large amount of wrapper
code to interface the library with occam-π. This is not a big problem when dealing with
small amounts of code, but writing a wrapper for even a relatively modest library can quickly
become time-consuming, tedious, and therefore error-prone. This becomes a further problem
when one considers that the library being wrapped can evolve over time, and the wrappers
must be updated to reflect changes in the library in order to be useful.

Without better access to existing libraries and code, it may be difficult to argue that
occam-π is a better choice for architecting large, complex systems than other languages. It
must be made simpler to leverage the large amount of existing work and infrastructure that is
provided through operating system and other libraries. We believe that it is imperative for the
future success of occam-π that it does not just evolve the mechanisms, which will be needed
to express new and exciting concurrent ideas, but also that it is able to make use of the large
amount of existing work, in the form of system, graphical and database libraries, which has
gone before it, and which will add functionality to occam-π.

1.1. Interface Generators

The work presented in this paper is not the first to provide automatic wrapping of foreign
library code for occam-π. The occam to C interface generator Ocinf[9] was the first widely
available interface generator for occam. Ocinf can generate the glue code to wrap C func-
tions, data structures and macros so that they could be used from occam2. Since the occam-
π syntax is a superset of occam2’s and they share the same FFI mechanisms, it would still
be possible to use Ocinf to generate interfaces for occam-π. Ocinf however, has not been
maintained since 1996 and relies on outdated versions of Lex and Yacc[10]. It has proven
to be difficult to get Ocinf to work, since Lex and Yacc have evolved and no longer support
much of the old syntax. Making the Ocinf code base work with the current versions of the
tools would require rewriting significant portions of 7,000 lines of Lex and Yacc productions.

With the emergence of SWIG as the de facto standard in open source interface and
wrapper generation, we chose not to pursue the Ocinf tool further. The SWIG framework
is a general purpose code generator which has been in constant development since 1996. It
currently allows more than 11 languages to interface with C and C++ code, including Java,
Perl, Python and Tcl. SWIG is a modular framework written in C++, allowing the addition of
a new language specific module providing the means for adding interface generation support
for virtually any programming language with a C interface. Additionally, SWIG comes with
good documentation and an extensive test suite which can help to ensure higher levels of
reliability.

Uses of SWIG range from scientific[11] to business[12] to government. While other
interface generators exist, they are generally language-specific and not designed to provide
wrapper generation capabilities for other languages. SWIG was from the outset designed to
be language-independent, and gives it a wide and active user base.
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1.2. SWIG Module Internals

SWIG itself consists of two main parts, an advanced C/C++ parser, and language specific
modules. The C/C++ parser reads header files or specialised SWIG interface files and gener-
ates a parse tree. The specialised interface files can provide the parser additional SWIG spe-
cific directives which allow the interface file author to rename, ignore or apply contracts to
functions, use target language specific features or otherwise customise the generated wrapper.

The language specific module inherits a number of generic functions for dealing with
specific syntax. Functions are overloaded by the modules and customised to generate wrapper
code for a given language. The actual wrapper code is generated after the parse tree has
undergone a series of transformations, some of which a specific module may take part in.
Library functions are provided to allow easy manipulation and inspection of the parse tree.
The SWIG documentation[13] provides more detailed insight into how SWIG functions and
provides details on how one would go about writing a new language module.

2. An Overview of the occam-π FFI

The occam-π FFI requires that foreign C functions be wrapped up in code that informs the
occam-π compiler KRoC [14] how to interface with a given foreign function. This is re-
quired as the calling conventions for occam-π and the C code differ. The wrapper essentially
presents the arguments on the occam-π stack to the external C code in a manner that it can
use. We will illustrate the wrapping process with the following C function:

int aCfunction(char ∗a, int b);

occam-π performs all FFI calls as a call to a function with only one argument, using C
calling conventions. The argument is a pointer into the occam-π stack, in which actual argu-
ments reside, placed there by virtue of the external function signature provided to the occam-
π compiler. The arguments on the stack are all one word in length, and the pointer into the
stack can therefore conveniently be accessed as an array of ints. In order to correctly access
an argument, it must first be cast to the correct data-type, and possibly also dereferenced in
cases where the argument on the stack is in fact only a pointer to the real data.

void aCfunction(int w[]) {
∗(int) ∗(w[0]) = aCfunction((char ∗)w[1], (int)w[2]);

}

The code above defines an occam-π callable external C function with the name
aCfunction which takes an array of ints. This functions job is to call the real aCfunction

with the provided arguments, which then performs the actual work.
The array passed to aCfunction contains pointers to data or in some cases the data

itself, which is to be passed to the wrapped function, as well as a pointer used to capture the
return value of the called function. While a function in C may have a return value, external
functions in occam-π are presented as PROCs, which may not return a value directly. Instead
reference variables can be used for this task. In cases where a function has no return value one
simply omits the use of a reference variable to hold the result of the called external function.

In essence, the wrapper function just expands the array int w[] to its sub components
and typecasts them to the correct C types that the wrapped function expects. The occam-π
components that completes the wrapping are defined as follows:

#PRAGMA EXTERNAL "PROC C.aCfunction(RESULT INT result,
BYTE a, VAL INT b) = 0"
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INLINE PROC aCfunction(RESULT INT result, BYTE a, VAL INT b)
C.aCfunction(result, a, size)

:

The first component is a #PRAGMA compiler directive which informs the compiler of the name
of foreign function, its type and parameters. The #PRAGMA EXTERNAL directive is similar to
C’s extern keyword. Function names are prefixed with one of “C.”, “B.”, or “BX.” for a
standard blocking2 C call, a non-blocking C call and an interruptible non-blocking C call
respectively. This prefix is used to determine the type of foreign function call, and is not
used when determining the name of the external C function, which should in fact be prefixed
with an underscore instead (regardless of its type): the PROC C.aCfunction will call the C
function called aCfunction.

The second PROC is optional and serves only to provide a more convenient name to the
end user by presenting the wrapped function without the call type prefix. While this is not
strictly necessary, it enables the wrapper to provide an interface which follows the wrapped
library closer.

As demonstrated, it should be clear that manually producing wrapper code for a small
number of functions is not a problem. However writing such code for larger bodies of func-
tions is laborious and error prone. The OpenGL[15] library is prime example of a library
where automation is a must, as the library consists of over five hundred functions.

More information on how to use KRoC’s foreign function interface and various types
of system calls can be found in D. C. Wood’s paper[2]. Details of performing non-blocking
system calls from KRoC can be found in Fred Barnes’ paper[16]. Non-blocking foreign
functions (“B.” and “BX.” prefixes) can not currently be generated automatically by SWIG,
and is an area of future work.

3. Using SWIG to Generate Wrappers

The wrapper code generated by SWIG is much the same as one would generate by hand as
demonstrated above. In this section we will provide more detail on how the occam-π SWIG
module performs the mapping from the interface file to the generated wrapper.

3.1. Generating Valid occam-π PROC Names

In order to allow C names to be mapped to occam-π, all ‘ ’ characters must be replaced by
‘.’ characters. This is done as the occam-π syntax does not allow underscore characters in
identifier names. A function such as int this function(char a variable) would map to
PROC this.function(RESULT INT r, BYTE a.variable). The only real effect this has is
on function names and struct naming since parameter names are not actually used by the
programmer.

3.2. Autogenerating Missing Parameter Names

SWIG needs to to generate parameter names automatically for the occam-π wrappers should
they be absent in function definitions. Consider a function prototype such as:

int somefn(int, int);

SWIG will automatically generate the missing parameter names for the PROCs which wrap
such functions. This does not affect the user of the wrappers, as the parameter names are of

2by blocking, we mean blocking of the occam-π runtime kernel
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no importance, other than possibly providing semantic information about their use. Parameter
names are however necessary in order to make the occam-π wrapper code to compile.

The code listed above would map to a PROC header similar to:

PROC somefn(RESULT INT return.value, VAL INT a.name0, VAL INT a.name1)

The occam-π module for SWIG generates unique variable names for all autogenerated
parameter names in PROC headers, ensuring that there are no parameter name collisions.

3.3. Data Type Mappings

The mapping of primitive C data types to occam-π are straightforward, as there is a direct as-
sociation from one to the other. The mappings are based on the way parameters are presented
on the occam-π stack during a foreign function call. For example an occam-π INT maps to
a C int ∗ (that is, the value on the occam-π stack is a pointer to the pass by reference INT

and dereferencing is needed to get to the actual value). The complete set of type mappings
can be found in [2].

3.4. Structures

C’s structs can be mapped to occam-π’s PACKED RECORDs. Ordinary occam-π RECORDs
cannot be used, as the occam-π compiler is free to lay out the fields in this type of record as
it sees fit. PACKED RECORDs on the other hand are laid out exactly as they are specified in the
source code, leaving it up to the programmer (or in this case SWIG) to add padding where
necessary. As an example, the following C struct:

struct example {
char a;
short b;

};

would map to the following PACKED RECORD on a 32 bit machine:

DATA TYPE example
PACKED RECORD

BYTE a:
BYTE padding:
INT16 b:

:

The handling of structs is somewhat volatile however as it relies on C structs being
laid out in a certain way. This may not necessarily be the case across different architectures
or compilers and certainly not when wordsizes or endianness differ. This makes the use of
structs a potential hazard when it comes to the portability of the generated wrapper.

In cases where this would be a problem, it is possible to use the set of C accessor and
mutator functions automatically generated by SWIG for the structure. These can be used by
the occam-π program to access and mutate a given structure. It should even be possible for
SWIG to produce code to automatically convert from a occam-π version of a structure to
a C version (and vice versa), in order to provide more transparent struct access to the end
user. This would of course be significantly slower than mapping the structures directly into
occam-π PACKED RECORDs.
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3.5. Unions

A C union allows several variables of different data types to be declared to occupy the same
storage location. Since occam-π does not have a corresponding data type a workaround
needs to be implemented. The occam-π RETYPES keyword allows the programmer to assign
data of one type into a data structure of another. A struct that is a member of a union could
then be retyped to an array of bytes. This is useful since the PROC wrapping a function that
takes a union as one of it’s arguments can take an array of BYTE’s which are then cast to
the correct type in the C part of the wrapper. This means that any data structure which is a
member of a union can be easily passed to C. Functions which return unions can return a
char ∗ which can then be retyped to the corresponding structure in occam-π. The remaining
difficulty with this approach is that occam-π programmers need to make sure that they are
retyping to and from the correct type of data, as it is easy to mistakenly assign the BYTE array
to the wrong data structure and vice versa. The occam-π compiler, like the C compiler, is
unable to check for the correctness of such an assignment.

3.6. Pointers and Arrays

It is not always possible to know if a pointer is just a pointer to a single value, or in fact a
pointer to an array. Different wrapping functions would be needed in each case. The problem
occurs as in C, an array can be specified as using square brackets, int a[], or as a pointer,
int ∗a.

By default pointers are treated as if they are not arrays, and mapped into a pass by
reference occam-π parameter. If a parameter actually does refer to an array, it is possible
to force SWIG to generate a correct wrapper for that function by prepending ‘array ’ to the
parameter name. Examples of this are provided throughout the paper where needed.

3.7. Typeless pointers

The current default behaviour for type mapping void ∗ to occam-π is to use an INT data
type. Since void ∗ can be used in a function which takes an arbitrary data type, this re-
stricts its usage somewhat to only allow INT’s to be passed to the function. As an example of
mapping a void ∗, OpenGL’s glCallLists function is shown here:

void glCallLists(GLsizei n, GLenum type, const GLvoid ∗array lists);

Note that the ‘array ’ string is prepended to the ‘lists’ variable name, to indicate that it
receives an array. The GLsizei n3 variable tells the function the size of the data type
being passed to it, the GLenum type variable specifies the type being passed into the
GLvoid ∗array lists so that the function knows how to cast it and use it correctly. Since
the default type mapping behaviour here is to type map a C void ∗ to an occam-π INT, some
of the ability to pass it data of an arbitrary type is lost. So, when calling glCallLists from
occam-π one always has to specify that one is passing an integer to glCallLists, by passing
the correct enum value. Here is an example of calling glCallLists from occam-π:

−− A simple PROC that takes in an arbitrarily length array
−− of BYTEs and prints them to screen. The code needs to
−− cast the BYTEs to INTs so that they can be passed
−− to the wrapped glCallLists function.
PROC printStringi(VAL []BYTE s, VAL INT fontOffset,

VAL INT length)
MOBILE []INT tmp:
SEQ

tmp := MOBILE [length]INT
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SEQ i = 0 FOR length
tmp[i] := (INT (s[i]))

glPushAttrib(GL.LIST.BIT)
glListBase(fontOffset)
−− SIZE s returns the number of elements in s.
glCallLists(SIZE s, GL.UNSIGNED.INT, tmp)
glPopAttrib()

:

It is possible, by manually writing some C helper functions, to allow the end users of a
library to pass a greater range of data types to functions taking void ∗ parameters. This can
be done by writing proxy C functions for every type of data that the original function accepts,
which then calls the typeless function with the appropriate parameters. In this way it would
for example be possible to provide a PROC glCallLists.R32(VAL INT n, []REAL32 lst)

which accepts REAL32 data. Access to PROCs accepting other types can be provided in a
similar manner. It may even be possible to let SWIG automate much of this work by using its
macro system.

3.8. Dealing with Enumerations

C enums allow a user to define a list of keywords which correspond to a growing integer
value. These are wrapped as series of integer constants. So for an enum defined as:

enum example {
ITEM1 = 1,
ITEM4 = 4,
ITEM5,
LASTITEM = 10

};

the following occam-π code is generated:

−− Enum example wrapping Start
VAL INT ITEM1 IS 1:
VAL INT ITEM4 IS 4:
VAL INT ITEM5 IS 5:
VAL INT LASTITEM IS 10:
−− Enum example wrapping End

If several enumerations define the same named constant, a name clash occurs when the
wrapper is generated. If this is a problem, it is possible to change the names of the enum

members in the interface file (while not affecting the original definition). This will in turn
affect the names of the generated constants in the wrapper, thus making it possible to avoid
the name clash.

Should enum name clashes be a regular occurrence, it would be possible to imple-
ment an option of naming the enums differently to ensure that the wrapped constants have
unique names. For example, the wrapped constant names above could be generated as follows
VAL INT example.ITEM1 IS 1:, using the enum’s name as a prefix to the constants name.
The programmer using the wrapped code would have to be aware of the convention used in
the names of enum constants.

3GLsizei, GLenum and GLvoid are simply C typedef declarations, mapping them to int, enum and
void types respectively. These are used to enable more architecture independent code, should types work
slightly differently on other platforms.
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3.9. Preprocessor directives

C’s #define preprocessor directives are treated similarly to enums. Any value definitions are
mapped to corresponding constants in occam-π. More complex macros are ignored. The
following listings show how some #define statements map to occam-π:

/∗ C ∗/
#define AN INTEGER 42
#define NOT AN INTEGER 5.43

−− occam−pi
VAL INT AN.INTEGER IS 42:
VAL REAL64 NOT.AN.INTEGER IS 5.43:

3.10. Wrapping Global Variables

SWIG’s default behaviour for wrapping global variables is to generate wrapper functions,
which allow the client language to get and set their values. While this is not an ideal solution
in a concurrent language, as one could be setting the global variable in parallel leading to
race conditions and unpredictable behaviour, it is the simplest solution. occam-π itself does
not normally allow global shared data other than constants.

There are plans to address this issue by adding functionality to the SWIG occam-π
module, which will allow the usage of a locking mechanism, such as a semaphore, to make
sure that global data in the C world does not get accessed in parallel. The wrapper generator
could generate two wrapper PROC’s for getting and setting the global variable, as well as a
third PROC, which would need to be called by the user to initialise the semaphores at startup.
occam-π provides an easy to use, lightweight semaphore library, and it would therefore be
easy to manage access to global data from occam-π.

If a library is not itself thread safe, the end user of the library currently needs to be aware
of the dangers presented by global shared data, if the library contains it.

4. Using SWIG

Using SWIG is very simple. From the command line you can generate wrappers from a C
header file by running the command:

$ swig −occampi −module myheader myheader.h

where myheader.h is the C header file that contains the function definitions of the functions
that you would like to make use of from occam-π.

In many cases it is enough to simply point SWIG at a C header file and have it generate
a wrapper for occam-π from that header file. However it is generally better to take a copy
of the C header (.h) file, which describes the functions and data-structures to be wrapped and
copy that into a SWIG interface (.i) file. So when wrapping the OpenGL library, gl.h, the
OpenGL header file, would be copied to gl.i. SWIG specific directives can be defined at the
head of the file, such as defining the name of the module, which will determine the names of
the generated wrappers. At the top of the interface file we might add the following code:

%module gl
%{
#include <GL/gl.h>
%}
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This names the SWIG generated wrappers “gl” and tells SWIG to include the code
#include <GL/gl.h> in the generated wrappers, so that, when compiled they are able to
reference the targets original header files. To have SWIG generate a wrapper for occam-π
from the newly created .i interface file the following command would be run:

$ swig −occampi gl.i

Note, that the “-module” command line option is no longer needed, since the module name
is specified by the %module gl directive above.

As the previous section already stated, the occam-π modules default behaviour is to
typemap pointers to single length corresponding primitives in occam-π. The interface file
must specify which pointers are pointers to arrays. This can be done by modifying the name
of the variable that is to be typemapped by prefixing it with ‘array ’. For example, in the
OpenGL interface file, for the function call glCallLists, which takes an int, an enum and an
array of void ∗ one would modify the code from:

void glCallLists(GLsizei n, GLenum type, const GLvoid ∗lists);

to the following:

void glCallLists(GLsizei n, GLenum type, const GLvoid ∗array lists);

When SWIG is run, it generates three files: modulename wrap.c, modulename wrap.h
and occ modulename.inc, where modulename is the name that the interface file specifies with
the %module directive. The generated C files can then be compiled and linked into a shared
library. On Linux one would run the commands:

$ gcc −I. −g −Wall −c −o modulename wrap.o modulename wrap.c
$ ld −r −o liboccmodulename.so modulename wrap.o

The .inc file needs to then be included in the occam-π program with the following directive:

#INCLUDE "occ modulename.inc"

This previously created shared library is then linked in to the KRoC binary along with the
library that has just been wrapped. This command may need to be modified to include the
correct library include and linking path.

$ kroc myprogram.occ −I. −L. −loccmodulename −lwrappedlibrary

SWIG has many other features which are not specific to the occam-π module, designed
to aid the interface builder in creating more advanced interfaces between higher-level lan-
guages and C. These are fully documented in the SWIG documentation[13].

5. Examples

5.1. A Simple Math Library Demo

This example is written to illustrate how one would use SWIG to interface with C code. A
basic knowledge of occam-π and C will help to understand the example but is not necessary.
In order to build the listed code, KRoC, SWIG and gcc are required.

For this example we are using a fictitious floating point library called “calc.c” which
contains a range of standard floating point arithmetic functions. The listing on the following
page shows the header file for this “calc.c” library.
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float add(float a, float b);
float subtract(float a, float b);
float multiply(float a, float b);
float divide(float a, float b);
float square(float a);

An interface file for SWIG was created from the calc.h header file. In order to create the
interface file, the calc.h header file was copied to a new file called calc.i. This file was then
modified to look like the listing below. The first line tells SWIG what the names of the gen-
erated wrapper files are to be called. The next three lines inform SWIG that it should embed
the #include "calc.h" statement into the generated C header file. It is in the interface file
that any additional information, such as whether pointers to data are arrays or single values
must be included. In this case the only modifications to the interface file that are needed are
the four lines of code that where added at the start of the file:

%module calc
%{
#include "calc.h"
%}
float add(float a, float b);
float subtract(float a, float b);
float multiply(float a, float b);
float divide(float a, float b);
float square(float a);

The occam-π program calculate.occ was written to demonstrate the use of the C functions:

#USE "course.lib"
#INCLUDE "occ calc.inc"

PROC main (CHAN BYTE kyb, scr, err)
INITIAL REAL32 a IS 4.25:
INITIAL REAL32 b IS 42.01:
REAL32 result:
SEQ

out.string("SWIG/Occam−pi example for CPA 2005∗n∗n", 0, scr)
add(result, a, b)
out.string("Result of addition: ", 0, scr)
out.real32(result, 0, 3, scr)
subtract(result, a, b)
out.string("∗nResult of subtraction: ", 0, scr)
out.real32(result, 0, 3, scr)
multiply(result, a, b)
out.string("∗nResult of multiplication: ", 0, scr)
out.real32(result, 0, 3, scr)
divide(result, a, b)
out.string("∗nResult of division: ", 0, scr)
out.real32(result, 0, 3, scr)
square(result, a)
out.string("∗nResult of squaring: ", 0, scr)
out.real32(result, 0, 3, scr)
out.string("∗n∗n",0,scr)

:

A build script was then written which incorporates SWIG in the build process:
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#!/bin/bash

#Generate wrappers
swig −occampi calc.i

#compile C source file
gcc −c −o calc.o calc.c

#compile C wrapper file
gcc −c −o calc wrap.o calc wrap.c

#link source and wrapper into shared library
ld −r −o libcalc.so calc.o calc wrap.o

#compile occam control code, linking in newly
#created library and the course library.
kroc calculate.occ −L. −lcalc −lcourse

That is all that is required for a simple set of functions to be wrapped.

5.2. Wrapping OpenGL

The initial development of the SWIG occam-π module was initiated by the need for a robust
graphics library for occam-π. The OpenGL library was chosen as the target to be wrapped
since it is an industry-standard which is supported on most modern platforms, often with
hardware acceleration. The OpenGL standard itself contains no window management func-
tionality or support for GUI events, so another library must provide the functionality needed
to open a window which establishes an OpenGL rendering context as well as an input in-
terface. For the window management, the SDL graphics and user interface library was cho-
sen, due to its simplicity and high level of cross-platform compatibility. A subset of the SDL
library was wrapped to allow the user to create and control windows as well as creating a
rendering context for OpenGL.

In order to create the wrapper for OpenGL the header files gl.h and glu.h where copied
to gl.i and glu.i respectively. The newly created .i files had the following code added to their
headers (for gl.i and glu.i respectively):

%module gl
%{
#include <GL/gl.h>
%}
...

%module glu
%{
#include <GL/glu.h>
%}
...

A third file was then created called opengl.i which linked the previous two modules together
into one:

%module opengl

%include gl.i
%include glu.i

Finally, the SWIG occam-π module was run to generate the wrappers:

$ swig −occampi opengl.i

This generated three files, opengl wrap.c, opengl wrap.h and occ opengl.inc. To make use
of the OpenGL library, the C wrappers where compiled into a shared library and the
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occ opengl.inc file was added to the program requested. The wrappers along with more de-
tailed instructions on how to generate them can be found at http://www.cs.kent.ac.uk/
people/rpg/djd20/project.html

An application using the OpenGL library is described in [17]. Figure 1 is an image of
the running application, depicting a cellular automaton written in occam-π.

Figure 1. Lazy simulation of Conway’s Game of Life.

6. Further Work

6.1. occam-π as a Control Language

A number of high level languages have been used as control or infrastructure languages for
legacy C code, allowing the user to combine the ability to express more concisely things that
would be difficult in C, as well as harnessing the speed and power of the existing C code.
The existing C code may be in the form of libraries or legacy applications, as well as new
code specifically written for an application. High level languages are able to provide features
not often often found in lower level languages, such as pattern matching, higher order data
structures, or in the case of occam-π, a powerful set of concurrency primitives.

Higher level languages are often considered to be simpler to maintain than lower level
programming languages in terms of the infrastructure that one is able to create with them.
The additional syntax-enforced structure that control languages provide allow for a cleaner
implementation of the entire system. It has been noted in [11] that the overall quality of the
code, including that of the faster, lower level code was improved through the use of a stricter,
more structured control language as the legacy code is adapted to work better with the control
infrastructure.

Further areas of exploration could involve experimenting with occam-π to help ease the
parallelising of scientific code or exploring the use of occam-π as a control infrastructure for
robotics or sensor networks. It would be interesting to work with the Player/Stage[18] project
for example, which is used for modelling robotics and provides a comprehensive staging
environment for these.

http://www.cs.kent.ac.uk/people/rpg/djd20/project.html
http://www.cs.kent.ac.uk/people/rpg/djd20/project.html
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The authors feel that occam-π’s CSP based model would be very suitable for parallelis-
ing existing code as well as making use of technologies for distributing CPU workload across
different machines using upcoming technologies such as KRoC.net[19]. SWIG also allows
for easy wrapping of libraries such as MPICH2[20] or LAMMPI[21], allowing occam-π to
take advantage of industry-standard MPI communications mechanisms on clusters. An MPI
library wrapper for occam-π will be available shortly.

While the goal of the occam-π module was to initially support the wrapping of C li-
braries, there is nothing preventing it from supporting the wrapping of existing C++ code.
SWIG is capable of parsing and generating C code and target language wrappers for most
C++ code. A future modification to the SWIG occam-π module would be to add support for
wrapping C++ classes. SWIG creates C++ wrappers by generating C wrapper code which is
much simpler to interface with by foreign function interfaces. Wrapping of C++ code is not
yet fully supported by the occam-π module for SWIG.

Adding C++ support would allow a larger codebase to be used from occam-π. One
could potentially wrap C++ classes as mobile processes and call member methods by com-
municating with them down channels, leaving them with a slightly object oriented feel.

6.2. Further Improvements to the SWIG Module

Throughout the text we have mentioned several areas where the occam-π SWIG module
could be improved in order to generate code automatically more often, with less intervention
by the user. These areas will be addressed as the occam-π module approaches maturity.

Non-blocking and interruptible non-blocking C calls, as mentioned in section 2 on
page 237, are currently not supported. It should be possible, by using SWIG’s ‘feature’
directive, to allow users to mark which functions they want wrapped as blocking (“C”),
non-blocking (“B”) and/or interruptible non-blocking (“BX”). Automatic wrapping of inter-
ruptible non-blocking systems calls would be especially desirable, they need to be further
wrapped in a reasonable amount of template occam-π code in order to make them useful.

The issue of cross platform compatibility of generated wrappers when using C structs
needs to be investigated, and a good default behaviour for the module must be chosen. The
effect of name classes for enums likewise needs to be investigated, and a default behaviour
needs to be decided upon. Finally it would be desirable for SWIG be able to automatically
generate code for functions using typeless pointers, so that they can be passed a range of data
types. Further investigation of the SWIG macro system, which implements a similar feature
for malloc and free, would be needed.

6.3. occam-π on Other Platforms

With the development of the Transterpreter[22] which can be obtained from http://www.

transterpreter.org/ it is possible to run occam-π applications on practically any plat-
form which has a C compiler. A Symbian port of the Transterpreter is close to completion
which will allow it to run on Nokia Series 60 and similar class devices. The Transterpreter
also runs on the LEGO Mindstorms, custom robotics hardware and standard desktop hard-
ware. The recent release of a new OpenGL based standard for graphics specifically targeted
at mobile devices, called OpenGL ES[23] would allow, with SWIG generated wrappers, one
to write mobile phone applications or games on such devices.

Currently the Transterpreter runs as a little endian machine on all platforms, which is a
problem when using the FFI on a big endian machine, as passed parameters have the wrong
endianness. While it might be possible to instrument the occam-π SWIG module to generate
code to byte swap arguments as they pass in and out of C functions, we are planning on even-
tually running the Transterpreter with the same endianness as the host architecture. While
this would solve the problem, the changes needed in the compiler to mark up data contained

http://www.transterpreter.org/
http://www.transterpreter.org/
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in the bytecode file, have not yet been implemented. Such metadata would enable endianness
correction at load time.
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