
Communicating Process Architectures 2007 207
Alistair McEwan, Steve Schneider, Wilson Ifill and Peter Welch (Eds.)
IOS Press, 2007
© 2007 The authors and IOS Press. All rights reserved.

Design Principles of the SystemCSP
Software Framework

Bojan ORLIC, Jan F. BROENINK
Control Engineering,

Faculty of EE-Math-CS, University of Twente
P.O.Box 217, 7500AE Enschede, the Netherlands

{B.Orlic, J.F.Broenink}@utwente.nl

Abstract. SystemCSP is a graphical design specification language aimed to serve
as a basis for the specification of formally verifiable component-based designs. This
paper defines a mapping from SystemCSP designs to a software implementation.
The possibility to reuse existing practical implementations was analyzed.
Comparison is given for different types of execution engines usable in implementing
concurrent systems. The main part of the text introduces and explains the design
principles behind the software implementation. A synchronization mechanism is
introduced that can handle CSP kind of events with event ends possibly scattered on
different nodes and OS threads, and with any number of participating event ends,
possibly guarded by alternative constructs.
.
Keywords. Concurrency, CSP, SystemCSP, code generation

Introduction

Concurrency is one of the most essential properties of the reality as we know it. In every
complex system, it can be perceived that many activities are taking place simultaneously.
Better control over concurrency structure should automatically reduce the problem of
complexity handling. Thus, a structured way to deal with concurrency is needed.

SystemCSP [1] is a graphical design specification language aimed to serve as a basis
for the specification of formally verifiable component-based designs of distributed real-
time systems. It aims to cover various aspects needed for the design of distributed real-time
systems. SystemCSP is based on principles of both component-based design and CSP
process algebra. According to [2] “CSP was designed to be a notation and theory for
describing and analyzing systems whose primary interest arises from the ways in which
different components interact”. CSP is a relevant parallel programming model and the
SystemCSP design specification method aims to foster its utilization in the practice of
component-based design.

Occam was a programming language loosely based on CSP. Nowadays, occam-like
libraries exist for modern programming languages. JCSP [4] developed in Kent, and CT
libraries [5, 6] developed in our lab, are examples of occam-like libraries. Both approaches
rely on OOP principles to implement an API that mimics the syntax of occam.

This paper defines the architecture of a framework for the software implementation of
SystemCSP designs. As illustrated in Figure 1, software implementation is one of the
possible target domains for a model specified in the SystemCSP design domain. This paper
does focus on the infrastructure needed in the target domain to support the implementation
of a model specified in SystemCSP (e.g. the one on Figure 2 or Figure 3).

208 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

Figure 1 SystemCSP source and target domains

The SystemCSP notation has a control flow oriented part that is more or less a direct

visualization of CSP primitives, and an interaction oriented part based on binary
compositional relationships. In addition, the primitives for component-based software
engineering are introduced.

 The following CSP expression

is in Figure 2 represented using the control flow oriented part of SystemCSP.

Figure 2 Example of control flow oriented SystemCSP design

In Figure 3, on the right-hand side, a control flow oriented design is visualized, and on

the left-hand side two views are shown, each focusing on a part of the interaction between
the involved components. Note also that instead of process symbols as used in Figure 2, in
Figure 3 symbols for components and interaction contracts are used.

A detailed introduction of SystemCSP elements is out of the scope of this paper. For
more details about SystemCSP design domain notation, the reader is referred to [6].

In this paper, in the Section 1, the discussion is focused on the possibility to reuse the
CT library, developed at our lab, as a target domain framework for code generation.

After discarding the possibility to reuse the CT library, the discussion about the basic
design principles for a new library starts in Section 2 with investigating practical
possibilities for implementing concurrency. Possible types of execution engines are listed in
Section 2.1. In Section 2.2, a flexible architecture is proposed that allows a designer to
make trade-offs regarding the used structure of execution engines. In Section 2.3, a design
of component internals is introduced, that allows subprocesses to access variables defined
in parent components and offers a way to reuse processes in same way as components.

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 209

Section 2.4 explains the way in which function-call based concurrency is applied to
structure concurrency inside components. An example is given illustrating how this
mechanism actually works.

Figure 3 Example illustrating the relation between an interaction-oriented part and a control-based part

Section 3 explains a synchronization mechanism designed to handle CSP kind of
events with any number of participants and with some of them possibly participating in
several guarded alternative constructs. A special problem that was solved related to this was
achieving mutual exclusion when event ends and the associated synchronization points are
potentially scattered in different operating system threads or on different nodes.

Section 4 introduces design of a mechanism that implements exception handling and of
mechanisms that provide support for logging and tracing.

1. Why Yet Another CSP Library?

In this section we focus on a possibility to reuse the CT library, the occam-like library
developed in our lab, as a framework for the software implementation of SystemCSP
models. The CT library follows the occam model as far as possible. SystemCSP builds
upon the CSP legacy. It does in addition introduce new elements related to the area of
component-based engineering. However, those newly introduced elements are: 1)
components and interaction contracts that both map to CSP processes and 2) ports that are
just event-ends exported by such CSP processes.

In fact, SystemCSP defines auxiliary design time operators like the fork and join
control flow elements and binary compositional relationships of FORK, JOIN, WEAK and
STRONG types. Those auxiliary operators do exist only during the design process and are
therefore after grouping, in mapping to CSPm target domain substituted with CSP
operators, and in mapping to software implementations with constructs like the ones
existing in occam and CT library.

Basic SystemCSP control flow elements and binary relationships do map to the

210 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

constructs as it is the case in the CT library. However, since SystemCSP aims to correspond
exactly to CSP, it cannot be implemented completely by occam-like approaches that do put
only restricted part of CSP into practical use. Following text will explore those differences
in more details.

In CT library, like in its role-model occam, a Parallel construct spawns separate user-
level threads for every subprocess. Synchronization points are defined by channel
interconnections. The SystemCSP design domain allows both the CSP way of event
synchronization (through a hierarchy of processes), and the occam-way with direct channel
interconnections. Thus, a software implementation of SystemCSP designs needs
mechanism for the hierarchical CSP-like CSP event synchronization.

In SystemCSP, as in CSP, data communication over a channel can be multidirectional
involving any number of data flows. The CT library, as occam, has only unidirectional
channels. In addition those channels are strongly typed using the template mechanism of
the C++ language and as a consequence, they are not flexible enough to be reused in
constructing the support for multidirectional communication. Thus, the channel framework
of the CT library is not reusable.

The CT library implements the Alternative construct as a class whose behavior is
based on the ideas of the occam ALT construct. The implementation of the Alternative
construct [5] allows several different working modes (preference alting, PriAlternative, fair,
FIFO), introduced to enable an alternative way to make a deterministic choice in case when
more then one alternatives are ready for execution at the same time. The alting in CT
library assumes that a channel can be guarded by some alternative construct only from one
of the exactly two event-end sides (there can be either an input or an output guard
associated with a channel). A guarded channel is just a channel with an associated guard. A
guard is an object inside an alternative construct associated with a channel and a process.
When a guarded channel is accessed by the peer process, then the guard becomes ready and
is added to the alting queue. The way in which guards are ordered in this queue, determines
the working mode (preference alting, PriAlternative, fair, FIFO) of the alternative construct.
An alternative construct is thus a single point where the decision of a choice is made.

The SystemCSP design domain makes a difference between an external choice and a
guarded alternative operators and in that sense adhere strictly to CSP. Thus, an
implementation is needed that can support both. Event-ends contained by a guarded
alternative or the ones resolving the parent external choice operator need to delegate their
roles in the process of CSP event synchronization to the related guarded alternative or
external choice operator. In case when, in an event occurrence, any number of guarded
event-ends can participate, the whole alting mechanism must be completely different then
the one applied in CT library. This means that in fact for CSP event synchronization
mechanism completely different implementation of alting needs to be implemented. Thus
again in this respect too, the CT library is not useful.

Simple CSP processes, made out of only event synchronization points connected via
the prefix and the guarded alternative operator, are often visualized using a Finite State
Machine (FSM). With the guarded alternative of CSP, no join of branches is assumed, and
the branches can lead to any other state. The occam/CT library choice (ALT construct)
requires that all alternatives are eventually joined. Thus a natural FSM interpretation is not
possible anymore.For SystemCSP, the ability to implement FSM-like designs in a native
way is especially important. Thus, implementation of the guarded alternative operator
should not assume the join of branches.

In addition, it should be possible to use process labels to mark process entry points and
allow recursions other then repetitions as in the SystemCSP design domain. Since in occam
and the CT library, processes are structural units like components in SystemCSP, the use of

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 211

recursion different then a loop is not natural there. A strict tree hierarchy of processes and
constructs as basic architecture design pattern of occam and CT library is a misfit for our
purpose. Thus, again the CT library does not meet the requirements imposed by
SystemCSP.

In fact, instead of processes as structural units arranged in strict tree hierarchy,
flexibility can be introduced by using classes for implementation of some processes and
functions and labels for other processes. For instance, a single FSM-like design can contain
many named processes that in fact do name the relevant states. Certainly, those processes
cannot map to the occam notion of process. They are more convenient to be implemented
as labels, while the whole finite state machine is convenient to be a single function.

In addition, SystemCSP is intended to be used as a design methodology for design and
implementation of component-based systems. This needs to be supported by introducing
appropriate abstractions and also possibilities for easy reconfiguration, interface checking,
and so on.

To conclude, the mismatch between the CT library and the needs of SystemCSP is to
big to allow reusing the CT library as a framework for the software implementation of
SystemCSP designs.

2. Execution Engine Framework

2.1 Brief Overview of Execution Engines

Concurrency in a particular application assumes the potential of parallel existence and
parallel progress of the involved processes. If processes are implemented in hardware, or if
each of the processes is deployed on a dedicated node, these processes can truly progress
concurrently. In practice, multiple processes often share the same processing unit.

Operating systems provide users with the possibility to run multiple OS processes
(programs). Every OS process has its own isolated memory space and its own set of
allocated resources. Within OS processes it is possible to create multiple OS threads that
have their own dedicated workspaces (stack), but share other resources with all threads
belonging to the same process. Synchronization in accessing those resources is left to the
programmer. OS synchronization and communication primitives (semaphores, locks,
mutexes, signals, mailboxes, pipes…)[7] are not safe from concurrency related hazards
caused by bad design [4]. OS thread context switch is heavyweight, due to allowing
preemption to take place at any moment of time.

User-level threading is an alternative approach that relies on creating a set of own
threads in the scope of a single OS thread. Those threads are invisible to the underlying OS-
level scheduler and their scheduling is under the control of the application. The main
advantages compared to OS threads are the speed of context switching and gaining control
over scheduling. The use of Operating System calls from inside any user-level thread is
blocking the complete OS thread with all nested user-level threads (operating system call
problem).

Another approach is to implement concurrency via function-calls, where the
concurrent progress of parallel processes is achieved by dividing every process into little
atomic steps. After every atomic step, the scheduler gets back control and executes the
function that performs the next atomic step in one of the processes. There is no need to
dedicate a separate stack for every process. Steps are executed atomically and cannot be
preempted. A function-calls based approach is often used to mimic concurrency in
simulation engines. There is even an operating system (Portos [8]) that is based on
scheduling prioritized function calls.

212 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

2.1.1 Discussion

SystemCSP [1] structures concurrency, communication and synchronization using
primitives directly coupled to appropriate CSP operators. To implement concurrent
behaviour, it is possible to use any of the approaches described in Section 2.1.

The CT library is based on user-level threading. Every process in the CT library that
can be run concurrently (i.e. every subprocess of the (Pri)Parallel construct) has a dedicated
user-level thread. A scheduler exists that can choose the next process to execute according
to the hierarchy of Parallel/PriParallel constructs. As in occam, rendezvous channels are the
basic communication and synchronization primitives. Possible context switching points are
hidden in every access to local channels.

The first important issue related to the SystemCSP framework is what type of
execution engine is best to choose. Actually, the optimal choice depends on the application
at hand and is a compromise between the level of concurrency, the communication
overhead and other factors. The best solution is, therefore, to let the designer choose the
type(s) of execution engines on which the application will execute. A way to do this is to
separate the application from the execution engines, and to let the designer map the
components of his application to the underlying architecture of execution engines.

2.2 Four Layer Execution Engine Architecture

An application is in SystemCSP organized as a containment hierarchy of components and
processes. A component is the basic unit of composition, allocation, scheduling and
reconfiguration. Inside every component, contained components, processes and event-ends
are related via CSP control flow elements (sequential, parallel, choice …). While a
subprocess is inseparable part of its parent component, a subcomponent is independent and
can for example be located on some other node.

As a result of the previous discussion, flexible execution engine architecture is
proposed, that allows the user to adjust the level of concurrency to the needs of the
application at hand. The execution engine architecture is hierarchical, based on four layers:
node/OS Thread/UL thread/component managers. Any component can be assigned to any
execution engine on any level in such a hierarchy.

The class diagram given in Figure 4 defines the hierarchy of the execution engines. In
the general case, inside an operating-system thread, a user-level scheduler exists, which can
switch context between its nested user-level threads. Inside a user-level thread is, in the
general case, a component manager that can switch between the contained components.
Every component has an internal scheduler that will use a function-call based concurrency
approach to schedule nested subprocesses.

Internalizing the scheduler inside every component allows more flexibility in the sense
that some levels in the 4-layer architecture can be skipped. The concurrency of the node
execution engine can be delegated to operating system threads or to user level threads or to
component managers or it can execute a single component directly without providing
support for lower-level execution engines. It is even possible to have a single component
per node. Similarly operating system threads can execute a set of user level threads, or a
component manager or a single component. A user-level thread is able execute just a single
component or a set of components via the component manager. The possibility to choose
any of those combinations is actually reflected in Figure 4.

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 213

Figure 4 Class diagram of the 4-layer execution engine framework

The OS thread execution engine is in fact representing the scheduling mechanism of
the underlying operating system. Therefore, in the design domain this class contains the
name and version number of the used operating system as attributes. In software
implementation, there is no matching class since implementation is provided by the
underlying operating system. The OS thread class in the software implementation domain
does have a dedicated subclass for every supported operating system. In that way, the
portability is enhanced by isolating platform-specific details in the implementation of
subclasses. Auxiliary abstract classes LessThenodeExecEng, LessThenOSThreadExecEng
and LessThenUL-ThreadExecEng are.introduced to enable the described flexibility in
structuring the hierarchy of execution engines.

2.2.1 Allocation

An allocation procedure as the one depicted in Figure 5 (below here), is a process of
mapping components from the application hierarchy of components to the hierarchy of
execution engines. The criteria for the choice of the execution framework and for the
allocation, is setting the proper level of concurrency while optimizing performance by
minimizing overhead. Two components residing on different nodes can execute
simultaneously. Two components allocated to the same node, but to different operating
system threads can be executed simultaneously only in the case of multi-core or hyper-
threading nodes. Communication overhead between two components is directly
proportional to the distance between the execution engines that execute them.

214 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

Figure 5 Allocation = mapping components from application hierarchy to hierarchy of execution engines

Control flow (as specified by parallel, sequential and alternative constructs) is
decoupled from its execution engines. As a result, components can be reconfigured more
easily. A component can be moved from one (node, operating-system thread, user-level
thread) execution engine to another. Components can be dynamically created, moved
around and connected to interaction contracts. On dynamical reconfiguration, checking
compatibility of the interface required by the interaction contract with the interface
supported by the component is done.

2.2.2 Priority Assignment

CSP is ignorant of the way concurrency is implemented. Concurrency phenomena
involving parallel processes interacting via rendezvous synchronizations are the same
regardless whether concurrent processes are executed on dedicated nodes, or sharing CPU
time of the same node is done according to some scheduling algorithm. However, temporal
characteristics are different in these two cases. The most commonly applied scheduling
schemes are based on associating priorities with processes. In real-time systems, achieving
proper temporal behavior is of utmost interest. Therefore, in real-time systems priorities are
attached to schedulable units according to some scheduling algorithm that can guarantee
meeting time requirements.

In addition to the PAR (parallel) construct, in occam a prioritized version of the
parallel construct, the PRIPAR construct, was introduced. It specifies parallel execution
with priorities assigned according to the order of adding subprocesses to the construct.
However, on transputer platforms only two priority levels were supported. Additional
priority levels were sometimes implemented in software [9].

Following occam, the CT library introduces a PriParallel construct with the difference
that inside one PriParallel up to 8 subprocesses can be placed. While all subprocesses of a
Parallel construct have the same priority, priorities of processes inside a PriParallel are
based on the order in which they are added to the construct. This allows for a user-friendly
priority assignment based on the notion of the, more or less intuitive, relative importance of
a process compared to the other processes. The PriParallel construct is as any other
construct also a kind of process, and as such it can be further nested in a hierarchy of

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 215

constructs. This leads to the possibility to use a hierarchy of PriParallel and Parallel
constructs to create a program with an unbounded number of different priority levels. Note
however, that priority ordering, of all processes in a system, if defined in this way is not
necessarily a strict ordering, but rather a set of partial orderings. If only PriParallel
constructs were used, a set of partial orderings results in global strict priority ordering.

As in execution-engine architecture issues, where the conclusion was that flexibility
can be achieved by separating hierarchy of components belonging to the application
domain, from the hierarchy of execution engines, the similar reasoning applies to
specifying priorities. The PriPar construct of the occam-like approaches is hard-coding
priorities in the design, where a intuitively priority assignment is related to the execution of
processes on the real target architecture. Priority values are in fact the result of a trade-off
due to temporal requirements that belong to the application domain and processing time
that belongs to the domain of underlying architecture engines. Therefore, the choice is not
to follow the occam-like approach. Priorities belong to the execution engine framework and
not to the application framework. Instead of relative priorities in each Par construct, a
component from application hierarchy of components can be mapped to the execution
engine of appropriate priority.

Every operating-system thread has a priority level used by the underlying operating-
system scheduler to schedule it. Every user-level thread has its own priority level which
defines its importance compared to the other user-level threads belonging to the same
operating-system thread. In this way, a 2-level priority system exists and any component
can be assigned to the pair of operating-system thread and user-level thread with
appropriate priority levels

Note that the priorities specified on higher levels in an execution engine hierarchy
overrule the ones specified on lower levels. This is the case because a higher-level
execution engine (an operating-system execution engine) is not aware of the lower-level
schedulable units (e.g. a user-level thread).

A problematic situation occurs when two components of different user-level thread
priorities are allocated to two different operating-system threads of the same operating-
system thread priority. In that case, it can happen that advantage is given to the component
that has a lower user-level thread priority. In case when such a scenario should be avoided,
two components with the same operating-system thread priority should always be in the
same operating-system thread. In other words, this problem is avoided when there are no
operating-system threads of the same priority on one node.

An additional issue is priority inversion that happens when a component of higher
priority interacts with one of lower priority via rendezvous channels. For more details about
this problem and possible solutions, the reader is referred to the related paper[10].

2.3 Components, Processes and Variables

The UML class diagram in Figure 6 illustrates the hierarchy of classes related to the
internal organization of components. Every component has an internal scheduler that can
handle various schedulable units (construct, processes, guarded alternative operators and
event ends).

Variables are in SystemCSP defined in the scope of the component they reside in, and
should be easily accessible from subprocesses of that component. A subprocess is allowed
to access the variables defined in its parent component, but subcomponent cannot – because
a subcomponent can be executed in a different operating-system thread or even on a
different node. Instead of defining actual variables, the process class does define references
to these variables (see Figure 6). Those references are in the constructor of the process

216 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

associated with real variables defined in the scope of the component. In this way,
subprocesses can access variables defined in components without restrictions; Component
definitions are divided into smaller parts that are easier to understand and processes become
as reusable as components are.

Figure 6 UML class diagram illustrating the relations between components and processes

Subcomponents that are executed in different execution engines do have associated
proxy subporocess in their parent component (see Figure 7). In that way, the
synchronization between the remote subcomponent and its parent component is done
indirectly via that proxy process. The Proxy process and remote subcomponent synchronize
on start events and termination events via regular channels.

Figure 7 Using proxy processes to relate remote subcomponents to parent constructs

2.4 Function Call Based Concurrency Inside Components

The class diagram in Figure 6 defines that each component contains an internal scheduler.
The dispatcher of a component is in its execute() function. It will use a scheduling queue

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 217

(FIFO or sorted queue) to obtain the pointer to the next schedulable unit ready to be
executed.

Every schedulable unit inside a component is implemented as a finite-state machine
that performs one synchronization and computation step per each function call, and
subsequently returns control back to the component scheduler. The current place where the
schedulable unit stopped with its execution is remembered in its internal state variable.
When the schedulable unit is activated a next time, it will use this value to continue from
where it had stopped. Every schedulable unit does have associated a pointer to the next
schedulable unit to activate when its execution is finished. This is either its parent construct
or the next schedulable unit in sequence (if the parent is a sequential construct).

Every construct exists inside some parent component. Constructs (Parallel, Alternative
and Sequential) as well as channel/event ends are designed as predefined state-machines
that implement behavior expected from them.

For instance, a simplified finite state machine implementing the Parallel construct
would have two states: one with forking subprocesses (the FORK state in code snippet
bellow), and one waiting for all subprocesses to finish (JOIN state in the code snippet). In
reality a mechanism for handling errors and exceptional situations requires one or two
additional states.

Parallel::run(){
 switch(state){
 case FORK:
 parentComponent->scheduler->add(subprocesses);
 state = JOIN;
 result =0;
 break;
 case JOIN:
 if(finishedCount == size)
 {
 state = FORK;
 finishedCount=0;
 parentComponent->scheduler->add(next);
 result =1;
 }
 break;
 }
 return result;
}

Parallel::exit() {
 finishedCount++;
 if(finishedCount ==size) parentComponent->scheduler->add(this);
}

The subprocesses use the exit() function to notify the Parallel construct that they have

finished their execution. Since all subprocesses are in the same component and executed in
atomic parts in function-call based concurrency manner, there are no mutual exclusion
hazards involved.

When a construct finalizes successfully its execution, it returns a status flag equal to 1
or higher. For its parent it is a sign that it can move to the next phase in its execution by

218 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

updating its state variable. In case of a guarded alternative, the returned number is in the
parent process understood as the index of the branch to be followed and it is used to
determine the next value of the state variable.

Thus, the system works by jumping in a state-machine, making one step (e.g.
executing a code block or attempting event synchronization or forking subprocesses), and
then jumping out. This might seem inefficient, but actually also in the user-level thread
situation, a similar thing is done: testing the need for a context switch is hidden in every
event attempt. Only performance testing can show which way is actually more efficient
under what conditions. Recursions that are used to define auxiliary, named, process entry
points are not implemented in a separate class. Instead they are naturally implemented
using labels.

Let us use the example given in SystemCSP (Figure 8), and also in CSPm code above
the figure to display how its software implementation would look like in this framework.

Figure 8 SystemCSP design used as an example for software implementation

The code is as follows:
Program(){
 switch (state){
 case START:
 status = install->sync();
 if(status == 0) return;
 elseif(status == 1){
 Installation();
 state = START_MENU;

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 219

 }
 else state = ERROR;
 break;
 case START_MENU:
 status = guardedAlt_StartMenu->select();
 if(status == 0) return;
 elseif(status == 1) {
 InitializeProg();
 state = USE_PROG;
 }
 else if(status== 2) {
 UninstallProg();
 state = START;
 }
 else state = ERROR;
 break;
 case USE_PROG:
 status = guardedAlt_UseProg ->select();
 if(status == 0) return;
 elseif (status == 1) {
 SaveDocs();
 state = START_MENU:
 }
 else if (status == 2) {
 LoadModel();
 state = WORK;
 }
 else state = ERROR;
 break;
 case WORK:
 status = guardedAlt_Work->select();
 if(status == 0) return;
 elseif(status == 1) {
 UpdateModel();
 state = WORK;
 }
 elseif(status == 2) {
 SaveChanges();
 state = WORK;
 }
 elseif(status == 3) {
 SaveDocDlg();
 state = USE_PROG;
 }
 elseif(status == 4) {
 SaveDocs();
 state = USE_PROG;
 }
 else state= ERROR;
 break;

220 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

 case ERROR:
 printf(“ process P got invalid status ”);
 break;
 }

In the constructor of the class defining this process, objects for the contained event
ends and constructs are instantiated. For instance, the guarded alternative named StartMenu
is on creation initiated using the offered event ends (openProg and uninstall) as arguments:

guardedAlt* StartMenu = new guardedAlt(openProg, uninstall);

EventEnd* openProg = new EventEnd(parentESP);

Code blocks are defined as member functions of a class that represent the process in
which they are used. Code blocks that are used in more then one subprocess are usually
defined as functions on the level of the component. Note that all code blocks (even a fairly
complex sequential OOP subsystem that contains no channels, events and constructs) will
be executed without interruption. Their execution can only be preempted by the operating-
system thread of higher priority. As explained, user-level scheduling and function-call
based execution engines are not fully preemptive. Thus, the events that need immediate
reaction should be handled by operating-system threads of higher priorities.

3. Implementing CSP Events and Channels

Event ends are schedulable units implemented as state machines. They participate in the
synchronization related to the occurrence of the associated event. This includes
communicating their readiness to upper layers and waiting till the event is accepted by all
participating event ends. This section describes in more detail how precisely this
synchronization is performed.

3.1 Event synchronization mechanism

CSP events use the hierarchy of constructs for synchronization. An event end can be nested
in any construct and it has to notify its parent construct of its activation.

In Figure 9, component C0 contains a parallel composition of components C1, C2 and
C3 that synchronize on events a and b. Component C2 contains a parallel composition of
C11 and C12 that synchronize on event a. The guarded alternative located in component
C21 offers to its environment both events a and b.

Every process needs to export not-hidden events further to its environment, that is to a
higher level synchronization mechanism. Every construct in the hierarchy must provide
support for synchronizing events specified in its synchronization alphabet. This
synchronization is done by dedicated objects – instances of the ESP
(EventSynchronizationPoint) class (see Figure 10). The event-end will actually notify the
ESP object of its parent construct about its readiness. A guarded alternative offers a set of
possible event ends and thus instead of signaling its readiness to its parent construct, it can
only signal conditional readiness.

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 221

Figure 9 Hierarchical synchronization of CSP events

An ESP will, when all branches under its control are ready (conditionally or

unconditionally) to synchronize on the related event, forward the readiness signal further to
its parent ESP. When an event is not exported further, that construct is the level where the
event occurrence is resolved. In that case, instead of an ordinary ESP object, a special kind
of it exist (Event Resolution Point or ERP class) that performs the event resolution process.
If some event ends are only conditionally ready, the ERP object will initiate a process of
negotiation with the nested guarded alternative elements willing to participate in that event.
When all event ends agree on accepting the event, ERP will notify all of them about the
event occurrence.

Figure 10 Event synchronization point classes

When on the top-level, in ERP, all fields, representing readiness of the associated
branches, are ready or conditionally ready, a procedure of negotiation with sources of
conditional readiness starts. This action results in every participating guarded alternative
being asked to accept the event. If not previously locked by accepting negotiation with
some other ERP, the queried guarded alternative will respond by accepting the event
conditionally and locking till the end of the negotiation process. The attempt to start
negotiation with already locked guarded alternative results in a rejection. In that case, the

222 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

conditional readiness of the guarded alternative is canceled for that event and the
negotiation process stops. When all guarded alternative constructs participating in the
negotiation process have accepted the event (and are locked - rejecting other relevant events
attempts), the ERP declares that the event is accepted by notifying all participating event
ends (including the guarded alternatives) about the event occurrence. However, after one of
the involved guarded alternatives has rejected the event acceptance, the event attempt did
not succeed and all involved guarded alternatives are unlocked. Guarded alternatives
unlocked in this way do again state conditional readiness for those event ends for which it
might have been canceled during the negotiation procedure.

The class hierarchy defining types and relationships between event synchronization
points is illustrated in Figure 10. For every type of the negotiation message, the ESP class
declares a dedicated function. In case of local synchronization, a parent and the related
children ESPs communicate via function calls. In case that synchronizing parent/child ESPs
are residing in different OS threads or nodes, the ESP_proxy abstraction is used.

In the table below, the list of exchanged messages is specified as an illustration of an
attempt to synchronize participating event-ends in a scenario based upon the example from
Figure 9.

Table 1 One synchronization scenario

source destination message

evEnd1, evEnd2 ERP1 Ready

ALT1 ESP1 Conditionally Ready

ALT1 ERP2 Conditionally Ready

evEnd3 ESP1 Ready

ESP1 ERP1 Conditionally Ready

evEnd4 ESP2 Ready

ERP1 ESP1 Try event

ESP1 ALT1 Try event

evEnd5 ESP2 Ready

ALT1 ESP1 Accept_locked

ESP2 ERP2 Ready

ERP2 Alt1 Try event

ALT1 ERP2 Refuse_locked

ESP1 ERP1 Accept_locked

ERP1 ESP1, evEnd1, evEnd2 event

ESP1 ALT1, evEnd3 event

3.2 Solving the Mutual Exclusion Problem

Let us assume that allocation of the application hierarchy from Figure 9 to the hierarchy of
execution engines is performed as in Figure 11. Clearly, simultaneous access to variables,
which is possible in the case of distributed systems and operating-system thread based
concurrency, must be prevented while implementing the previously explained event
synchronization mechanism.

Event synchronization is more or less a generalization of the synchronization process

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 223

used for channels. Let us therefore use channel synchronization as an example to show
where the simultaneous access can cause problems.

In CT, a channel is a passive object. The process that first accesses the rendezvous
channel will be blocked (taken out of the scheduler) and the pointer to that process thread is
preserved in the channel. The process thread that arrives secondly will then copy the data
and add the blocked process (one that has arrived first) to the scheduler. In CT, there is no
problem of simultaneous access because the whole application is located in single OS
thread.

Figure 11 Synchronization of event ends allocated to different execution engines

In the SystemCSP framework, due to the possibility of using several OS threads as
execution engines, protection from simultaneous access needs to be taken into account in
order to make safe design.

Problematic points for channel communication when truly simultaneous access is
possible are: (1) making the decision who arrived first to the channel and (2) adding the
blocked process/component/user-level thread to its parent scheduler that can be accessed
simultaneously from many OS threads.

Constructing a custom synchronization mechanism using flag variables is complex and
error-prone. Besides, it is highly likely that such mechanism will fail to be adequate in case
of hyperthreading and multi-core processors.

Using blocking synchronization primitives provided by the underlying operating
systems causes the earlier mentioned problem of blocking all components nested in an
operating-system thread that makes the blocking call. Besides unpredictable delay, this
introduces additional dependency that can result in unexpected deadlock situations. It also
does not provide a solution for an event synchronization procedure in case the participating
components are located on different nodes.

If non-blocking calls, to test whether critical sections can be entered, are used, the
operating-system thread that comes first can do other things and poll occasionally whether a
critical section is unlocked. However, this approach makes things really complicated. For
instance, the higher priority operating-system thread needs to be blocked so that the lower
priority one can get access to the CPU and be able to access the channel. To block only the
component, which accessed the channel and not the whole operating-system thread, one
needs later to be able to reschedule it. For safe access to the scheduler from the context of
another operating-system thread, another critical section is needed.

The previously discussed attempts to solve the mutual exclusion problem do apply

224 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

only for processes located in different OS threads, but on the same node. In essence, from
the point of view of the mutual exclusion problem, an operating system thread is equally
problematic as synchronization with parts of a program on another node. Thus, it is
convenient if the solution for both problems relies on the same mechanism.

Figure 12 Using message queue based CMM to provide safe usage of concurrency

We propose that every operating-system thread has an associated message queue
(operating systems provide message queues as a way to have non-blocking communication
between operating-system threads). Thus, every OS thread, that interacts with other OS
threads, will contain a control message manager (CMM) component that dispatches control
messages (like event ready, event conditionally ready, try event, event accepted and
similar) to message queues of other operating-system threads and transforms the received
control messages to the appropriate function calls. For synchronization between nodes,
networking subsystem can be located in a dedicated operating system thread that has a
similar CMM component. This CMM will use the networking system to dispatch control
messages to other nodes and will dispatch control messages received from other nodes to
the message queues associated with CMMs of appropriate operating-system threads.

ESP_proxy (see Figure 10) communicates messages and addresses to local CMM,
which further transfer it to the peer’s CMM. The peer’s CMM will then deliver the message
by invoking direct function calls of appropriate ESP objects.

3.3 Channels Capable of Multidirectional Communication

Channels are special types of events where only two sides participate and in addition data
communication is performed. As such, channels can be implemented in a more optimized
way then events by avoiding the synchronization through hierarchy. Similar optimizations
can be done for barriers with always fixed participating event ends, shared channels
(any2One, One2Any) and simple guarded alternatives where all participating events are
channels that are guarded only on one side.

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 225

One of the requirements (imposed by CSP as opposed to occam) for channels is that
data communication can contain a sequence of several communications in either direction.
A design choice made here is to separate synchronization from communication. To achieve
flexible multidirectional communication, the part dealing with communication is further
decomposed to pairs of sender and receiver communication objects (TxBuffer and
RxBuffer) instead of using the template C++ language mechanism to parameterize
complete channels with parameters specifying transferred data types, only RxBuffers and
TxBuffers are parameterized. In this way flexibility is enhanced. Every channel end will
contain an array consisting of one or more TX/RxBuffer objects connected to their pairs in
the other end of the channel.

Since TxBuffers and RxBuffers contain pointers to the peer
TxBuffer<T>/RxBuffer<T> objects, checking type compatibility of connected channel ends
is done automatically at the moment of making the channel connection. This is convenient
in case when connections between components are made dynamically during run-time.
Otherwise, design time checks would be sufficient. Decoupling communication and
synchronization via Tx./RxBuffers is also convenient for distribution.

3.4 Distribution/Networking

The CMM based design with control messages is straightforwardly extendable to
distributed systems. In a distributed system, compared to operating-system thread based
concurrency, besides control messages, also data messages are sent. Every node has a
network subsystem with a role to exchange data and control messages with other nodes.
The network subsystem takes control over RxBuffer and TxBuffer objects of a channel-end
from the moment when the event is attempted, and returns control to the OS thread where
the channel end is located after the data transfer is finished. This is done by exchanging (via
the CMM mechanism) control messages related to location, locking and unlocking of data.

Of course, distributed event resolution comes with a price of increased communication
overhead due to network layer usage. But, the task of the execution framework is to create
conditions for this distribution to take place and the task of the designer of a concrete
application is to optimize its performance by choosing to distribute on different nodes only
those events whose time constraints allow for this imposed overhead.

4. Other Relevant Parts of the Software Implementation

4.1 Exception Handling

In SystemCSP, exception handling is specified by the take-over operator related to the
interrupt operator of CSP. The take-over operator specifies that when an event offered to
the environment by the process specified as second operand (exception handler) is
accepted, the further execution of the process specified as the first operand (interrupted
process) is aborted.

Upon the abort event (see Figure 13), the exception handler process is added to the
scheduling queue of its parent component. Since the exception handler is a special kind of
process recognizable as such by the scheduler, it is not added to the end of FIFO queue as
other, ‘normal’ processes, but at its head. The preempt flag of the component manager is set
to initiate preemption of the currently executing process. In that way, the situation where
the exception handler needs to wait, while the interrupted process might continue
executing, is avoided as much as possible.

226 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

As illustrated in Figure 13, the preempted process is appended to the end of FIFO
queue of the component scheduler. If the preempted process is in fact the interrupted one
then it will be taken out from the FIFO queue later during the abort procedure.

Figure 13 Example used to explain the implementation of take-over operator

The first step in the interrupt handler process is calling the abort() function of the
interrupted process. The default version of abort() will cancel the readiness of all event ends
for which the aborted process has declared readiness or conditional readiness. If the process
is in the scheduling queue, it will be removed from there. Further, if the process is a
construct, abort() will be invoked for all its subprocesses.

This exception handling mechanism does not influence the execution of other
components that might have higher priority than the component where interrupted process
resides.

4.2 Support for Development and Run Time Supervision

4.2.1 Logging

Logging is the activity of collecting data about the changes in values of certain chosen set
of variables during some time interval. Not every change needs to be logged, but one
should be able to use the obtained values to get insight in what was/is going on in some
process/component. In this framework, the design choice is to allow logging only for the
variables defined on the component-level. The main reason is obtaining a very structured
and flexible way of logging that allows on-line reconfiguration of logging parameters. Thus
all data constituting the state of the component should be maintained in the shape of
component level variable. Every component can have a bit field identifying which of its
variables are currently chosen for logging. The interface is defined that allows human
operators to update this bit field at any time and thus change the set of logged variables.

Logging points are predetermined in design. In control flow diagram of SystemCSP,
symbol used for logging point (a circle with big L inside) is associated with a prefix arrow
as its property. The reason for this is a choice to treat a set of logging points as an
optionally visualized layer added on top of the design. In implementation however prefix
arrows do not exist, while logging points are inserted to the appropriate location in
execution flow, as defined by the position of prefix arrow in the design.

 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework 227

 Any logging point, either uses set of variables set for logging on component level
using the described bit field mechanism, or defines its own bit field with set of variables to
log. The operator is via the NodeManager allowed to inspect logging points and update
their bit fields. Every logging point has a tag (or ID) unique in scope of its parent
component, that is used to uniquely identify it. On the target side of the application, this tag
can be a pointer to the object implementing the logging point. On the operator side of the
application this tag is mapped to the unique ID of the logging point as specified in the
system design.

The reason to opt for this kind of logging is predictability. The logging activity is
considered to be part of the design and all the needed resources (e.g. CPU time, memory,
network bandwidth and storage capacity) can be preallocated. Logging points can in design
be inserted in such a way that it is possible to reconstruct change of every variable during
the time. This approach to logging is considered here to be more structured and predictable
then tracking every change for a chosen set of variables.

Figure 14 Supervision elements

4.2.2 Tracing

Tracing is an activity similar to logging. The difference is that instead of data, the
information communicated to the human operator is the current position in execution flow
of the application. Control flows leading to error states are always traced. Errors that are not
fatal for the functionality of the system are logged as warnings. Other tracing points can be
used for debugging or for supervising control. As it is the case for logging, the tracing is
here considered to be part of the design and as such performed in predefined points of the
execution flow.

SystemCSP defines a circle with a big T inside as a symbol of tracing point. Again it is
associated with prefix arrow element, defining in that way the precise position of a tracing
point. Every tracing point has a tag (or ID) that is unique per component and communicated
to the operator to notify the occurrence of control flow passing over a tracing point. In
addition, every function entry/exit is a potential tracing point.

228 B. Orlic and J.F. Broenink. / Design Principles for the SystemCSP software framework

5. Conclusions

This paper introduces design principles for the implementation of a software architecture
that will support SystemCSP designs. The paper starts with explaining the reasons to
discard the possibility to reuse the CT library as a framework for software implementation
of SystemCSP models. The rest of the paper introduces the design principles for the
implementation of the framework infrastructure needed in the software domain to support
the implementation of a models specified in SystemCSP.

One of the main contributions of this paper is the decoupling application domain
hierarchy of the components (related via CSP control flow elements and parent-children
relationship) from the execution engine framework. In addition, this framework is
constructed to allow maximal flexibility in choosing and combining execution engines of
different types. In this way, flexible and reconfigurable component-based system is
obtained. The priority specification is related to the hierarchy of execution engines and has
thus become part of the deployment and not application design process.

Another significant contribution is solving the problem of implementing the
mechanism for synchronizing CSP events in a way that is safe from mutual exclusion
problems and is naturally suited for distribution. Besides that, the paper describes and
documents the most important design choices in the architecture of the SystemCSP
software framework.

Recommendation for future work is to fully implement everything presented in this
paper. Furthermore, a graphical development tool is needed that will be capable to generate
code. The described software framework would be used as a basic infrastructure that
supports the proper execution of generated code.

References

[1] Orlic, B. and J.F. Broenink. SystemCSP - visual notation. in CPA. 2006: IOS Press.
[2] Roscoe, A.W., The Theory and Practice of Concurrency. Prentice Hall International Series in Computer

Science. 1997: Prentice Hall.
[3] Welch, P.H. and D.C. Wood, The Kent Retargetable occam Compiler, in Parallel Processing

Developments -- Proceedings of WoTUG 19. 1996, IOS Press: Nottingham, UK. p. 143 -166.
[4] Welch, P.H. The JCSP Homepage. 2007, http://www.cs.kent.ac.uk/projects/ofa/jcsp/.
[5] Hilderink, G.H., Managing Complexity of Control Software through Concurrency. 2005, University of

Twente.
[6] Orlic, B. and J.F. Broenink, Redesign of the C++ Communicating Threads Library for Embedded Control

Systems, in 5th PROGRESS Symposium on Embedded Systems, F. Karelse, Editor. 2004, STW:
Nieuwegein, NL. p. 141-156.

[7] Tanenbaum, A., Modern Operating Systems. 2001.
[8] Chrabieh, R., Operating System with Priority Functions and Priority Objects. 2005.
[9] Sunter, J.P.E., Allocation, Scheduling and Interfacing in Real-time Parallel Control Systems, in Faculty

of Electrical Engineering. 1994, University of Twente: Enschede, Netherlands.
[10] Orlic, B. and J.F.Broenink. CSP and real-time – reality or an illusion? in CPA. 2007: IOS Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

