
Communicating Process Architectures 2007

Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch

IOS Press, 2007

c© 2007 The authors and IOS Press. All rights reserved.

507

Using occam-π Primitives with the
Cell Broadband Engine

Damian J. DIMMICH

Computing Laboratory, University of Kent, U.K.

E-mail: damian@transterpreter.org,

Abstract. The Cell Broadband Engine has a unique non-heterogeneous archi-
tecture, consisting of an on-chip network of one general purpose PowerPC pro-
cessor (the PPU), and eight dedicated vector processing units (the SPUs).
These processors are interconnected by a high speed ring bus, enabling the use
of different logical network topologies. When programming the Cell Broadband
Engine using languages such as C, a developer is faced with a number of chal-
lenges. For instance, parallel execution and synchronisation between proces-
sors, as well as concurrency on individual processors, must be explicitly, and
carefully, managed. It is our belief that languages explicitly supporting concur-
rency are able to offer much better abstractions for programming architectures
such as the Cell Broadband Engine.

Support for running occam-π programs on the Cell Broadband Engine has
existed in the Transterpreter for some time. This support has however not
featured efficient inter-processor communication and barrier synchronisation,
or automatic deadlock detection. We discuss some of the changes required to
the occam-π scheduler to support these features on the Cell Broadband Engine.
The underlying on-chip communication and synchronisation mechanisms are
explored in the development of these new scheduling algorithms. Benchmarks
of the communications performance are provided, as well as a discussion of how
to use the occam-π language to distribute a program onto a Cell Broadband
Engine’s processors. The Transterpreter runtime, which already has support
for the Cell Broadband Engine, is used as the platform for these experiments.

The Transterpreter can be found at www.transterpreter.org.


