Communicating Process Architectures 2007 299
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch

IOS Press, 2007

(© 2007 The authors and 10S Press. All rights reserved.

A Versatile Hardware-Software Platform
for In-Situ Monitoring Systems

Bernhard H. C. SPUTH, Oliver FAUST, and Alastair R. ALLEN

Department of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
{b.sputh, o.faust, a.allen }@abdn.ac.uk

Abstract. In-Situ Monitoring systems measure and relay environmental parameters.
From a system design perspective such devices represent one node in a network. This
paper aims to extend the networking idea from the system level towards the design
level. We describe In-Situ Monitoring systems as network of components. In the pro-
posed design these components can be implemented in either hardware or software.
Therefore, we need a versatile hardware-software platform to accommodate the par-
ticular requirements of a wide range of In-Situ Monitoring systems. The ideal test-
ing ground for such a versatile hardware-software platform are FPGAs (Field Pro-
grammable Gate Arrays) with embedded CPUs. The CPUs execute software processes
which represent software components. The FPGA part can be used to implement hard-
ware components in the form of hardware processes and it can be used to interface to
other hardware components external to the processor. In effect this setup constitutes a
network of communicating sequential processes within a chip. This paper presents a
design flow based on the theory of CSP. The idea behind this design flow is to have
a CSP model which is turned into a network of hardware and software components.
With the proposed design flow we have extended the networking aspect of sensor net-
works towards the system design level. This allows us to treat In-Situ Measurement
systems as sub-networks within a sensor network. Furthermore, the CSP based ap-
proach provides abstract models of the functionality which can be tested. This yields
more reliable system designs.

Keywords. Embedded systems, System on Chip, Network on Chip, Hardware
Software co-Design, Multi-core, Water Monitoring, in-situ sensors, libCSP2

Introduction

Clean drinking water is one of the most important, if not the most important food for humans
and animals alike [1]. Furthermore, it is under constant danger of being polluted by environ-
mental threats [2]. This is the reason why 9 institutions from 6 European countries formed
a consortium to carry out the WARMER (WAter Risk Management in EuRope) project. The
WARMER projectis funded by the Sixth Framework Programme for European Research and
Development (FP6). FP6 emphasises the problems of food quality, and pollution of the envi-
ronment. WARMER is a follow up of SEWING (System for European Water monitorING)
[3]. The focus of the SEWING consortium was the development of sensors to measure water
quality. WARMER aims to enhance the work done by the SEWING consortium by creat-
ing a flexible in-situ monitoring system (IMS) and integrating remote sensing measurements
obtained from satellites.

Figure 1 shows a brief overview of the system proposed by the WARMER project. The
system consists of the following components:

e In-situ measurement systems (IMS) — The IMS measures the properties of the en-
vironment through its sensor probes. The obtained measurement data is interpreted

300

{4zmzzonm—-<zm}

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems

O Remote sensing Satellite

———>f IMS-1 Application-1
. U
—> IMS-2 Application-2 S
E
Data R
Centre S

——>{IMS-N Application-M

Figure 1. Overall system proposed by the WARMER project

by a built-in processing platform. The processing platform decides whether or not a
critical level of pollution is reached. Under normal conditions, i.e. no critical level of
pollution is detected, the measurement system sends its sensor data at predefined in-
tervals, for instance every 30 minutes, to the Data Centre. However, if a critical level
of pollution is detected, the measurement system sends a direct alarm to the Data Cen-
tre. This is only a simple example, naturally one should be able to define much more
complicated monitoring schemes, for instance the measurement result of one sensor
may influence the measurement strategy of another one.

Remote sensing Satellite — It periodically acquires images of the wider area of inter-
est. Unfortunately, these images have a low resolution, one pixel represents a square
of 100m x 100m, and the update frequency varies between 1 and 3 days depending
on the location of interest. This limits the use of remote sensing satellites. However,
the WARMER consortium wants to combine satellite and IMS data to offer a more
complete overview. In the following text the satellite is of no concern.

Data Centre — A Data Centre aggregates satellite images and measurements from
in-situ measurement systems over a long period of time. Furthermore, it analyses the
data and exposes interfaces for user Applications. The interfaces provide access to the
analysis results and the raw data. Long term data integrity is very important in order
to detect slow degradations in the environment.

Applications — These are the user interface of the system. Both IMS and Data Centre
operate without human participation. The Applications interact with the Data Centre
to obtain the measurement data of interest and present it to the users.

The project is interdisciplinary involving specialists in chemistry [4], environmental engi-
neering [1,2], remote sensing [5], computer science, electronics [6], and semiconductor tech-
nology [7]. These requirements justify the large group of international collaborators.

With this paper we propose the creation of a new processing platform for the IMS. The

IMSs will be deployed at remote locations, such as river beds and drinking water reservoirs.
This implies that batteries power the system. The total cost of ownership for such a moni-
toring solution depends largely on the length of the IMS service interval. Needless to say, a
longer interval is more cost effective. It is therefore of great importance that the IMS con-

sumes as little power as possible. Before one can think of optimising the power consumption
of a system, it is necessary to understand the role of the processing platform within the IMS.

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems 301

Storage

Sensors Interfacing Communication

Processing &
Control

Figure 2. The building blocks of the in-situ measurement station

Figure 2 gives an overview of the IMS structure, it consists of four major building
blocks: Sensors, Storage, Processing & Control, and Communication. Currently these build-
ing blocks are implemented as individual hardware components. These hardware components
have incompatible and sometimes conflicting interfaces. Therefore, elaborate interfacing or
glue logic is necessary to enable data exchange between these components. In general the
system design has a low level of integration. This low level of integration directly translates
into high energy requirements. Furthermore, there is no clear strategy which outlines the in-
teraction between the individual components. This makes the whole design very inflexible
and error prone.

Our goal is to outline a flexible design strategy which leads to energy efficient systems.
In effect we propose a design strategy for NoC (Network on Chip) [8,9]. In a hardware
and software co-design environment NoCs consist of networked hardware and software pro-
cesses. We abstract both process types and model the network in terms of Communicating
Sequential Processes (CSP). This model describes the functionality in a very compact man-
ner. Furthermore, it is possible to make profound statements about stability and security of
the system.

The first step in our proposed design strategy is to create and test a functional CSP model.
In a second step a designer has the flexibility to implement a CSP process in either hardware
or software. On the system level this strategy leads to simpler and higher integrated designs,
because it is possible to balance the workload between software and hardware without addi-
tional considerations about functionality or stability. Higher integration removes many of the
stand alone components present in the current system design. So, the proposed system de-
sign has a lower component count, and hence a lower power consumption. This is true if we
assume that: (a) each component requires some energy for housekeeping tasks like memory
refreshes and (b) data exchange between individual components is less energy efficient than
data exchange within an integrated system. Furthermore, most of the literature about higher
integrated systems supports this claim [10].

We present in Section 1 the current, the desired and our proposed hardware for the IMS
processing platform. Section 2 discusses the processing platform design. Software imple-
mentation aspects for the proposed processing platform are discussed in Section 3. In Section
4 we demonstrate how to implement a NoC using the design flow introduced in this paper.
The paper closes with conclusions and further work in Section 5.

1. Proposed In-Situ Processing Platform

Before we propose a new processing platform for the IMS it is necessary to evaluate the
existing systems from our partners in terms of storage and communications. This is good
practice in order to prevent incompatibilities with existing structures.

302 B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems
1.1. Current In-Situ Monitoring System

A wide variety of electrical interfaces are used to connect sensor probes with the processing
platform, ranging from analogue interfaces over RS-232 to USB. Similarly, the connection
between IMS and Data Centre can be implemented using various different communication
standards, but presently there is a bias towards using the mobile phone infrastructures, such as
GSM (Global System for Mobile communications) [11]. As processing platform, the partners
currently use a wide variety of processors ranging from off the shelf PC processors, over
microcontrollers such as Intel 8051 or TI MSP430, to CPLDs (Complex Programmable Logic
Devices) and FPGAs.

1.2. Desired In-Situ Monitoring System

The desired features of the next generation IMS include service intervals of 6 months and
longer, smaller physical size of the system, and also more compatibility between sensor
probes and processing platform is desired. Furthermore, our partners would like to have up
to 20 sensor probes per in-situ measurement system. Additionally, one proposes to use IEEE
1451.x [12,13] to interface sensors with the processing platform. However, this standard is
still in development and hence modifications on its interface are still possible. To prevent any
loss of measurement data in case of a communication breakdown, the partners desire local
data storage of up to 10 MB. To link IMS and Data Centre mobile phone infrastructure is
still desired. However, a little flexibility on this side is still appreciated, especially with the
background of GSM being phased out during the next 10 years and UMTS (Universal Mobile
Telecommunications System) [14,15] taking over. Another interesting communication stan-
dard which can be used for this link is WiMax (Worldwide Interoperability for Microwave
ACCess (IEEE 802.16)) [16,17], of which deployment has started in urban areas already.
Taking all these points into consideration resulted in the processing platform for the in-situ
measurement system we propose.

1.3. System Requirements

The biggest design constraint for the next generation in-situ measurement station is the ser-
vice interval of 6 months and longer. This requires a very energy efficient measurement sys-
tem design. One way to reduce the energy consumption is higher system integration. In the
best case this results in a SoC (System on Chip) where sensors, processing platform, commu-
nication system, and battery are integrated in a single piece of silicon. Because all the com-
ponents are specially designed for this SoC, unnecessary and power consuming abstraction
layers can be avoided. A SoC can be seen as the ultimate long term goal. However, in the
short term this solution has a number of drawbacks for the WARMER project:

e High initial investment- producing a SoC requires custom made components, i.e.
ASICs (Application Specific Integrated Circuits) and the setup of specialised man-
ufacturing lines. This does make sense for mass market products with high produc-
tion volumes, but not for products like a measurement system of which only a few
thousand units will be deployed across Europe.

e Inflexible— once production of systems has started, it is very hard to change anything.
This makes the system not future secure: imagine what happens if GSM is finally re-
placed by UMTS and the SoC is designed to use GSM. The result is partial redevel-
opment. Similarly, we would be unable to utilise newly available sensor technology.

All these points make a SoC an unsuitable design approach for the desired in-situ mea-
surement systems. However, one main point still holds:

A system on chip consumes less power because it avoids unnecessary abstraction layers

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems 303

For the proposed processing platform this means: we must find a way to avoid unnecessary
abstraction layers and at the same time we need the ability to interface to different building
blocks of the IMS.

1.4. Proposed Design

The flexibility of FPGAs permits us to accommodate all electrical interfaces used by our part-
ners, ignoring any necessary voltage conversions for the moment. Furthermore, FPGAs can
also perform signal processing tasks. Due to their truly parallel nature FPGAs can be clocked
much slower, compared to machine-architectures, while performing the same processing. In
general, higher clock speeds result in higher energy consumption. On the other hand there
are some parts of the system, for instance the measurement scheduler, which are best imple-
mented using a machine-architecture. Furthermore, having a built-in machine-logic lowers
the barriers for our partners not used to FPGAs to use the system. To solve this problem we
propose to utilise an FPGA with a built-in processor, such FPGAs are readily available from
vendors such as Xilinx, Inc. Presently, we are evaluating a Xilinx Virtex 4 (XC4VFX12) [18]
which has an embedded PowerPC 405. Figure 3 shows an overview of the hardware of the
proposed practical solution.

Storage
A
A 4
s i HW | ! |Communication
ensors 1 17| Logic g Module
| A
A 4
PowerPC
405
FPGA

Figure 3. Hardware setup of the in-situ measurement station

The IMS hardware is a mix of hardware-logic and machine-logic, which must be com-
bined in order to achieve our goal of a low power processing platform for the in-situ mea-
surement system. Furthermore, this system is a true parallel system where new samples are
aggregated, while older ones are analysed, and the results of previous analysis are sent to a
Data Centre, at the same time. To avoid any race, deadlock, or livelock conditions we decided
to follow the principles of CSP (Communicating Sequential Processes) and treat the different
entities as CSP processes. This means, these entities only communicate over CSP style chan-
nels. What still remains to do is to design the interface between the different components,
especially between the software executed by the machine-logic and the hardware-logic.

2. System Design Inside the FPGA

The previous section detailed the proposed hardware setup for the IMS. This is only the out-
side view of the system, what happens inside the FPGA, is much more interesting. Figure
4 shows one possible configuration / use of the FPGA. In the centre of the FPGA is a na-
tive PowerPC 405 core, which acts as central controller of the IMS, communicating over
FDLs (Fast Duplex Links)with the Sensor Controllers 1-N, Storage Controller, Comms

1A fast duplex link consists of two FSLs (Fast Simplex Links) [19], one for each direction.

304 B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems

Sensor Sensor Hardware
<> Controller k—
1 1 Accelerator
Sensor Sensor $
2 AR Contzroller 7 PowerPC Comms | i | Comms
: K 405 Controller [~ | "| Module
. 0 <— Fast Duplex Link
Sensor Sensor Storage Component
<«——> Controller k— Controller p
N N Specific Interface
5 FPGA

A 4
Storage Module

Figure 4. Inside view of the processing platform

Controller, and a Hardware Accelerator. In the following we detail the role of each of these
components:

e Sensor Controllers — These interface the PowerPC core to the individual sensors. This
interfacing involves not only protocol translation but also includes the electrical in-
terface of the sensor. The PowerPC core communicates with the Sensor Controllers
using a unified interface. This unified interface is a dedicated protocol between the
Sensor Controllers and the PowerPC core. Furthermore, the Sensor Controllers can
perform sensor specific signal processing. This avoids doing this processing in the
sensor and hence allows a higher integration of the complete system.

e Comms Controller — The task of the Comms Controller is to interface the PowerPC
core to a Comms Module. Similar to the Sensor Controller the Comms Controller
performs not only a protocol translation but also provides the necessary electrical
interface. The Comms Controller and the PowerPC core communicate over a FDL
using a standardised protocol. This allows us to exchange the Comms Module, for
instance to move from GSM to UMTS.

e Storage Controller — The Storage Controller abstracts the interface of the Storage
Module and provides it in the form of a predefined protocol over a FDL.

e Hardware Accelerator — The Hardware Accelerator performs signal processing tasks
which are too complex for the PowerPC core. The PowerPC core communicates with
the Hardware Accelerator using a FDL. The system, shown in Figure 4, contains only
a single Hardware Accelerator. However, there is no reason to limit the number of
hardware accelerators in the system.

All these components are implemented as hardware-logic cores using the normal de-
velopment tools. In the following we detail how the PowerPC core will be integrated in the
design.

2.1. Integration of the PowerPC Core

The hardware-logic setup is fairly simple, each component represents one process, connected
via FDLs to the PowerPC core. The controllers interface to hardware entities outside the
processing platform, using hardware specific interfaces. Figure 5 shows the software process
structure executed by the PowerPC. This structure is very similar to the hardware-process

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems 305

structure, detailed in Figure 4. In the center of the design isNt& Control Processwhich
controls the IMS.

’ Hardware Accelerator

Sensor f Hardware
Sensor
Controller Accelerator
Process 1
1 Process

.

Sensor (Sensor I
Controller L IMS
Process 2 Comms Comms
2 L Control

Process Controller
—» Processs

Sensor (Sensor Storage libCSP2
Controller Process N Process Duplex Channel
N L PowerPC 405 Core P

‘ Storage Controller ‘

Figure 5. Process network within the PowerPC

Each present Sensor Controller is represented by a Sensor Process in software. This
Sensor Process translates requests from the IMS Control Process into requests for the Sen-
sor Controller, furthermore it may do additional signal processing. Possible applications for
this sensor specific signal processing are, for instance: sensor calibration, detection of faulty
sensors, or data type conversions.

The IMS Control Process communicates with the Comms Controller via the Comms
Process. This process performs the translation, and contains all necessary configuration / au-
thentication information for the chosen communication network. For instance when using
GSM to connect to the Data Centre, the authentication to the GSM network provider is han-
dled by this process. Furthermore, this process handles the identification of the IMS with the
Data Centre, and ensures that no messages are lost between IMS and Data Centre.

To communicate with the Storage Controller the IMS Control Process communicates
with the Storage Process. Initially, this process will only perform a simple request translation.
However, in future we can add a file system like functionality, for instance by appending the
current time and date to each entry. Furthermore, it could support data encryption to prevent
others reading the stored information.

Finally, the Hardware Accelerator Process translates requests between the IMS Control
Process and the Hardware Accelerator. This process will expose a call-channel interface.
This allows users to utilise the functions the Hardware Accelerator offers just like a normal
function call.

3. Implementation of the Software

The previous sections detailed the proposed structure of the IMS processing platform. A vital

aspect of the proposed system is the duality between hardware and software. In the following
we discuss how we plan to implement the software system run by the PowerPC core. There
are a number of constraints which we need to take into consideration when implementing the
software:

e Amount of memory available to the PowerPC; The currently proposed FPGA
(XC4VFX12 [18]) offers 81KB of BRAM (Block RAM) memory, i.e. if any

306 B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems

hardware-logic requires memory, this memory is deducted from these 81KB. It is of
course possible to use external RAM, however this requires more energy, more space
on the PCB (Printed Circuit Board), and finally it costs more money. Another possi-
bility is to choose an FPGA with more internal memory, but even then the memory
footprint of the software remains an issue.

e Ultilisation of non-standard interfaces of the PowerPC; The proposed processing plat-
form relies on the use of FDLs to communicate with the hardware-logic. Hence, the
chosen operating system must allow us to access the FDL interface provided by the
PowerPC core.

e The choice of programming languages is limited; We are not the only ones developing
software for the proposed processing platform. In fact most of the extensions to it will
be developed by our partners in the consortium. The questionnaire revealed that most
people are familiar with C and C++. It is safe to assume that they have already legacy
code which they would like to reuse.

3.1. Operating System

In order to comply with these constraints, we decided to use XMK (Xilinx Microkernel)
[20] as OS (Operating System). XMK is a small OS for the Xilinx MicroBlaze SoftCPU and
hard wired PowerPC 405 cores. This OS abstracts the access to the FDL interfaces for both
MicroBlaze and PowerPC 405.

After choosing an applicable OS it is time to choose a CSP environment to implement
our processes on the machine-architecture. One possible choice is to port and extend the
Transterpreter [21,22] to our chosen hardware platform. Choosing the Transterpreter implies
that the software will be developed in Occam. While this is no problem for us, our partners
don’t have that background and furthermore they have legacy code in other languages such
as C. Therefore, we need a C based solution. We therefore propose to use libCSP2 [23] as
CSP environment for the processing platform. There are two reasons for this: firstly, libCSP2
has already built-in support for FDLs, secondly it allows one to develop CSP style software
in C. This ensures a flat learning curve for our partners, when they want to develop their own
extensions to our system.

3.2. Recent Developments of libCSP2

There have been a number of small enhancements to libCSP2 recently. First, lIbCSP2 now
abstracts FSLs as normal channels, i.e. a process can not determine whether it uses a software
channel or an FSL based channel. This allows developers greater freedom when doing multi-
core designs with libCSP2.

Furthermore, we changed the build system from autotools to CMake [24]. This step
allows users now to build the library outside of their current software project. This means the
libCSP2 source code is not present in the users software project.

Presently, we are working on a formal verification of the implementation of libCSP2 on
XMK. However, this work will still take some time to complete.

4. Example: Sensor Integration

This section demonstrates the proposed CSP based design flow for NoCs works. Our design
goal is the integration of a new sensor into the processing platform. The desired functionality
is straightforward: the IMS Control Process acquires a measurement value form a sensor
and triggers an alarm is the acquired measurement value is above a certain threshold. We
implement this simple example with libCSP2 technology on a Virtex-4 FPGA.

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems 307

The first step in the design is to create and test a functional CSP model of the system.
Subsequently, the CSP processes are mapped onto the available processors, in this case FPGA
and PowerPC. After the mapping step follows the implementation. The individual processes
are implemented using processor specific tools and networked using domain specific chan-
nels. The following text concentrates on the implementation of the processes on the PowerPC
using libCSP2 and how to link them with processes located within the FPGA.

4.1. CSP Model
IMS)
fsl_in result Alarm
SENSOR _ SENSOR _ IMS CTRL
CTRL(0) 51 out PROC trigger PROC OK
— —
J

Figure 6. IMS process network

Figure 6 shows th&MS process network which represents the system functionality. The
main task of the process network is to raisefdarm when a sensor detects a harmful pol-
lution. We model this functionality with three processBENSORCTRL SENSORPROGC
andIMS_CTRL_PROC These communicate over the channédt:in, fsl_out, trigger, and
result We did not do extensive tests on the CSP model, because it is very simple. The fol-
lowing paragraphs explain the CSP model for each of these processes.

The procesSENSORCTRL(i) (Equation 1) represents the Sensor Controller. This pro-
cess expects to receive the command vakfefrom the channefsl_out and then returns a
measurement value in the ran@e49]. Any other value on chann&l outwill be ignored.

SENSORCTRL(i) =

1
fsLout’x : {48} — fsLin!(i mod50) — SENSORCTRL(i + 1) @)

Equation 2 specifies the procéeSENSORPROCwhich represents the Sensor Process.
The process waits for any message on chatmgder and then requests a measurement
value from the Sensor Controller, by sending the vakiever channelsl_out. Then it waits
for a message from the Sensor Controller on chafsleih. This message represents the
measurement value. The process then relays this value to the IMS Control Process over the
channefkesult The process is now ready to process the next request.

SENSORPROC=

2
trigger’x — fsl_outl48 — fsL_in?x — resulix — SENSORPROC (@)

ProcessMS_CTRL PROC(Equation 3) represents the IMS Control Process. The IMS
Control process requests a measurement value from the Sensor Process, by sending a message
over the channdtigger. After that it waits for the measurement value to arrive on the channel
resultand then compares the received value with 42. If the measurement value is smaller or
equal42 everything is OK and the process issuesfevent. Otherwise, the process issues
anAlarmevent. In both cases the process recurses to start a new round of measurement.

2The command value, as well as the range of measurement véluas]j and the threshold valueZ), are
arbitrary chosen values.

308 B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems
IMS_CTRL PROC=

Alarm — IMS_CTRL PROC if x > 42 (3)

trigger'l — result’x — _
OK — IMS_CTRL.PROC otherwise

ProcessMS (Equation 4) represents the complete IMS, which consists of the processes:
SENSORCTRL(0), SENSORPROG andIMS_CTRL PROC To avoid any outside inter-
ference all transactions on channdtg:in, fsl_out, trigger, andresultare hidden. Only the
eventsAlarmandOK are visible to the outside world.

IMS = SENSORCTRL(0) || SENSORPROC|| IMS_CTRL_PROC

4
\ {] fsLin, fsl_out trigger, result |})

4.2. Mapping the Processes onto the Available Processors

fsl_in i (result
Sensor Sensor IMS
. Control
Controller fsl_out Process trigger
Process
- J
FPGA PowerPC 405 Core

<—— Fast Simplex Link «— 1libCSP2 Software Channel

Figure 7. Process mapping onto the processors of the processing platform

Figure 7 illustrates the mapping of the CSP processes onto the processors of the pro-
cessing platform. The Sensor Controller gets implemented outside the PowerPC, in order to
interface directly with the Sensor. The Sensor Process is located within the PowerPC core
together with the IMS Control Process. The Sensor Controller and the Sensor Process com-
municate using FSLs (Fast Simplex Links), while Sensor Process and IMS Control Process
use libCSP2 software channels.

4.3. Implementing the Processes Located within the PowerPC

Listing 1 is the libCSP2 implementation of procé&&SNSORPROC(Equation 2).

void SensorProcess(pChannel trigger, pChannel result, \
pChannel fsl_in, pChannel fsl_out){
int msg = 0;
while (1)1
Chanlnint(trigger, &msg);
ChanOutint(fsl_out, 48);
Chanlnint(fsl_in, &msg);
ChanOutlnt(result, msg);

b}
Listing 1: Sensor Process Implementation using libCSP2

Listing 2 gives the libCSP2 implementation of procé8tsS_CTRL PROCdefined in
Equation 3. From a functional point of view, the main difference between the functional
model and the implementation lies in the handling of the alarm. The implementation does
not issue an alarm event over a channel, instead it outputs the corresponding strings onto the
console, (lines 7 and 9).

10

10

12

14

16

18

20

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems 309

void ControlProcess(pChannel trigger, pChannel result){
int value = 0;
while (1)1
ChanOutlnt(trigger, 1); /I trigger a new measurement value
Chanlnint(result, &value); /I receive the new value
if (42 < value){
xil_printf("Alarm\r\n");
}else {
xil_printf("OK\r\n");
P}

Listing 2: IMS Control Process Implementation

The processes located in the PowerPC core have now to be instantiated, linked with the
Sensor Controller and then executed. Listing 3 demonstrates how this is done using libCSP2.
The listing consists of three sections: one declaring necessary variables (lines 2 — 7), a def-
inition section (lines 10 and 11). The last section is the funacitan * shell_main(void)
which uses these declarations and definitions (lines 13 — 21).

/[Channel and process declarations;
pProcess sensor = NULL;

pProcess control = NULL;
pChannel trigger = NULL;
pChannel result = NULL;
pChannel fsl_in = NULL;
pChannel fsl _out = NULL;

/I Defining necessary intermediate functions;
void procSensor(void) {SensorProcess(trigger, result, fsl_in, fsl_out);}
void procControl(void) {ControlProcess(trigger, result);}

void * shell_main(void * dummmy){
CSP_ChanAlloclnit(&trigger, CSP_ONE20ONE_CHANNEL);
CSP_ChanAlloclnit(&result, CSP_ONE20ONE_CHANNEL);
FSL_AlloclnitChannellnput(&fsl_in, CSP_ONE20ONE_CHANNEL, 0);
FSL_AllocInitChannelOutput(&fsl out CSP_ONE20ONE_ CHANNEL 0);
ProcAllocInit(&sensor, procSensor);
ProcAllocInit(&control, procControl);
ProcPar(control, sensor, NULL);

Listing 3: IMS Processing Platform Setup

Lines 10 and 11 define intermediate functions, which represent the Sensor Process and
the IMS Control Process. The reason for these intermediate functions is that libCSP2, in its
current state, only allows un-parametrised functions to act as processes. Unfortunately, the
functions which represent the Sensor Process and the IMS Control Process have parameters,
making these intermediate functions necessary.

The functionvoid * shell_main(void) (line 13) represents the program entry point.
Once started it allocates and initialises the chanm&lger andresult as normal software
channels (lines 14 and 15). To connect the Sensor Process with the Sensor Controller the
function allocates and initialises two FSL channel-emglsh andfsl out . The channel-
endfsl_in gets allocated as FSL channel input for FSL-ID 0 (line 16). This means that the
process using this channel end may only input data from the FSL, but not output data to it.
The function then allocates and initialises the channeliginelt as FSL channel output
for FSL-ID 0 (line 16). The statements that follow (lines 18 — 20), allocate and initialise the

310 B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems

two processes and then execute them in parallel. This completes the implementation of the
process network located in the PowerPC.

This example demonstrated how to implement NoCs using libCSP2 and Xilinx FSL.
Furthermore, it supports our claim of unification of channels within libCSP2. To move the
Sensor Process outside the PowerPC no change of the IMS Control Process is necessary, only
the software channetsgger andresult have to be replaced with FSL channel-ends.

5. Conclusions and Further Work

This paper proposed a processing platform design for the WARMER in-situ monitoring sys-
tem. One of the requirements of this in-situ monitoring system is: Long service intervals in
the range of 6 to 12 months. Another aspect is the flexibility to work with or replace various
existing systems used by other WARMER collaborators. One last requirement is to design
the system such that our partners can reuse their code and extend the system without our
help. In the practical part of the paper we demonstrated how FPGA technology can be used
to achieve higher system integration with more flexibility. These goals were achieved with a
network of software and hardware processes.

A big advantage of the proposed system is the sheer ease with which it allows the de-
signer to create hybrids of hardware- and machine-logic, when using CSP style communica-
tions between these processes. Another benefit of Communicating Sequential Processes is the
duality of hardware- and machine-logic. Each hardware-logic core has a process represen-
tation within the machine-logic. This allows the designer to choose the processing platform
which executes specific data or control centric algorithms. This freedom leads to optimised
systems, because of an optimal use of processing resources. Furthermore, it is easy to follow
the data flow within the system. This makes the system easy to understand and extend. The
use of libCSP2 as CSP environment for the software part of the system allows the partners to
reuse previously developed algorithms without too much difficulty.

The approach we present in this paper is not restricted to processing platforms embedded
in in-situ monitoring systems but is generally applicable to hardware-software co-design.

5.1. Further Work

This project is still in the drafting stage, and there is still a lot of work to be done. Never-
theless, we already see a number of areas to be explored. In its current state the processing
platform needs to be designed / compiled specifically for the used sensors. While this is fine
for prototyping and small scale use it becomes a nuisance once the system is deployed out in
the field, because it is not possible to plug and play the sensors. To solve this, two areas need
to be investigated: partial reconfiguration of the FPGA, and patrtial process network reconfig-
uration of the libCSP2 process network. Here we see again the duality of the system design,
where hardware- and machine-logic are closely coupled. For libCSP2 these requests mean to
implement stateful poisoning. Furthermore, libCSP2 needs an extension that provides call-
channels. However, the previously mentioned further work items are long term work items,
in the short term we need to start developing the protocols used between the PowerPC 405
core and the hardware-logic cores. Not to forget convincing our partners of the advantages of
this design approach.

Acknowledements

This work was supported by the European FP6 project “WARMER” (contract no.: FP6-
034472).

B. H. C. Sputh et al. / A Versatile Platform for In-Situ Monitoring Systems 311
References

[1] Amara Gunatilaka. Groundwater woes of Asksian Wateypages 19-23, January 2005.

[2] Amara Gunatilaka. Can EU directives show Asia the Wasian Waterpages 14-17, December 2006.

[3] Results of the IST-2000-28084 Project SEWING: System for European Water monitorING. Available
(23.04.2007) at: http://www.sewing.mixdes.org/downloads/firedults.pdf, December 2004.

[4] Renata Mamiska and Wojciech Wablewski. Solid-state microelectrodes for flow-cell analysis based on
planar back-side contact transducdttectroanalysis18(13-14):1347-1353, July 2006.

[5] V. V Malinovsky and S. Sandven. SAR monitoring of oil spills and natural slicks in the Black Sea.
Submitted tdRemote Sensing of Environme2007.

[6] A Legin, A Rudnitskaya, B Seleznev, and D Kirsanov. Chemical sensors and arrays for simultaneous
activity detection of several heavy metal ions at low ppb leveProceeding of Pittcon 2004ittsburgh
Conference, March 2004.

[7] M. T. Castdieda, B. Brez, M. Pumera, A. Merkogi, and S. Alegret. Sensitive stripping voltammetry of
heavy metals by using a composite sensor based on a built-in bismuth predmalgst 130(6):971-976,

2005.

[8] Luca Benini and Giovanni De Micheli. Networks on Chips: A New SoC Paradigomputey 35(1):70—
78, 2002.

[9] Grant Martin. Book Reviews: NoC, NoC ... Who's thel®&EE Design and Test of Computep8(6):500—
501, 2006.

[10] Hugo De Man. System-on-Chip Design: Impact on Education and ResdéaEib Des. Testl6(3):11-19,
1999.

[11] M. Rahnema. Overview of the GSM System and Protocol ArchitectBEeE Communications Magazine
31(4), April 1993.

[12] Richard D. Schneeman. Implementing a standards-based distribution measurement and control application
on the internet. Technical report, U.S. Department of Commerce, Gaithersburg, Maryland 20899 USA,
June 1999.

[13] James D. Gilsinn and Kang Lee. Wireless interfaces for IEEE 1451 sensor netwofk&céaedings of
the First ISA/IEEE Conferengpages 45-50. IEEE, November 2001.

[14] Antonios Alexio, Dimitrios Antonellis, and Christos Bouras. Evaluating Different One to Many Packet
Delivery Schemes for UMTS. IWWVOWMOM ’06: Proceedings of the 2006 International Symposium on
on World of Wireless, Mobile and Multimedia Netwqriages 66—72, Washington, DC, USA, 2006. IEEE
Computer Society.

[15] Xiao Xu, Yi-Chiun Chen, Hua Xu, Eren Gonen, and Peijuan Liu. Parallel and distributed systems: sim-
ulation analysis of RLC timers in UMTS systems. WASC '02: Proceedings of the 34th conference on
Winter simulationpages 506-512. Winter Simulation Conference, 2002.

[16] S.J. Vaughan-Nichols. Achieving wireless broadband with WiMaamputey 37(6):10-13, June 2004.

[17] Teri Robinson. WiMax to the worldAetWorkey 9(4):28—34, 2005.

[18] Xilinx, Inc., 2100 Logic Drive San Jose, CA 95124-3400, United States of AmeriGetex-4 Family
Overview DS12 (v2.0) edition, January 2007.

[19] Xilinx, Inc. Fast Simplex Link (FSL) Bus (v2.004)December 2005.

[20] Xilinx, Inc, 2100 Logic Drive San Jose, California 95124 United States of Amer@&.and Libraries
Document Collectior24 October 2005.

[21] Christian Jacobson and Matthew C. Jadud. The Transterpreter: A Transputer Interpreter. In lan R. East,
David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, edi@ssymunicating Process
Architectures 2004pages 99-106, September 2004.

[22] Damian J. Dimmich, Christian Jacobson, and Matthew C. Jadud. Native Code Generation using the
Transterpreter. In Frederick R. M. Barnes, Jon M. Kerridge, and Peter H. Welch, e@ibonspunicating
Process Architectures 200pages 269—-280, September 2006.

[23] Bernhard Sputh, Oliver Faust, and Alastair R. Allen. Portable CSP Based Design for Embedded Multi-
Core Systems. In Frederick R. M. Barnes, Jon M. Kerridge, and Peter H. Welch, e@ibonsaunicating
Process Architectures 200pages 123-134, September 2006.

[24] Ken Martin and Bill Hoffman. Mastering CMake 2.2 EditianKitware, Inc., Clifton Park NY, USA, 24
February 2006.

