
Communicating Process Architectures 2007 149
Alistair McEwan, Steve Schneider, Wilson Ifill and Peter Welch (Eds.)
IOS Press, 2007
© 2007 The authors and IOS Press. All rights reserved.

Testing and Sampling Parallel Systems
Jon KERRIDGE

School of Computing, Napier University, Edinburgh, EH10 5DT

Abstract The testing of systems using tools such as JUnit is well known to the
sequential programming community. It is perhaps less well known to the parallel
computing community because it relies on systems terminating so that system
outputs can be compared with expected outputs. A highly parallel architecture is
described that allows the JUnit testing of non-terminating MIMD process based
parallel systems. The architecture is then extended to permit the sampling of a
continuously running system. It is shown that this can be achieved using a small
number of additional components that can be easily modified to suit a particular
sampling situation. The system architectures are presented using a Groovy
implementation of the JCSP and JUnit packages.

Keywords: JUnit Testing, Sampling, GroovyTestCase, white-box, black-box

Introduction

The concept of testing, particularly using the white-box and black-box techniques, is well
known and understood by the software engineering community. White-box testing is used
to ensure that the methods associated with an object oriented class definition operate in the
expected manner and that their internal coding is correct. Black-box testing is used to
ensure that the overall operation of the class and its methods is as expected when operating
in conjunction with other classes without concern for their internal coding.

The Agile programming community [1] has developed techniques commonly referred
to as unit testing. In particular, these techniques have been incorporated into an open
source framework that can be used with Java, called JUnit (www.junit.org). Typically,
JUnit is used to undertake white-box testing. The use of the capability has been made even
easier in the Groovy scripting environment by the creation of the GroovyTestCase [2], by
for example, ensuring that all methods starting with test are compiled and executed as a
Groovy script. A test will normally require some form of assertion test to check that an
output value is within some bound or that some invariant of the system is maintained,

An ordinary object-oriented class uses its methods to pass messages between objects
and thus need to be carefully tested. Hence the JUnit test framework has been designed
specifically to undertake white-box testing of these methods. An object is tested by
defining it as a fixture, which is then subjected to a sequence of tests. After each test is
completed an assertion is evaluated to determine the success of the test. An assertion can
test for a true or false outcome. The testing process requires the programmer to define an
input sequence of calls to one or more methods of the object and also to specify the
expected outcome. The assertion tests the generated output from the object under test
against the expected outcome. Thus programming becomes a process of defining inputs
and expected outputs and writing the program to achieve the desired outputs. The JUnit
framework automates this process further by combining sequences of tests into testsuites.
If a change has been made to the underlying object all the tests contained in all the
testsuites can be run to ensure the change has not created any unwanted side effects.

150 Jon Kerridge / Testing and Sampling Parallel Systems

In the MIMD parallel processing environment, using JCSP (www.jcsp.org), the classes
implement the interface CSProcess that has only one method run(). Any methods are
private to the object and used simply to assist in the coding of the process. Hence the use
of unit testing in the parallel environment can be considered more akin to black-box testing
because there is only one method to test. Often processes are written in a style that runs
forever rather than having a specific termination strategy. Processes can be returned to a
known state using techniques such as poison [3, 4] but unless specifically required tend not
to be used. Even in this situation, the process can still continue to run and may not
terminate. If a network of processes does terminate then the normal testcase framework can
be used. Hence a means of testing a non-terminating system has to be specially designed so
the non-terminating part under test can continue to run, while the testing part terminates so
that data values can be extracted for assertion testing. If the network of processes does not
terminate we can never extract the values from its execution that are required to test the
associated assertions. If the system has been designed to run forever then the addition of
code to cause the system to terminate means the system being tested is not the one that will
be used in any final deliverable. We therefore need to create a bi-partite test environment
in which the process network under test is able to run forever. A terminating test part
injects a finite sequence of values, with an expected outcome into the network under test.
The test part also receives outputs which can be assertion tested against the expected
outcome. This simple strategy is impossible to run as a single process network in a single
processing node because even though the processes in the test part will terminate the
network under test will not terminate and thus the complete network never terminates and
thus the assertions cannot be tested. The use of the GroovyTestCase framework means
that the testing can be even more easily automated.

Sampling a system provides a means of checking that a system remains within pre-
defined bounds as it operates normally. The benefit of providing a sampling architecture
that is different from the testing architecture is that it can be incorporated into the system
either at design time or once it has been implemented. The primary requirement is that the
processes that are used to extract the samples are as lightweight as possible. Crucially,
these sampling processes must not result in any modification to the system that has already
been tested.

In the next section, a generic testing architecture is presented that utilizes the capability
of JCSP to place processes on different nodes of a multi-node processing network
connected by means of a TCP/IP network. Section 2 then demonstrates how this
architecture can be applied to a teaching example process network. Section 3 then shows
how the same process network could be sampled during normal operation. Sections 4 and 5
then describe generic sampling architectures for systems that respectively communicate
data by means of object data transfers and by primitive data types. Finally, some
conclusions are drawn and further work identified.

1. A Generic Testing Architecture

Figure 1 shows a generic architecture in which it is presumed that the Process-Network-
Under-Test (PNUT) is either a single process or a collection of processes that does not
terminate. The Input-Generator process produces a finite set of inputs to the PNUT and
may also create a data structure that can form one part of a test assertion. Similarly, the
Output-Gatherer process collects data from the PNUT and stores it in a data structure that
can be subsequently tested by Test-Network. The Assertion-Testing is only undertaken
when both the Input-Generator and Output-Gatherer processes have terminated.

The goal of the architecture is to create a means by which each of the processes or sub-

 Jon Kerridge / Testing and Sampling Parallel Systems 151

networks of processes can be tested and shown to operate according to the tests that have
been defined for that particular process or sub-network of processes. The JCSP, due to its
reliance on CSP provides a compositional semantics when processes are combined into
larger networks. Other mechanisms are available, such as FDR [5] for determining the
deadlock freedom of such compositions, but cannot then test the full range of values that
might be applied to such a network and thus the need for a testing framework for parallel
systems. The PNUT shown in Figure 1 might be a single process or a network of processes
that together form a collection of testable processes that are subsequently used in a
compositional manner in the final system design.

Figure 1 Generic Testing Architecture

Both the Input-Generator and Output-Gatherer processes must run as a Parallel within

the process Test-Network, then terminate after which their internal data structures can be
tested within Assertion-Testing. An implementation of the Test-Network process for a
specific example is shown in Listing 1. It does however demonstrate the generic nature of
the architecture in that the only part that has to be specifically written are the
GenerateNumbers and CollectNumbers processes that implement the Input-Generator and
Output-Gatherer respectively.

The class RunTestPart implements the Test-Network {1}1and simply extends the class
GroovyTestCase. The method testSomething {3} creates the Test-Network as a process
running in a node on a TCP/IP network. The node is initialized in the normal manner
within the JCSP framework {5}. Two NetChannels, ordinaryInput {7}and
scaledOutput {8} are defined and recorded within an instance of TCPIPCNSServer that is
presumed to be running on the network prior to the invocation of both the PNUT and Test-
Network. The processes are created {10, 11} using the techniques described in [6] using

1 The notation {n} indicates a line number in a lisitng.

Process-Network-Under-Test

TCP/IP Network

Test-Network

Input-Generator Output-Gatherer

Assertion-Testing

152 Jon Kerridge / Testing and Sampling Parallel Systems

Groovy parallel helper classes. The processes are then invoked {13, 15}. Once the PAR has
terminated, the properties generatedList, collectedList and scaledList can be
obtained from the processes {17-20} using the Groovy dot notation for accessing class
properties. In this case we know that the original generated set of values should equal the
unscaled output from the collector and this is tested in an assertion {21}. In this case we
also know that each modified output from the PNUT should be greater than or equal to the
corresponding input value. This is implemented by a method contained in a package
TestUtilities called list1GEList2, which is used in a second assertion {22}.

01 class RunTestPart extends GroovyTestCase {
02
03 void testSomething() {
04
05 Node.getInstance().init(new TCPIPNodeFactory ())
06
07 NetChannelOutput ordinaryInput = CNS.createOne2Net("ordinaryInput")
08 NetChannelInput scaledOutput = CNS.createNet2One("scaledOutput")
09
10 def collector = new CollectNumbers (inChannel: scaledOutput)
11 def generator = new GenerateNumbers (outChannel: ordinaryInput)
12
13 def testList = [collector, generator]
14
15 new PAR(testList).run()
16
17 def original = generator.generatedList
18 def unscaled = collector.collectedList
19 def scaled = collector.scaledList
20
21 assertTrue (original == unscaled)
22 assertTrue (TestUtilities.list1GEList2(scaled, original))
23
24 }
25
26 }

Listing 1 An Implementation of the Test-Network Process

The benefit of this approach is that we are guaranteed that the Test-Network will

terminate and thus values can be tested in assertions. The fact that the PNUT continues
running is made disjoint by the use of the network. This could not be achieved if all the
processes were run in a single JVM as the assertions could not be tested because the PAR
would never terminate. The process network comprising the PNUT and the Test-Network
can be run on a single processor with each running in a separate JVM, as is the
TCPIPCNSServer. RunTestPart will write its output to a console window indicating
whether or not the test has passed. The console window associated with PNUT will
continue to produce any outputs associated with the network being tested.

1.1 Example Generator and Gatherer Processes

Necessarily, the Generator and Gatherer processes will depend upon the PNUT. Listing 2
shows a typical formulation of a Generator process, which produces a finite sequence of
numbers. The properties of the process will vary, however outChannel and
generatedList will always be required. The channel is used to communicate values to the
PNUT {38} and generatedList provides a means of storing the output sequence in a
property {33, 39} that can be accesses once the process has terminated. The operator <<
{39} appends a value to a list. In this case the numbers need to be output with a delay {29,

 Jon Kerridge / Testing and Sampling Parallel Systems 153

36, 40} of one second between each number. The size of the output sequence can easily be
altered by varying the value assigned to the property iterations, which has a default
value of 20.

27 class GenerateNumbers implements CSProcess{
28
29 def delay = 1000
30 def iterations = 20
31
32 def ChannelOutput outChannel
33 def generatedList = []
34
35 void run() {
36 def timer = new CSTimer()
37 for (i in 1 .. iterations) {
38 outChannel.write(i)
39 generatedList << i
40 timer.sleep(delay)
41 }
42 }
43 }

Listing 2 An Implementation of a Generator Process

Listing 3 similarly gives the code for a Gatherer process. In this case two output lists

can be collected, one which is the same as the original data stream (collectedList) and
one which has been modified in some manner (scaledList). These lists will be accessible
when the Test-Network process terminates as they are properties of the CollectNumbers
process. The results are read from inChannel as objects of type ScaledData, whose
properties original and scaled are appended to each of the accessible property lists.

44 class CollectNumbers implements CSProcess {
45
46 def ChannelInput inChannel
47 def collectedList = []
48 def scaledList = []
49
50 def iterations = 20
51
52 void run() {
53 for (i in 1 .. iterations) {
54 def result = (ScaledData) inChannel.read()
55 collectedList << result.original
56 scaledList << result.scaled
57 }
58 }
59 }

Listing 3 A Gatherer Process

The basic structure of the Test-Network processes is essentially independent of the

PNUT, though it does need to be specialized to its specific requirements with respect to the
number and type of input channels and of its outputs. The key requirement is that some
relationship between the inputs and outputs has to be testable in an assertion.

2. The Network Under Test

The Network-Under-Test used in the above example is based upon the scaling device

154 Jon Kerridge / Testing and Sampling Parallel Systems

described by Belapurkar [7]. The scaling device reads integers that appear on its input
every second, hence the delay introduced in the GenerateNumbers process shown in
Listing 2. The scaling device then outputs these inputs multiplied by a constant factor,
which is initially set to 2. The constant factor is however doubled every 5 seconds.
Additionally, a controlling mechanism is provided that suspends the normal operation of
the scaling device. The current value of the scaling factor is read and modified as necessary.
In this case, the scaling factor is incremented by 1. While the scaling device is in the
suspended state any input value is output without any scaling. The scaling device is
suspended after 7 seconds and remains in the suspended state for 0.7 seconds. The script
that runs the scaling device is given in Listing 4.

60 Node.getInstance().init(new TCPIPNodeFactory ())
61
62 NetChannelInput ordinaryInput = CNS.createNet2One("ordinaryInput")
63 NetChannelOutput scaledOutput = CNS.createOne2Net("scaledOutput")
64
65 new PAR(new ScalingDevice (inChannel: ordinaryInput,
66 outChannel: scaledOutput)).run()

Listing 4 Script to Execute the ScalingDevice in its own JVM

A network node is created {60} followed by two net channels that are the ones

corresponding to those created within the Test_Network {7, 8}. The single
ScalingDevice process is then executed {65, 66}. This process does not terminate.

The ScalingDevice is defined by the process shown in Listing 5, which defines two
channel properties for input to and output from the process {69, 70}. The run() method
uses three channels to connect the Scale process to the Controller process. These are
used to implement the suspend, reading and updating of the scale factor described above.

67 class ScalingDevice implements CSProcess {
68
69 def ChannelInput inChannel
70 def ChannelOutput outChannel
71
72 void run() {
73 def oldScale = Channel.createOne2One()
74 def newScale = Channel.createOne2One()
75 def pause = Channel.createOne2One()
76
77 def scaler = new Scale (inChannel: inChannel,
78 outChannel: outChannel,
79 factor: oldScale.out(),
80 suspend: pause.in(),
81 injector: newScale.in(),
82 scaling: 2)
83
84 def control = new Controller (testInterval: 7000,
85 computeInterval: 700,
86 factor: oldScale.in(),
87 suspend: pause.out(),
88 injector: newScale.out())
89
90 def testList = [scaler, control]
91
92 new PAR(testList).run()
93 }
94
95 }

Listing 5 The Definition of the ScalingDevice Process

 Jon Kerridge / Testing and Sampling Parallel Systems 155

The unit test described above demonstrates that the basic functionality of the scaling
device is correct. However, can we be assured that the system will behave correctly over a
longer period? A moment’s reflection will indicate this is not the case because if you
continue to double the scaling factor and add one every so often then the bound on integer
values will be reached and overflow will occur. Given that we know this to be the case can
we demonstrate it by means of a generalised sampling environment that is applicable in a
wide variety of situations? Further, could such a sampling system be left in place
permanently so that the operation of the system can be checked periodically?

3. Sampling the Scaling Device

We shall use exactly the same Scale and Controller processes as those used in the unit
testing; otherwise there was no point in testing them! We shall however drive them in a
slightly different manner so that we can run the system for an indeterminate period. This is
shown in Figure 2.

Figure 2 Sampling the Scaling Device

GNumbers, GFixedDelay are Groovy versions of the equivalent Numbers and

FixedDelay processes of the package jcsp.plugNplay. GPCopy achieves the same effect as
Delta2 in the same package. GNumbers generates a sequence of integers. GFixedDelay
introduces a delay into the communication, in this case of 1 second. GPCopy copies any
input to both its outputs in parallel.

The Sniffer process inputs all the data output to it by GPCopy. If a predefined time
has elapsed since the data stream was last sniffed then the next input from GPCopy is
output to the Comparator process. The Comparator process reads all the outputs from the
Scale process. The Scale output comprises a data object containing both the original
unscaled value and the scaled value. The definition of the scaling device is such that we
know that the scaled value should either be greater than or equal to the original value. The
Comparator already knows the sniffed original value and can thus check the relationship
between the original value and the scaled value is correct, when it reads a record with the
sniffed original value. This does presume that it takes longer for the Scale process to
operate than the communication between the Sniffer and the Comparator.

On running this system we soon discover that the expected failure does occur and the
scaled value goes negative and thus out of bounds. Perhaps more surprisingly a different

GNumbers

GFixedDelay

GPCopy Scale

Controller

Sniffer Comparator

Scaling Device

156 Jon Kerridge / Testing and Sampling Parallel Systems

failure mode is observed if the system is allowed to run further. We discover that the
system goes into an infinite loop of a scaling factor sequence of -2, -1, -2, -1, …when we
might have expected it to return to a positive number sequence as the values overflow a
second time. Recall (Section 2) that the operations undertaken on the scaling factor are one
of doubling and then adding one and thus this outcome is entirely reasonable but hard to
predict when the processes are being defined because the operations are undertaken in
different processes. The same outcome would be achieved if we quadrupled and then
added three, except that the sequence would be -1, -4, -1, -4, … .

Listing 6 shows the coding of the Sniffer process. The process has two channel
properties, one, fromSystemCopy, reads the outputs from the GPCopy process and the other,
toComparator, writes data to the Comparator process, see Listing 7. The final property is
the sampleInterval, which defaults to 10 seconds.

96 class Sniffer implements CSProcess{
97
98 def ChannelInput fromSystemCopy
99 def ChannelOutput toComparator
100 def sampleInterval = 10000
101
102 void run() {
103 def TIME = 0
104 def INPUT = 1
105 def timer = new CSTimer()
106 def snifferAlt = new ALT([timer, fromSystemCopy])
107 def timeout = timer.read() + sampleInterval
108 timer.setAlarm(timeout)
109 while (true) {
110 def index = snifferAlt.select()
111 switch (index) {
112 case TIME:
113 toComparator.write(fromSystemCopy.read())
114 timeout = timer.read() + sampleInterval
115 timer.setAlarm(timeout)
116 break
117 case INPUT:
118 fromSystemCopy.read()
119 break
120 }
121 }
122 }
123 }

Listing 6 The Sniffer Process Code

The run method defines a CSTimer {105}that is used to generate an alarm when the

sampleInterval has elapsed {107, 114}. During normal INPUT {118} the data from the
channel fromSystemCopy is read and ignored. When the alarm TIME has occurred the next
value fromSystemCopy is read {113}and written to the channel toComparator. The next
alarm time is recalculated {114,115}.

The Comparator process receives outputs from the system being sampled as well as
inputs from the Sniffer process {126, 127}. The Comparator alternates over these inputs
{132}. On receipt of a value from the Sniffer {137}, the process reads values from the
system until the value to be evaluated is input {140-150}. It then tests the value to
determine its relationship to an invariant of the system. An appropriate message is printed,
which in a real system could be stored in a database.

The Sniffer and Comparator have been implemented knowing the detailed operation
of the Scaling Device; in particular that it inputs a stream of integers and outputs objects
containing both the original and the modified value. What happens if the input and output

 Jon Kerridge / Testing and Sampling Parallel Systems 157

stream are either both objects or both streams of base types such as int, float etc?
Such requirements cannot be easily combined into a single architecture and thus in the

following sections we describe approaches that enable sampling of the two types of system.
Inevitably, though, the ability to create a generic sampling architecture similar to the
generic testing architecture, described in Section 2, will be somewhat more difficult as the
nature of the sampling system will vary with the specifics of the systems being sampled.

124 class Comparator implements CSProcess {
125
126 def ChannelInput fromSystemOutput
127 def ChannelInput fromSniffer
128
129 void run() {
130 def SNIFF = 0
131 def COMPARE = 1
132 def comparatorAlt = new ALT ([fromSniffer, fromSystemOutput])
133 def running = true
134 while (running) {
135 def index = comparatorAlt.priSelect()
136 switch (index) {
137 case SNIFF:
138 def value = fromSniffer.read()
139 def comparing = true
140 while (comparing) {
141 def result = (ScaledData) fromSystemOutput.read()
142 if (result.original == value){
143 if (result.scaled >= result.original) {
144 println "Within bounds: ${result}"
145 comparing = false
146 }
147 else {
148 println "Outwith Bounds: ${result}"
149 running = false
150 }
151 }
152 }
153 break
154 case COMPARE:
155 fromSystemOutput.read()
156 break
157 }
158 }
159 }
160 }

Listing 7 The Comparator Process

4. An Object Based Sampling System

The basis of this sampling architecture relies on the ability of object oriented systems to
extend a class such that any process that is unaware of the extension will be unable to
manipulate the extended object definition. The generic architecture is shown in Figure 3.

The DataGenerator process represents a source of input objects to the Sampled
Network. The Sampler process copies all inputs to its output unchanged unless it has
received an input from the SamplingTimer process. The SamplingTimer process generates
an output at predefined time intervals, known as the sampling period. In normal operation
the Sampler process will just output the object generated by the DataGenerator. After

158 Jon Kerridge / Testing and Sampling Parallel Systems

receiving and input from the SamplingTimer the Sampler process will output an extended
version of the object.

This extended version of the data object will have no effect on the SampledNetwork
because it only recognizes the non-extended object. All outputs will be processed by the
Gatherer process. All outputs from the Gatherer process are output to a subsequent part of
the system, which in this case is a GPrint process. GPrint causes the printing of any object,
provided it has a toString() method. Any extended data object will, in addition be
communicated to the Evaluator process where its content can be evaluated against the
invariants of the SampledNetwork.

Figure 3 Generic Sampling Architecture for Object Based Input and Output

Listing 8 shows the code of the SamplingTimer process, which employs a simple loop

that sleeps for the sampleInterval {169} and then outputs a signal message {170} on its
sampleRequest channel

161 class SamplingTimer implements CSProcess {
162
163 def ChannelOutput sampleRequest
164 def sampleInterval
165
166 void run() {
167 def timer = new CSTimer()
168 while (true){
169 timer.sleep(sampleInterval)
170 sampleRequest.write(1)
171 }
172 }
173 }

Listing 8 The SamplingTimer Process

The Sampler process is shown at Listing 9.The channel inChannel receives inputs

from the DataGenerator, which are output on the outChannel {191}. The sampleRequest
channel is used to input requests for the generation of a sample. On receipt of the request
signal {185}, the next data input is read {186} and its data values are used to create an
instance of the extended object, referred to as FlaggedSystemData because the extension is
simply a Boolean value set true. This extended object is then written to the system.

Necessarily, the Evaluator process is system dependent, an example of which is
shown in Listing 10. Quite simply, values from the extended object are tested against each
other {204} and a suitable message printed or saved to a database.

DataGenerator

Sampler

SamplingTimer

Sampled
Network Gatherer GPrint

Evaluator

 Jon Kerridge / Testing and Sampling Parallel Systems 159

174 class Sampler implements CSProcess {
175
176 def ChannelInput inChannel
177 def ChannelOutput outChannel
178 def ChannelInput sampleRequest
179
180 void run() {
181 def sampleAlt = new ALT ([sampleRequest, inChannel])
182 while (true){
183 def index = sampleAlt.priSelect()
184 if (index == 0) {
185 sampleRequest.read()
186 def v = inChannel.read()
187 def fv = new FlaggedSystemData (a: v.a, b:v.b, testFlag: true)
188 outChannel.write(fv)
189 }
190 else {
191 outChannel.write(inChannel.read())
192 }
193 }
194 }
195 }

Listing 9 The Sampler Process

196 class Evaluator implements CSProcess {
197
198 def ChannelInput inChannel
199
200 void run() {
201 while (true) {
202 def v = inChannel.read()
203 def ok = (v.c == (v.a +v.b))
204 println "Evaluation: ${ok} from " + v.toString()
205 }
206 }
207 }

Listing 10 The Evaluator Process

The Gather process, shown in Listing 11, repeatedly reads in objects from its

inChannel and determines the type of the input {216, 217}.

208 class Gatherer implements CSProcess {
209
210 def ChannelInput inChannel
211 def ChannelOutput outChannel
212 def ChannelOutput gatheredData
213
214 void run(){
215 while (true){
216 def v = inChannel.read()
217 if (v instanceof FlaggedSystemData) {
218 def s = new SystemData (a: v.a, b: v.b, c: v.c)
219 outChannel.write(s)
220 gatheredData.write(v)
221 }
222 else {
223 outChannel.write(v)
224 }
225 }
226 }
227 }

Listing 11 The Gatherer Process

160 Jon Kerridge / Testing and Sampling Parallel Systems

If the object has been extended then a non-extended version of the data is constructed
and output to the rest of the system {218, 219}. The extended version of the data is also
written to the Evaluator process {220}. Normally, the input data is just written to the
output channel {223}.

Typical output from the sampling system is shown below where we see that the
flagged data values are output twice once from GPrint as non-extended data and once from
the Evaluator process where the complete FlaggedSystemData is printed.

System Data: [58, 59, 117]
System Data: [60, 61, 121]
Evaluation: true from Flagged System Data: [60, 61, 121, true]
System Data: [62, 63, 125]
System Data: [64, 65, 129]
System Data: [66, 67, 133]
System Data: [68, 69, 137]
System Data: [70, 71, 141]
System Data: [72, 73, 145]
System Data: [74, 75, 149]
System Data: [76, 77, 153]
System Data: [78, 79, 157]
System Data: [80, 81, 161]
Evaluation: true from Flagged System Data: [80, 81, 161, true]
System Data: [82, 83, 165]
System Data: [84, 85, 169]

5. Sampling Systems That Do Not Use Data Objects Explicitly

For systems that do not use objects explicitly, we could count the inputs to the Sampled
Network. A suitable architecture is shown in Figure 4.

Figure 4 Generic Architecture for Sampling Networks by Counting Inputs

The CountingSampler takes inputs from the DataGenerator and copies them to the

Sample Network, keeping a count of each input. At a rate determined by the sampling
interval the CountedSamplingProcess will make a request to the CountingSampler, which
will respond with the count value of the data input to be sampled. The
CountedSamplingTimer will receive the value of the count which it sends to the
CountingGatherer process. The CountingGatherer process keeps a count of the outputs
from the Sample Network and on receipt of the output that corresponds to the count value it
has received it outputs the count value and the output value to the CountedEvaluator
process. The CountedEvaluator process can then record the sampled value and any result

DataGenerator

CountingSampler

CountedSamplingTimer

Sampled
Network

Counting
Gatherer GPrint

Counted
Evaluator

 Jon Kerridge / Testing and Sampling Parallel Systems 161

from a test that has been carried out. In some cases, the processes could be modified so that
the CountingSampler process returns more than just the count value, for example the input
data value, to the CountedSamplingTimer; in which case, this additional data may be
communicated to the CountedEvaluator. The only requirement is that the time taken to
undertake the two communications from the CountingSampler via the
CountedSamplingTimer to the CountingGatherer must be less than the time taken to
process the data in the Sampled Network. In this simple implementation we also need to
ensure that every input to the Sampled Network has a corresponding output.

As a general comment we note that there is a large similarity between the architecture
shown in Figures 3 and 4. This leads to the observation that some form of generic
framework could be constructed that permits the easier construction of sampling
architectures much in the same way as the GroovyTestCase framework has simplified the
already relatively easy JUnit Test Case Framework.

6. Conclusions and Further Work

The paper demonstrates that is possible to use standard testing techniques commonly
adopted by the software engineering community to the specialized requirements of parallel
systems testing. In particular, a technique has been demonstrated that enables black-box
testing using the GroovyTestCase specialization of JUnit. The paper then demonstrated
that a simple set of additional processes could be easily defined that permit the sampling of
running systems using a variety of approaches depending upon the nature of the data
transmitted around the system.

The primary area for further work is to take the basic sampling processes and form
them into a framework so they can be more easily incorporated by designers of parallel
systems into their designs. In particular, the use of Groovy builders will hopefully make
this a much simpler task than might be expected.

The nature of the processes being tested in this paper is somewhat limited because they
were all deterministic in nature because the expected outcome was always fully determined
by the input sequence. The architecture needs to be further developed to cope with non-
deterministic systems where the final output is not fully determined by the input. To a
certain extent the scaling system was non-deterministic in that the operation of the Control
process was asynchronous with the Scale process. However, for means of explanation, it
was made fully determined. Even for completely non-deterministic systems, there will
probably be some processes or collection of processes that can be tested in a deterministic
manner. The sampling of non-deterministic process collections will be easier to construct
as the nature of the specific sampling processes is more closely tied to the underlying
system.

Acknowledgements

John Savage introduced me to the delights of the GroovyTestCase specialization of the
JUnit framework and convinced me that such testing could be achieved in parallel systems.
He then convinced me to investigate simple ways of sampling systems. Kevin Chalmers
suggested the technique of extending an object because he is a far better object oriented
programmer than I. The comments of the referees were invaluable in improving the
presentation of the material in this paper.

162 Jon Kerridge / Testing and Sampling Parallel Systems

References

[1] K. Beck, Test Driven Development: By Example, Addison-Wesley, ISBN-10: 0-321-14653-0, 2003
[2] K. Barclay and J. Savage, Groovy Programming: An Introduction for Java developers, Morgan

Kaufmann, San Fransisco, CA, ISBN-10: 0-12-372507-0, 2007
[3] PH Welch, Graceful Termination – graceful resetting, in A Bakkers (ed), Proceedings OUG-10: Applying

Transputer Based parallel Machines, IOS Press, pp310-317, 1989.
[4] BHC Sputh, and AR Allen, JCSP-Poison: Safe Termination of CSP Process Networks, in J Broenink et al

(eds), Communicating Process Architectures, 2005, IOS Press, pp 71-107, 2005
[5] FDR2 User Manual, Formal Systems Europe Ltd, http://www.fsel.com/fdr2_manual.html , accessed 11th

April 2007.
[6] J.Kerridge, K. Barclay and J. Savage, Groovy Parallel: A Return to the Spirit of occam?, Proceedings of

Communicating Process Architectures 2005, IOSPress, Amsterdam, 2005
[7] Belapurkar A, http://www-128.ibm.com/developerworks/java/library/j-csp2/ accessed 11th April

2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

