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Abstract.  In general, most deadlocks take form of cycles (in database systems) and
knots (in communication systems). Boukerche and Tropper have proposed a
distributed algorithm to detect cycles and knots in generic graphs. Their algorithm
has a message complexity of 2m vs. (at least) 4m for the Chandy and Misra
algorithm, where m is the number of links in the graph, and requires O (n log n) bits
of memory, where n is the number of nodes. We have implemented Boukerche´s
algorithm. Our implementation of the algorithm is based on the construction of
processes of the CSP model. The implementation was done using JCSP, an
implementation of CSP for Java.

1 Introduction

Parallel simulations have received special attention and a great amount of resources for
research due to the increasing demand for systems with good performance, including fault
tolerance and search for more efficient algorithms to deal with issues related to
communication and to handle problems like deadlocks. There is also the objective of taking
advantage of resources available on the networks and on the Internet.

The detection of cycles and knots in directed graphs is an area of research in parallel
simulations that has deserved many published works and proposed algorithms. In [1]
Boukerche makes an analysis and presents the results of his search for an algorithm that
solved the problem in a more efficient way. In his research Boukerche noticed that the
proposed solutions handled cycles and knots independently, that is, there was not an
algorithm that could detect in a single evocation if a given node was in a cycle or in a knot.
Boukerche then proposed his algorithm for detection of cycles and knots in a single
evocation. The utilization of the algorithm is important when cycles and knots can occur
with a high frequency, when the size of the graph is big, and when it is necessary to know if
a given node of the graph is in a cycle or in a knot.

According to Boukerche [1], most of the deadlocks take the form of cycles (in database
systems) and knots (in communication systems). His algorithm has advantages over others
such as the one by Chandy and Misra [20], requiring less communication: 2m against at
least 4m, where m is the number of links in the graph. The algorithm needs O (n log n) bits
of memory, where n is the number of nodes.

In a search for implementations of the algorithm and through contact with Boukerche
(by e-mail) we were informed that he did not know of any completed implementation of his
algorithm. Since the algorithm is inside our line of research, distributed computation, we
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decided to apply part of the focus of our work, the development of distributed systems
based on the CSP model, to solve the problem.

CSP, Communicating Sequential Processes, is a process algebra that permits the
specification and formal modeling of concurrent applications based on the construction of
processes that synchronously communicate through channels [6]. Languages such as
Occam and ADA are based on CSP. There are also CASE tools such as Probe and FDR
[10] that help in the verification of CSP models. Huang presented the use of CSP to solve
problems related to graph theory by introducing an algorithm for detection of deadlocks
using the communication principles of CSP [15].

Lately Java is being adopted for distributed and concurrent programming due to
characteristics like platform independence, object orientation, safety and ease of use. In
previous analysis we had already verified the viability of using Java for the development of
efficient applications for distributed environments. In [12] we presented the implementation
and execution of Java applications in Beowulf and heterogeneous cluster environments.

Two projects that support CSP for Java are the JCSP (Communicating Sequential
Processes for Java) [7, 8, 9] and the CTJ (Communicating Threads for Java) [6, 16].
Between these two tools that initially satisfied our objectives, we chose JCSP because its
library was more appropriate for the programming of the algorithm. The JCSP library
presents CSP constructions for the Java language and supports parallel and sequential
composition of processes. CTJ, the other library analyzed, is nowadays being oriented
towards the development of real time A/D and D/A applications [6, 16].

The work is organized in the following way: In section 2 we introduce the CSP model;
In 3 we introduce the JCSP library; In 4 we present Boukerche’s distributed algorithm for
detection of cycles and knots in directed graphs; In 5 we present the modeling of the
algorithm using CSP notation; In 6 we present our implementation of the algorithm using
the JCSP library; In 7 a simulation with Dck is presented and finally, in 7 we present our
conclusions and suggestions for future work.

2 CSP Model

CSP was developed by Hoare to serve as a mathematical formalism capable of representing
the functioning of a system through the composition of processes [2, 3]. It is based on two
distinct types of basic objects: events and processes. In the CSP model processes
communicate sequentially and through channels. Roscoe [5] and Schneider [4] included
new functionalities to the CSP so that the model could handle new requirements like
aspects of time (existent in an extension of CSP: TCSP1).

Table 1: summary of the main CSP constructions

Construction Description
P ; Q Sequential execution of P and Q
a � P Engage in event a, then become process P

P A||B Q Parallel execution of P and Q with synchronization
P ||| Q Parallel execution of P and Q without synchronization
P [] Q P external choice Q
P П Q P internal choice Q
µX • P Construction for loops

c!v → P Writing v to the channel of communication c
c?v → P Reading v from the channel of communication c

                                                          
1 Timed CSP
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In the conventional CSP notation processes are represented by capital letters of the
alphabet while lower case letters represent events. If P and Q are processes, the parallel
execution of P and Q can be represented by P||Q, while the sequential execution is
represented by P;Q.

If P is a process and a is an event, then a → P represents the construction of a process in
which the occurrence of the event a assumes the state of P. Operations like Guard are also
part of the CSP constructions [3, 4, 5].

Table 1 presents a summary of the main process constructions of CSP. In [2, 4] the
authors present other constructions.

3 JCSP Library

The JCSP library implements the functionalities and operations of the CSP model for Java.
Welch [7, 8, 9] used the CSP model to prove the correctness and viability of creating
applications using the JCSP package instead of using conventional threads. According to
him, threads in Java use synchronization primitives based on the concept of monitors,
developed in the 70’s. Taking into account that the semantics of threads in Java can lead to
errors and to inconsistent situations due to its synchronization mechanisms, tools for
automatic verification can and should be used to assist in the verification of models.

Tools can assist in the detection of problems such as deadlocks and livelocks and in
proving the consistency between algorithms. Welch detected that the conventional
multithreaded programming is arduous and hard to be debugged. Many mistakes, especially
those of data corruption, have been detected in systems using the conventional thread
model. Some errors only became apparent when JITs (Just-in-Time), accelerators of
bytecode execution that act extremely fast in execution time, were used.

With all the mentioned problems, the libraries based on the mathematical formalism of
CSP and the tools for verification of system consistence, such as FDR, Failures-
Divergences-Refinement [10] are good alternatives for the development of concurrent and
distributed applications. According to Hoare [3] there are two kinds of profitable systems:
those that are obviously correct and those that are not obviously wrong. Unfortunately, it
has been observed that it is very easy to create the second category of systems due to many
factors. The use of tested libraries, such as the JCSP and CTJ, helps reducing the number of
bugs originated from the lack of knowledge and experience of programmers.

3.1 Creation of Channels and Processes in JCSP

The types of JCSP communication channels with regard to the number of processes
involved in the communication are:

• One2OneChannel: peer to peer communication;
• Any2OneChannel: communication  any to one process;
• One2AnyChannel: communication  one to any process;
• Any2AnyChannel: communication any to any process.

The interfaces for reading and writing data between processes are:

• ChannelInput: defines the read() method to input objects from the channel;
• ChannelOutput: defines the write() method to output objects to the channel.
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3.2 Process Creation

JCSP has an interface called CSProcess that defines the basic functionalities for creating a
process and the run() method that is executed in the Sequential and Parallel
constructions. A process is in fact a Java object created from a class that implements the
CSProcess interface. To implement Boukerche’s algorithm we created a class called
DckNode that implements CSProcess and defines its run() method. There is a
biunivocal relation between the nodes of a graph that is submitted to the algorithm and the
created processes.

In a graph with N nodes, N objects of type DckNode will be instantiated. The code
below presents a summary of the DckNode class. Some of the attributes of a process (an
object of type DckNode) are the pid (process identifier) of the process, the status of the
process according to the algorithm, its mode (awake or asleep), chIn (the input channel of
the process through which the process receives messages), chOut[] (the channel that links
a process pk and all its successors), S which records in each step the nodes that have sent
messages of type incomplete_search, and the parent process identifier.

public class DckNode implements CSProcess {

  private int pid;
  private int status = -1;
  private int mode;
  private int numSuc;
  private StringBuffer S = new StringBuffer("");
  private ChannelInput chIn;
  private ChannelOutput[] chOut;
  public int parent;

  public DckNode (int pid,                  // constructor
                  ChannelInput chIn,
                  ChannelOutput[] chOut,
                  int[] suc) {

 this.pid = pid;
 this.chIn = chIn;
 this.chOut = chOut;  
 mode = AWAKE;
 status = DckEnvelope.UNDEFINED;
 this.suc = suc;

  }

  public void run(){                        // main method
 if (pid == 0)
   ...  execution of the algorithm that initiates the search
 else
   ...  execution of the algorithm in process p[k]

  }

  ...  other methods

}

The run() method of each process pk has its functionality defined according to the
algorithm for a process pk. A process receives a message by calling the method read()
from its chIn attribute and sends messages to a process pk calling the method write()
from its chOut[k] attribute.
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The implementation also defines the classes DckEnvelope, which serves as a basis for
the creation of messages exchanged between processes, and Main, which is responsible for
reading the graph, constructing processes according to the graph configuration and
initializing its parallel execution. In Section 6 we will continue the description of the
classes that implement the algorithm. Before we must explain and model the main
construction of Boukerche’s algorithm in the syntax of CSP.

4 Boukerche’s Algorithm for Detection of Cycles and Knots in Directed Graphs

In [1], Boukerche presented his definition of cycles and knots in directed graphs. He
adopted the model proposed by Chandy and Misra [20].

Consider a network (N, L) consisting of a set of nodes (or processes) and a set of
communication links connecting the nodes in N. There is a correspondence between the
network processes and the vertices of the graph G = (V, E). A network process pi is
represented by a node i of the graph G. If there is an edge (i, j) or (j, i) that connects two
nodes pi and pj, these nodes are considered neighbors. A process pi is a successor of pj if
there is an edge from node i to node j in graph G, and is a predecessor of pj if there is an
edge from node j to node i. Now we can define cycles and knots in directed graphs.

A path Pij is a sequence of nodes and edges from node i to node j. Node j is thus said to
be reached from node i. A closed path (or circuit) Pii is a cycle if there are no vertices in Pii
that occur more than once except for node i, that occurs exactly twice. If there is a path Pij
in the graph, then pi is an ancestor of pj and pj is a descendent of pi. Figure 1 presents an
example of a graph in which a cycle occurs.

Figure 1: example of a cycle in a directed graph Figure 2: example of a cycle in a directed graph

A knot K in G = (V, E) is a strongly connected sub-graph of G with no edges directed
away from the subgraph K. A node i is a member of a knot K if it can be reached from all
the nodes that are reached from the node i, figure 2.

4.1 Introduction to the Algorithm

In [1] Boukerche describes his algorithm for detection of cycles and knots in directed
graphs and compares it with other existent ones. The algorithm is capable of detecting
cycles and knots in generic graphs with a single evocation and with a minimal number of
messages exchanged between the nodes.

According to Knapp [17], algorithms for detection of deadlocks can be classified in four
categories: path-pushing [18], edge-chasing [19], diffusing computation [20] and global
state detection [21, 22]. To these categories Boukerche added a new clustering technique,
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developed by Cidon [13]. He argues that path-pushing and edge-chasing are appropriate
only for the detection of cycles, while the other categories are appropriate for the detection
of knots [1].

Boukerche analyzed other works related to the detection of cycles and knots. He
concluded that some of the existent algorithms, such as those by Natarjan [14], Chandy and
Misra [23] and Cidon [13], needed a high complexity of messages to reach his objectives.
Other approaches like global state detection and algorithms using other communication
principles were analyzed. All had the disadvantage of having a high message complexity
[1].

Boukerche then based his algorithm on diffusing computation [20, 24], that requires a
constant propagation of messages through the nodes of the graph during the search. He
defined some criteria such as the inclusion of the message type INCOMPLETE_SEARCH,
which allowed his algorithm to have a low message complexity. Another aspect was the
imposition that only one node could initiate the search at each moment and that in the
beginning of the search this node should only send messages to its successors. With this
approach Boukerche was able to establish a smaller message complexity for his algorithm
compared to the previous algorithms [13, 14, 20]. He also improved the message
complexity of the distributed algorithm by Chandy and Misra [20] for detection of knots
achieving a total number of messages of 2m, which meant a reduction of at least 4m, where
m is the number of links of the graph. The amount of space required is O (n log n) bits of
memory, n being the number of processes.

In his algorithm [1], Boukerche assumes that there is no loss of messages between nodes
and that links never fail. In the links there is no message duplication [7] and messages obey
the FIFO (First In First Out) policy, that is, the first message received by a process is the
first to be processed. We maintained these principles in our implementation. The code
listings below present the pseudocode of the algorithm of a process P0, considering that
process P0 is the one that initiates the algorithm, and in a generic process Pk.

4.2  Algorithm in Process P0

Step A1.

 Initial atributions:
Mode

0
 = Awake;  

Status
0 
= Undefined; 

num_Suc
0
 = Number of sucessors of  P

0
;

P
0
 send <Request, P

0
> to all sucessor;

// Await for messages
* Upon receiving a request <Request, P

i
>

Step A2.

if P
0
 has sent a cycle message then
S = {P

0
} /* it is used to distinguish single cycle,

                    disjoint cycles */
else

S = ∅
endif
P
0
 send <Reply, cycle, P

0
, S> para P

k

* Upon receiving <Reply, type, P
k
, S>
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Step A3.

NumSuc
0
--

S
0k 
= S

0k 
∪S

A3.1
Status

0
 = status

0
 ⊕ type;

         /* type ⊕ cycle_only = cycle_only,
            cycle ⊕ leaf = cycle_only,
            cycle ⊕ incomplete_search = cycle,
            leaf ⊕ incomplete_search = leaf. */

if numSuc
0
 = 0 then   /*Finish the computation */

if status
0
 = cycle e S

0k 
= ∅ then

P
0
 is in a cycle

else
if status

0
 = cycle and all   elements of S

0k 
are marked

P
0
 is in a knot

else
P
0
 is not in cycle neither in a knot

endif
endif

endif

4.3  Algorithm in a Process Pk (k>0)

Step B1.

 Initial attributes:
mode

k
 = sleep;  

status
k 
= Undefined; 

num_Suc
k
 = 0;

* Upon receiving a <Request, p> 

Step B2.

if P
k
 has already finished its search then

   send to p the same reply pk when it terminates its serach;
endif

Step B3.

if mode
k 
= awake then    // it’s participating

   send <Reply, incomplete_search, p
k
, { p

k
} > to p

    else                    // it’s not participating
      if p

k 
has not sucessor  /* p

k 
is a g-leaf */

        send <Reply, leaf, p
k
 ,∅> to p

      else
        parent

k 
= p

        mode
k
 = p

        num_Suc
k
 = Number of sucessor of p

k

        send <Request, p
k
 > to all sucessors of p

k

   endif
 endif
* Upon receiving a <Reply, type, p

j
, S>
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Step B4.

    num_Suc—-
    S

kj
 = S

kj
 ∪ S

    status
k
 = status

k 
⊗ type

Step B5.

  if num_suc
k
 = 0 then /* it´s terminated its search */

 S
kj
 = S

kj
 ∪ S

 if pk has sent a message of type incomplete_search then
         S = S ∪ {p

k
}

         if (status
k 
= leaf) or

          ((status
k
 = incomplete_search) and

           (all elements of S are marked)) then
send <reply, leaf, p

k
, ∅> to parent of k

       endif
     endif
  endif
  if (status

k 
= incomplete_search) and

     (S has at least one element not marked) then
 send <reply, incomplete_search, p

k
, S> to k’s parent

  endif
  if status

k 
= cycle_only then

 send <reply, cycle_only, p
k
, ∅> to parent of k

  endif
  if status

k 
= cycle then

 if pk has received a message of type cycle then
   send <reply, cycle, p

k
, S> to parent of k

 else
      if all elements of S

kj
 are marked then

     send <reply, cycle_only, p
k
, S> to parent of k

   else
     send <reply, cycle, p

k
, S> to parent of k

   endif
 endif

    endif

5 Modeling of the Algorithm

The nodes of a given directed graph G are referenced as 0 to m, therefore, G = { k | 0 ≤ k <
m}. Node 0 is the node that initiates the search. The set of edges that connect each pair of
nodes of G is defined by the set E. For each node k ∈ G from node 0, the set of all adjacent
and successor nodes of k is called suc(k} and is defined as:

suc(k) = {j ∈ G | (k,j) ∈ G}

The CSP definition describes each node of G as a CSP process and each edge of E as a
CSP communication channel. In our implementation, for each two neighbor nodes k and  j,
there is a communication channel ckj that permits that the messages travel from k to j and a
channel cjk so that messages can travel on the inverse path. Each channel ckj has a
complementary channel cjk in the opposite direction.
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Messages that pass through the communication channels can be of two types: request or
reply. Reply messages can have the codes:

• cycle, when p0 and p are in a same cycle;
• cycle_only, when p0 and p are in a same cycle but are not part of a knot;
• incomplete_search, when the successors of p still haven’t completed the search;
• leaf, when p is a leaf or a g-leaf.

We can then define the set of values (events) V of messages that can be sent through the
communication channels E:

V  =  {request, reply, reply_cycle, reply_cycle_only, reply_incomplete_search, reply_leaf}

Node 0 starts the search sending a request message to all its successors and enters in wait
mode waiting for the respective answers to be received. The node’s situation will be
computed  after it receives the result of all its successors through reply messages. The
alphabet of messages of node 0 is defined by:

A0 = {c0l.r | r ∈ V ^ l ∈ suc(0)}

The alphabet for a node k, k≠0,  is:

Ak = {ckl.r | r ∈ V ^ l ∈ suc(k)} ∪ {clk.r | r ∈ vkl ^ l ∈ suc(k)}

The CSP process that detects cycles and knots will be called DCK (Detect Cycles and
Knots). It receives a graph g as a parameter, over which the search will be performed.
DckNode is the process that computes the output according to the situation of node 0 in the
given graph.

DCK = in?g � out! DckNode(g) � STOP

where g is the given graph.

The specification of DckNode is:

DckNode = ||k∈G
Ak DckNode(k)

5.1 CSP Specification of Node/Process P0:

DckNode
0
 = c0i!request � WAIT

WAIT = c
k0
?msg � PROCESS_MSG �

  if hasReceivedAllReply � RESULT
     else � WAIT
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PROCESS_MSG =
  if msg = request      -- Request message received
    if  hasSentMsgCycle

      S = { p
0
}

   else
  S = ∅

     c0i!reply.cycle     -- Send a cycle message
    else                   -- Reply received

    RESULT = 
      if status = cycle_only
        print(‘P

0
 is in a cycle’)

      else
     if stauts = cycle and S

0j
 = ∅

      print(‘P
0
 is in a Cycle only!’)

     else
       if staus = cycle and allElementsOfSkjAreMarked
         print(‘P

0
 is in a knot!’)

       else
         print(‘P

0
 is not in a Knot neither in a Cycle’)

5.2 CSP Description in a Node/Process Pk (k>0)

DckNode
k
 = INICIA

k
 � c

jk
?msg � PROCESS_MSG

k
 � DckNode

k

INIT
k
 = mode

k
 := sleep; status

k
 := UNDEFINED; numSuc

k
 := 0

PROCESS_MSG
k
 = 

if msg = request      -- Request message received
   PROCESS_REQUEST

k

else
   PROCESS_REPLY

k

PROCESS_REQUEST
k
 =

   if p
k
 has already finished is search

c
kp
!msg.REPLY to parent p -- Send a reply

   else
      if mode

k
=awake

 c
kp
!msg.INCOMPLETE_SEARCH to parent p

     else
      if p

k 
has not sucessor

         c
kp
!msg.LEAF to parent p

      else
  parent

k
 = p;mode

k
=awake;num_suc

k
=Nbr of sucessor of p

k

c
kp
!msg.REQUEST to all sucessors of p

k

PROCESS_REPLY
k
 = num_suc

k
--;

S
kj
 = S

kj
 ∪ S

status
k
 = status

k 
⊗ type

if num_Suc=0
S = ∪ S

kj

CONTINUE_REPLY
k
 // Process messages according the algorithm

END
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6 Algorithm Implementation

Class DckNode, that serves as basis for the creation of the processes used in the algorithm,
was presented in Section 3.2. The messages exchanged between processes are objects of the
class DckEnvelope:

public class DckEnvelope {

     public int destino;            // receiver of the message
     public int remetente;          // forwarder of the message

     public StringBuffer conteudo;  // message content: set S

     public int type;               // type of the message

     public int codigo;             // message code

     public static final int REQUEST = 0;
     public static final int REPLY = 1;
     public static final int CYCLE = 2;
     public static final int CYCLE_ONLY = 3;
     public static final int LEAF = 4;
     public static final int INCOMPLETE_SEARCH = 5;
     public static final int UNDEFINED = 6;

public DckEnvelope (int destino, int remetente,
                    int type, int codigo,

                       StringBuffer conteudo){
  this.codigo = codigo;
  this.destino = destino;
  this.remetente = remetente;
  this.type = type;
  this.codigo = codigo;
  this.conteudo = conteudo;
}

     ...  other methods

  }

Each message used in the algorithm will be an object of type DckEnvelope. The
destination and source, type (request or reply), code (CYCLE_ONLY, CYCLE, LEAF,
INCOMPLETE_SEARCH or UNDEFINED) and contents (set S) of the message should be
informed at the time of construction of the object. The set S keeps track of the nodes that
sent messages of type INCOMPLETE_SEARCH, that is, those that did not end the search in
each execution step.

Class DckNode, which serves as basis for the creation of the objects (processes) that will
represent the nodes of the graph were previously defined. Each node of the graph will be
represented by an object of type DckNode. When execution starts, for a graph G with N
nodes, N objects of type DckNode are created. The connection between the processes is
made according to the graph configuration. The code listing below presents the construction
for a graph with six nodes.

public class Main {

    public static void main (String args[]){

    int[][] sucPi = readGraph ();   // generate simulation graph
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    // create the channels
    Any2OneChannel c[] = Any2OneChannel.create (sucPi.length);

    // create the array to the process
    CSProcess[] p = new CSProcess[sucPi.length];

    // alocate the process
      for (int i = 0; i < p.length; i++){
        p[i] = new DckNode (i, c[i], c, sucPi[i]);
      }

      // create the parallel construction of the process
      Parallel pp = new Parallel (p);

      // start the execution
    pp.run ();

  }

}

The construction Any2OneChannel c[] = Any2OneChannel.create (...) creates
an array of channels to link the processes. Then, CSProcess[] p = new CSProcess[P]
creates a process for each node of the graph. The construction sucPi =  readGraph()
returns a square matrix that keeps the configurations of the graph to be used in the
simulation. Column 0 of the matrix contains the identification of all the k nodes of the
graph, k [0 ... m-1]. Column j ( 0 < j < m, where m is the number of nodes of the graph)
keeps the identification of the successor nodes of each node k of column 0. The
construction:

for (int i = 0; i < p.length; i++) {
  p[i] = new DckNode (i, c[i], c, sucPi[i]);
}

creates the processes according to the generated matrix sucPi (of type int[][]). Each
process receives its identification pid, a reference to its input channel, references to the
input channels of all processes and the list of its successor processes. The construction
Parallel pp = new Parallel(p) makes the parallel construction of the processes and
pp.run() starts their parallel execution (||k[0..m] Pk).

An important construction in Boukerche’s algorithm is the operation statusk = statusk ⊗
type, which updates the status of a process pk in each execution step of the algorithm. In our
algorithm we created a method called opSpecial2 (Special Operator), that implements the
⊗ operation [1].

In the listing of DckNode, for each msgRec message received (object of type
DckEnvelope), the status attribute is updated using the opSpecial method with the
following line of code:

status = opSpecial (status, msgRec.type);

The union of marked and unmarked elements of S in the algorithm is realized by the
method called unionMarked, whose listing is presented below:

                                                          
2 Special Operator: statusk = statusk ⊗ type
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  /** Execute the operation to update set S
 *  with elements marked and not marked.

   *  Ex: {p1 P2 P3} union marked {P1 P5} = {P1 P2 P3 P4}
 *  @param set Skj
 *  @param set S
 *  @return normalised set  */

 public static StringBuffer unionMarked (StringBuffer skj,
                                       StringBuffer s) {
 String pk = null;          // {pk} union marked {/pk} = {/pk}
 if (s == null) {
   return skj;
 } else {
   StringTokenizer st = new StringTokenizer (s.toString ());
   while (st.hasMoreElements()) {
     pk = st.nextToken();
     int index = skj.toString().toUpperCase().
                 indexOf(pk.toUpperCase());
     if (index == -1) {
       skj.append(" "+ pk);  // insert pk in the final of skj
     } else {
       if ((pk.charAt(0) == 'P') &&
           (skj.charAt(index) != 'P')) {
         skj.replace(index, index+(pk.length()), pk);
       }
     }
   }
   return skj;
 }

 } 

The operation (method) that performs the search to verify if all the elements in S are
marked is the following one:

/** Verify if all elements of S are marked */
private boolean isAllElementsSMarked(StringBuffer sb){ 
   return (sb.toString().indexOf("p") == -1);
}

To handle the elements of S that keep the information about the sent messages of type
incomplete_search, Boukerche uses the concept of marked kp  and unmarked pk elements
[1]. In our implementation, an element pk that is put in S can have a capital or lower case p.
If it is a lower case p, it means that the element is unmarked. On the other hand, if it is a
capital P, the element is marked. For example, a possible set of elements for S would be:
{P1 p3 P4}. The elements are separated by single spaces. In the presented set P1 and P4
are marked while p3 is unmarked.

7 Simulations

Figure 3 shows the first screen of Dck. The main parts are where the configuration of the
graph is showed (text area) and can be edited, on the left side of the screen, and where the
user can click on the buttons Execute3 and Result4, on the right side of the screen. Each line
of the text area represents a node i of the graph and its successors. In this version, Dck
shows the situation of the first node of the graph according to the algorithm. The node can
be in a cycle, in a knot, in both or neither.
                                                          
3 Starts the execution to the current graph
4 Shows the result of the last simulation
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Figure 3: first screen of Dck

The function Check graph verifies if the graph is valid. After this operation the button
execute is enabled. One click on the Execute button submits the graph to the algorithm.
After the execution, the screen with the result is showed, as seen at figure 4.

Figure 4: result of the simulation

The log (trace) of the simulation is sent to a log file. Some lines of the simulation log of
the latest execution are shown below:

 DBG 25/05/2002 17:56:38.310 DckMain Pid: 1 REPLY received from pid: 2
 OPR 25/05/2002 17:56:38.310 DckMain Pid: 2 finished...
 OPR 25/05/2002 17:56:38.310 DckMain Pid: 1 executing shutdown…
 DBG 25/05/2002 17:56:38.310 DckMain Pid: 1 sending message to pid 0.
 DBG 25/05/2002 17:56:38.310 DckMain Pid: 0 receiving message from pid 1.
 DBG 25/05/2002 17:56:38.310 DckMain Pid: 1 message sent to pid: 0
 OPR 25/05/2002 17:56:38.310 DckMain Pid: 0 executing shutdown
 OPR 25/05/2002 17:56:38.310 DckMain Pid: 1 stopped...
 DBG 25/05/2002 17:56:38.310 DckMain Pid: 0 status: 3
 DBG 25/05/2002 17:56:38.310 DckMain Pid: 0 is in a CYCLE
 OPR 25/05/2002 17:56:38.310 DckMain Pid: 0 complexity of messages: 8
 OPR 25/05/2002 17:56:38.310 DckMain Pid: 0 stopped...
 OPR 25/05/2002 17:56:38.310 DckMain ExecuþÒo realizada...
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Generally, the following information is written for each message saved: date, time, pid
of the process and the text of the messages. This option is very useful to the simulation with
a graph full of nodes. Other options and features of Dck can be viewed in its user manual.

8 Results and Conclusion

In this work we presented an implementation of Boukerche’s distributed algorithm for
detection of cycles and knots in directed graphs [1]. The utilization of the algorithm is
important in parallel simulations when cycles and knots can frequently occur, when the size
of the graph is big and when it is necessary to know if a given node is in a cycle or in a
knot. We could see that the message complexity of the implemented algorithm was 2m, m
is the number of links in the graph, in accordance with the value stipulated by Boukerche.

The algorithm implementation was based on the construction of processes and channels
existent in the CSP model [2, 3, 4, 5]. The algorithm was inlaid in a graphic application,
called Dck (Detection of Cycles and Knots), which permits testing with generic graphs. The
implementation presents an option for saving the execution logs in a file, which permits the
accompaniment of the simulation of the algorithm execution. This is especially important
for complex graphs with large quantities of nodes.

Two relevant aspects in the implementation of the algorithm were the use of the CSP
notation for the modeling of the algorithm and the JCSP library for its implementation.
With CSP it was possible to document and model the algorithm. After understanding the
problem, we went on to its implementation. The use of the JCSP library permitted a faster
and safer implementation because of the facilities provided by it, such a process creation,
communication channels between processes and parallel construction of processes.

Works are being developed to make Java become a real time language [25, 26, 27, 28,
29, 30, 31]. The creation of a real time Java virtual machine will certainly be an important
step to improve application performances. It is believed that Java programs will soon be
executing with the same speed as C and C++ programs [29]. With this advent the Java
platform will be also viable for the computation of real time applications and projects like
JCSP and CTJ will gain more space in the development process.

For future work, we would like the inclusion of a module that permits the user to
graphically edit a graph. Although the current version is not complicated, it can be
laborious for large graphs.
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