
Communicating Process Architectures 2006 331
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
© 2006 The authors. All rights reserved.

No Blocking on Yesterday’s
Embedded CSP Implementation

(The Rubber Band of Getting it Right and Simple)

Øyvind TEIG
Autronica Fire and Security (A UTC Fire and Security company)

Trondheim, Norway
 http://home.no.net/oyvteig

Abstract. This article is a follow-up after the paper “From message queue to ready
queue”, presented at the ERCIM Workshop last year. A (mostly) synchronous layer
had been implemented on top of an existing asynchronous run-time system. After
that workshop, we discovered that the initial implementation contained two errors:
both concerning malignant process rescheduling associated with timers and “reuse”
of the input side of a channel. Also, the set of process/dataflow patterns was not
sufficient. To keep complexity low, we have made two new patterns to reflect better
the semantic needs inherent in the application. Our assumption of correctness is also,
this time, based both on heuristics and “white-board reasoning”. However, both the
previous and this paper have been produced before any first shipment of the product,
and well within full-scale testing. Our solutions and way of attacking the problems
have been in an industrial tradition.

Keywords. Case study, embedded, channel, run-time system.

Introduction

The purpose of this paper is to inspire designers of embedded systems. Our target platform
is a microcontroller with 64 KB volatile and 256 KB non-volatile memory, and we are
programming in ANSI C. We have a specified behaviour even more complex than that
handled (just) by the previous industrial architecture. We have a stated need not to design
against possible overflow of message buffers. We have a need to make the process state
machines handle only their own state.

So, we did … and we learned. Now, we hope that displaying and catering for the
problems we encountered will increase confidence in our solution. As the final stages of the
development and testing have been reached, we see that the “CSP way of thinking” has
enabled us to implement a complex multithreaded system with easily described behaviour.
System and stress testing (our heuristics) have indeed been encouraging for our scheduled
release of the product, in which this (multithreaded) unit is a crucial part.

The sub-title, and real contents, of our earlier ERCIM Workshop paper[1] was: “Case
study of a small, dependable synchronous blocking channels API”. Here is its abstract
(modulo a couple of linguistic fixes):

This case study shows CSP style synchronous interprocess communication on top of
a run-time system supporting asynchronous messaging, in an embedded system.
Unidirectional, blocking channels are supplied. Benefits are no run-time system
message buffer overflow and “access control” from inside a network of client
processes in need of service. A pattern to avoid deadlocks is provided with an

332 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation

added asynchronous data-free channel. Even if still present here, the message
buffer is obsoleted, and only a ready queue could be asked for. An architecture
built this way may be formally verified with the CSP process algebra.

A second sub-title was “Ship & forget rather than send & forget”, suggesting that a system
built on this technology should be easier to get right the first time.

This paper shows that for this to happen in the product, the process schedulings have to
be 100% correct. The bottom layer of the channel run-time system must indeed be correct.
Even if little is repeated from [1], we will sum up its basic points:

• The bottom layer consisted of a non-preemptive SDL1 run-time system. Here,
smaller messages were sent in equal N-sized chunks (N is the maximum size of
each buffer position) – as many as the sender needed to send within the same
scheduling. Sending was non-blocking and it could potentially cause malignant
buffer overflow. This was the first objection to that architecture. The second was
that, whatever its state, a receiver was not able to “protect” itself from messages.
Timers were handled with a linked list of future times and any timed-out timer
would enter the message queue proper. A “process” could send messages to any
other process, including itself. A “driver” could only send messages to processes,
and receive no messages. The Scheduler scheduled processes until the message
queue was empty, and then always (for “priority”) took all drivers in turn before
looping around for (lower “priority”) messages from processes.

• On top of this we built the (CSP/occam-like) synchronous channel layer, with
channel OUT, IN and ALT, and with timeouts on the two latter. An asynchronous
sender-side data-free channel type was also introduced, needed to start a message
sequence so that the initiator would in due time be allowed to send a rich message
in the same direction as the asynchronous signal. It could be part of an ALT on the
receiver side. This would disallow deadlocks when two processes wanted to send
messages to each other spontaneously. This way, in the light of the asynchronous
signal channel, we thought we avoided overflow buffer processes for this
architecture. This paper shows where we did not.

• With synchronous sending of data, the “CHAN_CSP” layer took care of the intrinsic
“memcpy” when both parties were ready. Data messages were not any more sent in
the message queue, as were ready or scheduling “messages”. The queue could now
not overflow. For any one process only one ready message at a time would be in
the queue. Any timer event could be in the queue if it arrived before the channel. If
not it should be 100% filtered to avoid a malignant scheduling. This paper is also
about what happened when this filtering was not working correctly.

Our main source of inspiration was SPoC [2], where both source code and C coding

style had been related to by previous usage of occam and SPoC. However, even with occam
experience on the transputer, we had no knowledge of its architecture at this level. occam
has lower layers hidden for us in both these cases. Because of requirement of time to target,
in the industrial tradition, and since we were to build on top of an existing asynchronous
system (which neither SPoC nor the transputer did), we figured that some new implement-
ation thinking was needed. Looking back at that assumption, we now see that it would have
been easier to get it right sooner using earlier known solutions.

1 An Autronica Fire and Security developed “SDL type” run-time system, written in C. SDL stands for
Specification and Description Language and is ITU-T Recommendation Z.100.

 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation 333

1. Run-time System Malignant Schedulings Removed

1.1 Enough is Zero Extra Timeouts

In our system we have two types of timers:

• The high-level timers are function calls that a process makes in order to initialise,
increment and check for timeouts, or to stop – all based on a low-level single 32 bit
1 ms system tick. Detecting that half an hour has passed is then up to the process by
exercising the function calls directly. All functions on these timers are “atomic”
since they operate on a read-only copy of the global clock taken immediately after
rescheduling in each process.

• Additionally, time outs on channels (always as part of an ALT) or when no channel
is involved (delay) are implemented. This is what we thought worked, but actually it
did not.

We had been aware of the underlying problem for a long time: that in the asynchronous
run-time system on which we built the CSP layer, it was not 100% assured that a timer,
once subscribed to, would not arrive too late – even if it had been explicitly (or implicitly)
cancelled. When the timer event had come as far as into the message queue (and was not
just a node in the sorted list of timeouts), it was too late. The solution in that system was to
“colour” timers in a certain way to detect later that that timer event could be discarded. This
was all done at application level by the process. Then, the process in a way becomes its
own scheduler.

However, a CSP process is not allowed to be shaken by unanticipated scheduling. We
could have made an exception and done the same colouring as mentioned. After all, it was
not a channel that would have caused the scheduling, so no other process would have been
involved. Still, we went for the clean solution and thought this would be easier in the end.

In order to do this, we did an invisible (to the process) colouring of the timer and
invisible discard of it. But this was the final result. Let us go back some steps.

Prior to this (when [1] was written), we had implemented the filtering of unwanted
timer events by #ifdef’ing some code in the run-time system, based on the state of the
process’ ALT. (With all C #ifdefs, the original run-time system is unaltered, albeit not
uncluttered – just like all other operating systems we have studied.)

The ALT state takes one of the three values:
typedef enum {
 CHAN_ALT_OFF_A = 0,
 CHAN_ALT_ENABLED_ON_A = 1,
 CHAN_ALT_ENABLED_INACTIVE_A = 2
} StateALT_a;

If the ALT state was “inactive” and there was no reason to take action, we threw the timer
event away by not letting it into the message queue. So far so good. This worked in a
product where all channel input was part of an ALT. But with new users, individual inputs
and delays were used and then, after some time, we saw processes crash from unwanted
timer events. The problem was that the ALT state naturally follows the life of a process, the
“inactive” state may be a later phase’s “inactive”; similarly for the “not inactive” state. So,
we threw away too few. In order to fix this, we had inserted a filter in the Scheduler itself,
based on a boolean in the process’ context. Thinking it over now, this filter had absolutely
no effect. But it had seemed that all unwanted timer events were gone. We would have to
do it 100% safe next round.

334 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation

We saw that for a timeout event to be “taken” by a process, one precondition was that
the process should not ever have been scheduled in the meantime. So, we introduced a
mandatory second value in the process context (after the mandatory State, both reachable
from Scheduler). We called this ProcSchedCnt and let the scheduler increment it every
rescheduling. Now, whenever a timer has timed out and is first in the timer list, we check
that the process ProcSchedCnt and the ProcSchedCnt present in the timer (copied when
the timeout was asked for) are equal. Now we do this only at the place where a timer would
enter the ready queue, not when actual scheduling takes place. The mentioned “absolutely
no effect” filter was then also removed. We now test on ProcSchedCnt and StateALT
and know that no other scheduling event would be present in the ready queue if
ProcSchedCnt and StateALT were used to filter. So, a timer scheduling event that
reaches the Scheduler, is now indeed a true timeout.

A boolean instead of ProcSchedCnt cannot be used here. The process could go on
and ask for a new timer, and do this again and again. A boolean state cannot distinguish
these states from the state in which the process was, when it asked for the initial timer. A
“linear” tagging must be done.

The only problem we see with this is the word width of ProcSchedCnt. We have
chosen 16 bits. It is very unlikely that a process should have been scheduled some 65
thousand times before the timer event fires. An 8 bit value probably would work fine, too.
An effect that helps here is a built-in feature of the underlying SDL system to cancel any
earlier timers once we order a new. Even if it were not able to, as mentioned, cancel it once
it had entered the message queue.

1.2 A Channel must be Empty from Both Sides Before a Refilling is Attempted

This problem involved two processes. To analyze the error scenario was the hardest. Once
we understood the problem, the solution worked for all cases – but with a small run-time
penalty.

The error had not been seen in an earlier use of the CHAN_CSP layer. This time, new
users had reused an input channel differently than in the previous product.

A process may be “first” on a channel either when it is blocking for input on it (alone
or as part of an ALT) or blocking for an output. The output blocking is final; the process
would only ever be scheduled again when a true output has been done. We have no timeout
on output. However, the input “first” process on a channel may be cancelled if it is in the
set of an ALT that was not taken. Almost worse, it may appear again if a new ALT or input
is done after this.

The error appeared only during certain scheduling sequences. Sarcastically, we would
say it behaved like an asynchronous non-blocking system: the sequence of schedulings will
happen a year after shipment, and then the service telephone would ring more and more
often. Of course, the designers of such a system would have “seen” this event in their state
diagrams, and so it would have been taken account of, and after the year all would still be
fine. No service trip. After all, asynchronous designs will also work, if designed and imple-
mented correctly.

Luckily for us, the misbehaving sequence(s) appeared during tests.
Initially, when a channel had been taken by the second contender, and the process was

scheduled, the channel’s “first” info was cleared to “none”. After this any next “first”
would not cause any extra scheduling because it would truly be first. This seemed until the
tests, to be working. But then we saw that some “first” information was not cleared, causing
pathological reschedulings. The new “first” was seen as “last” since there seemed to
already be a “first” on the channel. When we started looking for this error, we saw that this

 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation 335

was fine for the channel in mind, but not for the other channels being part of an ALT. The
people at Inmos must have seen this when they implemented the ALT on transputers in the
1980s.

We had known that the usual ALT implementation started with a set-up; and when the
ALT had been taken, a tear-down. To our surprise we imagined that we did not need this. At
least, not before we were forced2. Much code had been written, and we did not want to
modify too much in user code. And we did not really want to shake the CSP layer by
including set-up and tear-down functions. We were too far into the project.

Our solution requires a minimum of user code changes.
The StateALT variable is one per process, not one per channel. We decided to include

a list of pointers in the ALT state structure: pointers to the maximum set of channels ever to
participate in the ALT – pointers to their “first” variables. When a channel was taken on an
ALT, we were now able to “null” not only the participating channel, but also the others. But
we had to make sure that removing the first process on the channel could only be done if
the first was in fact “this” process. If not, we would effectively stop other future
communications. The change in user code was in the single module that initialises all the
channels (they are global C objects, so this is possible). We also had to initialise the new
pointers to the channel’s “first” values.

The price we had to pay for this is the added run-time overhead of the looping to test
and clear the “first” values. But this is acceptable in our application.

We think the CSP layer now has matured to a level where we feel quite at rest. The
SDL layer had reached this level before we built CSP on top of it.

2. Architectural Patterns Extended

2.1 Two Times Zero Solved a Case better than One Times Zero

Figure 1. Pattern, here with two asynchronous channels (cut-out from our main diagram)

Now over to the application. The diagram in Figure 1 shows two processes communicating
over data-free asynchronous channels (dotted lines with arrows) and one synchronous
channel in each direction containing data (solid line with two arrows). The contract
between the processes is deadlock free. The lower process may always send on the up
Chan_201 (and get or not get a reply immediately on the down Chan_200). If the upper
process wishes to initiate a sending down it starts with a non-blocking signal on Chan_202

2 With hindsight we should have also reused that part of SPoC [2]. In another world (where C/C++ would not
rule), we could have used occam & SPoC plus C for the project.

336 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation

or (see next paragraph) Chan_204. It then, sooner or later, receives a response on
Chan_201 saying “ok, come on” after which it immediately sends down on Chan_200
what it had. While the upper is waiting for the reply, it is perfectly well able to serve an
event or a directive/response pair. The diagram of this is in [1]. Further semantics are that
the upper will not try to send down again before it has got rid of the present message. This
has the added benefit that the addition of the asynchronous channel, like the synchronous
scheme, will never cause message queue overflow.

Note that we now have two asynchronous channels down. One is for high priority and
the other for low.

During long states, like taking up a fire detection loop, which may take minutes, the
upper process may want to send data down. It does not know (and should not know) the
state of the lower. So it gets a reply from down saying: “busy, try me again later”. The
lower process had its single (at the time) asynchronous channel switched off in the ALT
guard in this state. But then we wanted to send a high priority escape signal saying to the
lower: “stop what you are doing even if it is important”. It was this need that had us
introduce the “busy” reply. Now, the high priority asynchronous channel never has the
lower process send a “busy” reply up, it will always pull down the escape type command
we had in mind.

This could have been solved with an extended communication sequence between the
two processes, even with a single asynchronous channel: the lower could have asked for the
boolean information explicitly. But inserting the extra asynchronous channel was fine – and
it gives less overhead than any extra communications would have done.

2.2 The Deadlock-Free Pattern that was Too Simple for a Certain Complexity

Much design is done in collaboration. The group members (some 5 of us) have known the
application domain for years. Good and bad solutions, failures and successes were, so to
say, implicitly on the table during discussions. We knew what to make, not least because
we had been supplied with a specification. We also knew what not to repeat. And since we
had decided not to use the UML based modeling and code generation tool that the host
processor team used, we had decided for a process/dataflow model of the architecture.
Textual descriptions and message diagrams were our main tools, in addition to informal
discussions and white boards.

During the architectural discussions, we saw that data would flow as spontaneous and
directive / response protocols – in both directions. Even in the complete system data would
spontaneously flow both from the lowest level processes to the top, and the other way
down. Process roles became important. We therefore needed the above described deadlock-
free pattern between processes that needed both types of protocols.

Great was our surprise when we discovered that there was higher-level behaviour
implicit in the system that rendered our deadlock free pattern so complex to use that we
needed to devise something different.

In the final design we removed the asynchronous up Chan_303 (Figure 2) with the
synchronous up Chan_301 (Figure 3) and introduced an overflow buffer (composite)
process. The contract now is that the upper process never sends down more packets than the
downward overflow buffer P_OBuff may hold – i.e. that the overflow buffer will never
overflow. Therefore the upper process is always able to receive from down. Down will
never block on a sending up, just like with the asynchronous channel case. So, the design is
still deadlock-free.

 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation 337

Figure 2. Standard pattern with one asynchronous channel (cut-out from our main diagram)

Figure 3. Overflow buffer pattern and no asynchronous channel (from our main diagram)

The implicit requirement is that the lower process handles both upcoming spontaneous

(alarm type) events and sends directives down (to a process which handles the detector
loop); and that it may wait for responses from detectors on the loop (going up). But the
alarm type events are so important that they are queued in the lower process and need to be
sent up instead of a response from a detector loop unit on an earlier directive. We try to
avoid implementations where a process tends to be a scheduler of itself. When “up” gets a
message from “down” that it has alarms, they are pulled up by a “give me more” message
until the last message comes from “down” saying that this was the last. At the same time a
directive down or a reply to “up” may be pending. The main problem was that the up-going
event sequence might cross with a down-going event, and that we would need a complex
solution to buffer down-going events in the lower process. Or, to end up with the simple
solution that we now have: one single down-going event is stored away in the lower
process, to be picked up when the up-going event queue becomes empty.

We essentially replaced the zero-information initial asynchronous signal to “up” with a
data rich initial message from “down” to “up”. We then avoided an extra sequence to
establish the higher-level states of the two … and the need for the lower process to become
a complex buffer handler and scheduler of itself … and the added complexity of the
protocol.

The essential point here is that the initial architecture was traded for a seemingly more
complex one to make the inner semantics and the protocols and message diagram simpler.
Much anguish was experienced by the white board before we saw the picture. We felt a
rising familiarity with a new set of tools: processes; synchronous vs. asynchronous chan-
nels; deadlock avoidance; internal vs. external complexity; seeing when the behaviour of

338 Ø. Teig / No Blocking on Yesterday’s Embedded CSP Implementation

one process “leaks” into another; understanding the importance of, in some states, not
listening to a synchronous (or sender-side asynchronous and data-free) channel – and last
but not least: how to get rid of complexity by using these tools and combining from the best
of our knowledge.

3. Conclusion

The CSP concept used in a small embedded controller certainly has helped us in making a
complex design implementable. We have some 15 processes and drivers and, since roles are
so clearly defined, the behaviour is explainable both at the process and the system level. (A
team member burst out with this statement: “this is tenfold simpler than what I used to
work with”.) The main objective was that there is now no need to handle just any message
in any internal state. Once the channel functionality is in place, it always works.

However, we have also seen how sensitive the methodology is to having a correct run-
time layer. Assuring that the implementation is in fact correct is not trivial. Our strategy to
help with this is always to “crash” on a rescheduling that is not anticipated, and be open
about it and rectify immediately. Our heuristics, then, is the absence of any such behaviour.
This is of course in addition to white-board studies of the solutions.

Also, having a critical view on communication patterns versus internal complexity, or
cross-process complexity, has helped us. Rethinking one may help in simplifying the other.

Acknowledgements

The project leader Roar Bolme Johansen and fellow channel communicator Bjørn Tore
Taraldsen for enduring non-blocking behaviour. My wife Mari, for just being.

References

[1] Øyvind Teig, “From message queue to ready queue (Case study of a small, dependable synchronous
blocking channels API – Ship & forget rather than send & forget)”. In ERCIM Workshop on Dependable
Software Intensive Embedded Systems, in cooperation with 31st. EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), Porto, Portugal, August/September 2005. Proceedings:
ISBN 2-912335-15-9, IEEE Computer Press. [Read at http://home.no.net/oyvteig/pub/
pub_details.html#Ercim05]

[2] M. Debbage, M. Hill, S. Wykes, D. Nicole, “Southampton's Portable occam Compiler (SPOC)”, In: R.
Miles, A. Chalmers (eds.), ‘Progress in Transputer and occam Research’, WoTUG 17 proceedings, pp.
40-55. IOS Press, Amsterdam, 1994.

Øyvind Teig is Senior Development Engineer at Autronica Fire and Security, a UTC Fire
and Security company. He has worked with embedded systems for some 30 years, and is
especially interested in real-time language issues. See http://home.no.net/oyvteig/ for
publications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

