
Communicating Process Architectures 2006 297
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
© 2006 The authors. All rights reserved.

Software Specification Refinement and
Verification Method with I-Mathic Studio

Gerald H. HILDERINK
Imtech ICT Technical Systems,

P.O.Box 7111, 5605 JC, Eindhoven, The Netherlands
gerald.hilderink@imtech.nl

Abstract. A software design usually manifests a composition of software
specifications. It consists of hierarchies of black box and white box specifications
which are subject to refinement verification. Refinement verification is a model-
checking process that proves the correctness of software specifications using formal
methods. Although this is a powerful tool for developing reliable and robust
software, the applied mathematics causes a serious gap between academics and
software engineers. I-Mathic comprehends a software specification refinement and
verification method and a supporting toolset, which aims at eliminating the gap
through hiding the applied mathematics by practical modelling concepts. The
model-checker FDR is used for refinement verification and detecting deadlocks and
livelocks in software specifications. We have improved the method by incorporating
CSP programming concepts into the specification language. These concepts make
the method suitable for a broader class of safety-critical concurrent systems. The
improved I-Mathic is illustrated in this paper.

Introduction

The proposed method is about formulating software specifications of components in a
program. Software specifications aim at describing the desired behaviour of the software.
Software specifications need to be as precise and complete as possible and should
eliminates doubts about possible misbehaviours or uncertainties of the program. Incomplete
software specifications in, for example, an embedded computer system can cause surprises
that may have disastrous effects on its environment; e.g. a software crash in an airplane or
rocket could risk people’s lives, or defects in consumer electronics products due to a
software bug could cause an economical disaster. We need tools and methods to get
software specifications right and desirably the first time right.

A practical software specification method has been described by Broadfoot [1]. The
method combines two formal methods, (1) the Cleanroom Software Engineering method
[4] and (2) the CSP theory [3; 5]. The method allows for a precisely transformation of
informal customer requirements into formal software specifications suitable for refinement
verification by model-checking. The method has been developed on behalf of Imtech ICT
Technical Systems in the Netherlands and it has been successfully applied to high-tech
products at several technology leading companies, such as Assembléon and Philips Applied
Technologies in the Netherlands. The method is called I-Mathic. The supporting toolset is
called I-Mathic Studio.

After years of experience, we conclude that the method is suitable for relatively small
controller components. This is because the method was originally based on a sequence-
based modelling approach where by sequence enumerations can (easily) result in complex
finite state machines. Nowadays, controller components in embedded systems get bigger

298 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

and bigger due to a growing number of features they must perform. In order to overcome
this problem, we investigated the use of CSP programming concepts to enrich the
specification language and toolset with notion of concurrency. In general, concurrency is an
important concept for dealing with the complexity of systems [2]. The result is an improved
I-Mathic that is suitable for describing software specifications being scalable with the
nature of complexity of computer systems. The new I-Mathic enhancements are introduced
in this paper.

1. I-Mathic Modelling Approach

A complete composition of software specifications should describe the entire behaviour and
operational structure of the program. It consists of hierarchies of abstract and concrete
specifications which are subject to refinement verification. I-Mathic embraces a software
specification refinement and verification method, which applies formal methods to
precisely describe, analyse and connect separate software specifications in a systematic way.
The I-Mathic method provides a practical and powerful approach for describing and
verifying software specifications in an abstract, compositional, and provable manner.

1.1. Software Specifications and Requirements

A software specification of a software component manifests (a part of) the customer
functional requirements or a particular part of the software design. A software specification
is shaped such that it is suitable for software design. A software specification is expected to
be a precise and complete description of the component and its interface.

The refinement and verification method assists the user in discovering and eliminating
undefined issues in the customer requirements. The method helps with identifying
additional requirements, so-called derived requirements.

An abstract specification is usually refined by a more concrete specification. In a
hierarchy of specification a concrete specification can be an abstract specification of a
deeper and more concrete specification.

Sometimes a concrete specification is called the implementation of the abstract
specification. However, at the design phase an implementation is commonly described as a
(most) concrete specification. Therefore, the proposed method treats a model of
specifications. The term implementation is omitted until the implementation phase of the
development process.

The abstract and concrete specifications, as a result of the proposed method, are
computational and therefore they can be translated into code useful for simulation or
model-checking. Of course, those specifications that are deterministic with stable states are
useful to be translated into source code for program execution—these leaf specifications are
the building blocks of the final program.

1.2. Applied Formal Methods

I-Mathic integrates four formal methods which provide a systematic and mathematical
foundation. Each formal method takes care of a responsibility in de specification modelling
process, as discussed below. I-Mathic Studio hides the mathematical foundation from the
software engineer. This foundation is used by the toolset to provide the software engineer

 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio 299

with automation and assistance during the modelling process. This results in consistent and
complete software specifications. The following four1 formal methods are incorporated:

• Box Structured Development Method. The box structured development method
outlines a hierarchy of concerns by a box structure, which allows for divide,
conquer and connect software specifications. The box structured development
method originates from Cleanroom. Cleanroom defines three views of the
software system, referred to as the black box, state box and clear box views. An
initial black box is refined into a state box and then into a clear box. A clear box
can be further refined into one or more black boxes or it closes a hierarchical
branch as a leave box providing a control structure. This hierarchy of views
allows for a stepwise refinement and verification as each view is derived from the
previous. The clear box is verified for equivalence against its state box, and the
state box against its black box. The box structure should specify all requirements
for the component, so that no further specification is logically required to
complete the component. We have slightly altered the box structured development
method to make it more beneficial. This is discussed in Section 2.2.

• Sequence-Based Specification Method. The sequence-based specification
method also originates from Cleanroom. The sequence-based specification
method describes the causality between stimuli and responses using a sequence
enumeration table. Sequence enumerations describe the responses of a process
after accepting a history of stimuli. Every mapping of an input sequence to a
response is justified by explicit reference to the informal specifications. The
sequence-based specification method is applied to the black box and state box
specifications. Each sequence enumeration can be tagged with a requirement
reference. The tagged requirement maps a stimuli-response causality of the
system to the customer or derived requirements.

• CSP/FDR framework. CSP stands for Communicating Sequential Processes
[3; 5], which is a theory of programming. CSP is a process algebra comprising
mathematical notations based on operators for describing patterns of parallel
interactions. FDR is a model-checker for CSP. The CSP/FDR framework is used
for formal verification. Box structures and sequence enumerations are translated
to CSP algebra (in a machine-readable CSP format) which is input for FDR. A
box structure of software specifications provides a hierarchy of refinement
relationships between abstract and concrete specifications. These pairs of
specifications can be verified for completeness and correctness using refinement
checking. FDR also detects pathological problems in specifications, such as
deadlock, livelock and race conditions.

• CSP Programming Concepts. The CSP programming concepts implement a
subset of the CSP theory by software engineering constructs. These pragmatic
constructs capture concurrency at a high level of abstraction (far beyond multi-
threading) and hide the CSP mathematics from the user. These CSP programming
concepts can be build into a programming language (e.g. occam, Ada, Limbo,
Handel-C, HASTE), provided by libraries (e.g. CP, JCSP, C++CSP, CTJ), or
being part of a specification language (e.g. gCSP, I-Mathic). These concurrency
concepts are often seen as a welcome contribution to the user’s knowledge of
sequential programming and modelling. These concepts can also be used for
programming hardware.

1 The method described by Broadfoot [1] includes only the first three formal methods.

300 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

The black box, state box and clear box views are distinct usage perspectives which are
effective in defining the behaviour of individual components but they provide little in the
way of compositionality. Combining specifications cannot make statements about the
behaviour as a whole [1]. Cleanroom provides no means of describing concurrent
(dynamic) behaviours and analysing pathological problems, such as deadlock, livelocks,
race conditions and so on.

In Cleanroom, notion of concurrency was occasionally mentioned as a solution to deal
with describing control structures, but no sound semantics was given. Since Cleanroom is
sequence-based, concurrency adds a new dimension to the complexity of the sequence-
based specifications. We argue that the use of concurrency should make the specifications
of complex systems simpler and natural rather than more complex and artificial. In fact,
concurrency provides compositionality. Sound semantics of concurrency is given by CSP.
The lack of concurrency and compositionality in Cleanroom can be solved by applying CSP
programming concepts to box-structures and sequence enumerations. This is why the CSP
programming concepts are integrated in I-Mathic, which affect the Cleanroom box
structured development method and the sequence-based specification method.

The CSP programming concepts and the CSP theory are considered two different
formal methods with respect to the different contexts they are intended for.

1.3. I-Mathic Supporting Toolset – I-Mathic Studio

The I-Mathic method is supported by a software development toolset, which is called I-
Mathic Studio. Figure 1 shows a screenshot of the graphical user interface. The tree view
on the left side is used for navigation and adding/removing/renaming specification elements.
The tree view is divided in three sections: service interfaces, process classes and definitions.
Service interfaces and process classes are discussed in Sections 2.2.1. The definitions are
global enumeration types and object types that are used by the elements. The panel on the
right side is used to model the specifications or diagrams. The example in Section 4 shows
more screenshots.

Figure 1. I-Mathic Studio graphical user interface.

 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio 301

The toolset assists the user with the specification process and it automates the following
features:

• Create/load, edit, refactor, and save software specifications,
• Navigation between the software specifications,
• Specifying relationships between software specifications, such as equivalence

relationships and communication relationships.
• Transformation of the software specifications to machine-readable CSP for input

for the FDR model-checker,
• Depicting software specifications by state transition diagrams or process diagrams,
• Code generation to, for example, C++,
• Document generation, e.g. derived requirements overview.

The code generator is customizable to the customer’s coding standards and

programming language. Most specification elements can be documented separately and
tagged with a requirement reference. This allows for requirements traceability. The
software specifications are saved in XML format, which can be used by other software
design tools. I-Mathic Studio is evolving with additional features, which are not mentioned
in this paper.

2. Process-oriented Software Specification Development

2.1. Concurrency

The inputs and outputs of a computer system interact with a concurrent world. The inputs
(stimuli) and outputs (responses) of a program synchronize with the outside world and that
perform in sequence, in parallel or by some choice. It is important to be able to describe the
behavioural relationships between the concurrent inputs and outputs. Not surprisingly,
describing parallel inputs and outputs by a single sequence enumeration is far too complex.
Therefore, the software specification refinement and verification method should encompass
concurrent concepts. Concurrent concepts are provided by the CSP theory.

Describing the behaviour of a complex process with sequential enumerations can
easily result in a complex description. The vast number of states and transitions makes
reasoning and modelling difficult. Describing concurrency aspects (e.g. synchronization,
parallelism, non-determinism, and timing) in a finite state machine (being inherently
sequential) will make it even harder or perhaps impossible. Therefore, concurrency
concepts are required in order to manage the complexity of components. Therefore a
software specification should be able to describe a composition of smaller and simpler
specifications.

A software specification can be described by a single process or by a network of
parallel processes. A network of processes is a process itself (networks of networks).

Both single process and network descriptions can reflect deterministic and non-
deterministic behaviours. Non-determinism is a natural phenomenon in a system’s
behaviour, which should not be ignored. The granularity of (non-)determinism depends on
the abstraction of the process. The ability to describe non-determinism can make a
specification shorter, more natural, and more abstract. The interface of a process reveals the
behaviour of interaction via its ports.

302 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

2.2. Box Structured Development Method in the light of processes

In Cleanroom, the box structured development method defines three views of the software
system, known as black box, state box and clear box views. A box structure consists of
usage components (boxes) in the software development method which results in a complete
mapping between the customer requirements and the structural operations of the resulting
software. However, the sequential nature of the sequence-based specification method and
the lack of composing behaviours limit the scalability of the complexity. Hence, Cleanroom
is useful for small components. We argue that box structures in the light of communicating
processes will eliminate this limitation.

In I-Mathic, a box represents a process. A process performs a life on its own and it is
completely in control of its own data and operations which are encapsulated by the process.
A process can play the role of both a usage component and a building block of the system
architecture. I-Mathic enables a straightforward mapping between a software specification
and its implementation.

2.2.1. Black Box and White Box Specifications

Using the Cleanroom’s box structures, we experienced a strong coupling between a black
box view and state box view, which results in a single software specification. It is more
efficient to define an abstract specification and a concrete specification for respectively the
outside and inside of a process. Therefore, two abstract views of a process are defined
which refer to as the black box and white box views of a process. These two views replace
the three views in Cleanroom. A black box view describes an abstract specification and a
white box view describes a concrete specification of a process, respectively called a black
box specification and a white box specification. A black box specification treats the system
as a "black-box", so it doesn't explicitly use knowledge of the internal structure. Black box
specification focuses on the functional requirements. White box specification peeks inside
the "box", and it focuses specifically on using internal knowledge (design) of the process.
The white box specification describes a software specification at a lower level in hierarchy.
It does not describe the implementation of the process. The black box and white box
views/specifications can be composed of concurrent sub-specifications. The black box and
white box specifications of a process share the same process interface (or a subset). Both
the black box and white box specifications can be described by a sequence enumeration
(Section 2.3) or by a network of processes.

A black box specification can be created at any time. A black-box specification is only
necessary when a process design must be tested against the requirements. This is usually
the top process, but it can be necessary to specify black box specifications at other levels in
the design of which the requirements pass judgment.

The specifications at the leaf ends of the box structure are typically black box
specifications. They describe the behaviour of custom or third-party code.

The black box and white box specifications of a process share the same process
interface. Both specifications share a set (all or a subset) of ports of the process interface.
The white box specification of a process can be a refinement of one or more back box
specifications (if given). Each black box specification describes a particular client view of
the process. If a process provides both black box and white box specifications then both
behaviours, with respect to the shared set of ports, must be equal!

This process-oriented box structured development method is effective in detecting and
identifying defects in the customer requirements. Furthermore, the composition of
processes renders a communicating process architecture, which organizes structural and
functional decomposition.

 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio 303

2.2.2. Process-Oriented and Service-Oriented Design

Two types of classifications define the process-oriented and service-oriented design aspects
of software specification, namely:

• Process Classes. A process is an instance of its process class. Process classes
define the type of the processes. A process class defines a process interface and
describes the behaviour of the interface. Two types of process classes are
distinguished: (1) sequence enumeration process classes and (2) network process
classes.

• Service Interfaces. A service interface is a collection of services a process can
offer. A process class must implement a service interface in order to perform its
services. Services are implemented as methods. Service interfaces define the type
of the ports and channels. A process (that implement the service interface).

A process class defines public or private methods. Public methods implement services

they can accept via their input ports. Private methods can be invoked by the sequence
enumeration table, but are invisible to other processes. Methods are described by sub-
sequence enumeration tables, which create a hierarchical finite state machine.

Processes specify distinguishable behaviours at a high level of abstraction—higher
than objects. Hence, software specifications are described by non-objects, namely:

• processes that provide the building blocks of a software architecture, which
compose functional tasks, responsibilities and concerns,

• services that processes can offer,
• ports that specify the process interface,
• channels that connect processes via ports,
• and sequence enumerations that describe the protocol of interaction in terms of

events, states, decisions and transitions.

The communication relationships between processes are defined by channels that

connect the process interfaces. See Figure 2. The communication relationship determines
the integrity and consistency of a network of software specifications.

Figure 2. Box Structure of a single process consisting of multiple inner processes.

A process is identified by a process name and a process class. The process class
defines the type of the process; i.e. the process interface and the software specification.

outside, black box,
or abstract

view/specification

input port

s:Process_S p:Process_P

q:Process_Q r:Process_R

in
:ServiceInterface1

out
:ServiceInterface2

inside, white box,
or concrete

view/specification

output port

process interface

services

{Start, Pause,
Abort, ...} {...} {...}

{Paused, Aborted,
ErrorOccurred,...}

channels

304 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

The ports are identified by a port name, service interface and a direction. The service
interface and the direction define the port type. The services a process can offer are bound
by the set of input ports. Each service interface defines a view or group of services a client
process can request. Input ports can be connected output ports, or an input/output port can
be connected to its parent input/output port. In either ways, the port types must be equal.

The connections between processes are channel. Channels take care of synchronisation,
process scheduling and data transfer. Channels are initially unbuffered and perform
handshaking between interacting processes. Buffered channels are optional in
circumstances of structural performance bottlenecks [2].

2.3. Sequence Enumerations in the light of processes

A sequence enumeration describes the possible sequences of stimuli, responses and states.
The stimuli involve the inputs and the responses involve the outputs of a process. A
stimulus is an incoming event, i.e. it accepts and receives a message. The stimulus triggers
a transition from one state to another state. The transition performs a response before the
next state. A response is an outgoing event, i.e. sending a message. The states, internal
actions and the state transitions are completely encapsulated by the process.

Table 1 illustrates a sequence enumeration table. The layout of a sequence enumeration
table consists of states and a number of transitions (entries) per state. A transition describes
a branch which is part of a sequence enumeration. A transition is ready to be executed when
the condition and accept fields are both true. A sequence enumeration waits in a current
state until at least one transition becomes ready. In case more than one transition is ready
then one of these transitions will be randomly2 selected and executed. On selection, the
accept and action fields are executed and then a next state is taken.

Table 1. Sequence Enumeration Table Layout.

state 1
condition accept action next state description ref.
… … … … … …
… … … … … …
… … … … … …
state 2
condition accept action next state description ref.
… … … … … …
… … … … … …
… … … … … …

The fields are described as follows:

• Condition field. The condition is a Boolean expression using state variables and
Boolean operators (currently only ‘==’ and ‘!’).

• Accept field. The accept field specifies a stimulus, i.e. an input port and a service,
which is ready when another process is willing to request the service via the port.
If the condition is true, the accept field is ready and the transition is selected then
the service is accepted. The service is executed by the process as part of the
acceptance.

2 The semantics of the choice construct is derived from the external choice construct in CSP.

 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio 305

• Action field. The action field specifies zero, one or more sequential actions. The
actions are restricted to sending responses and updating internal state variables.
This field is like a small code body with a C-like syntax. A response is described
by an output port and a service. A response is a request of a service via the output
port to a server process. The response only is executed by the server process on
acceptance by the server process.

• Next State field. The sequence enumeration takes the next state immediately after
the action field has terminated

• Description field. A transition can be described separately. This field is optional.
• Reference field. The reference field specifies a requirement tag, which enables

requirement traceability. A transition can refer to a customer requirement or a
derived requirement. This field is optional.

The sequence enumeration tables define the client-server relationships between

processes. The accept field defines the server role of the process and the response in the
action field defines the client role of the process. Examples of sequence enumeration tables
are given in Section 4.

3. Refinement Verification

A specification that is equivalent to a simpler specification can be replaced by the simpler
one. Let process P be a complex white box specification and process Q a black box
specification. Process P was developed from a design perspective and process Q from a
requirement perspective. The processes P and Q must share the same interface; i.e.
refinement is only possible if the number of ports, their types and order are equal. FDR will
check if P is trace-failure-divergence compatible with Q, i.e. the future stimuli and
responses of P and Q must be the same. In case they are not trace-failure-divergence
equivalent, P is not a refinement of Q. This indicates incomplete requirements or a mapping
failure between the informal and the formal specifications. In this case, iterations with the
customer are required that must clarify and solve the mismatch.

Abstract software specifications usually represent the requirements, which are called
predicates. A predicate specifies properties of a process that must hold.

The refinement check in CSP is given by:

Spec’ ⊑ Spec

Spec’ is the predicate being asserted and Spec is tested against Spec’. Spec passes just
when all its behaviours are one of Spec’. In other words, the behaviours of Spec’ include all
those of Spec. Spec is a refinement of Spec’. The refinement-check considers all the
process’ behaviours, namely traces, failures and divergences.

In case Spec’ and Spec are both predicates, their behaviours must be equivalent, so:

Spec’ ⊑ Spec and Spec ⊑ Spec’

should hold. This is called the equivalence relationship between two specifications:

P is equivalent to Q

306 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

If P is equivalent to Q and Q is a simpler description then Q can be used instead of P
for further analysis. This simplifies and accelerates the refinement verification in the
hierarchy of specifications.

In I-Mathic, a specification can be verified for equivalence with another specification;
no matter if this is a black box or white box specification. Verification is possible as long as
the process interfaces are compatible.

4. Example

An example of a simple system is illustrated in this section. We do not have the space to
discuss the system in detail. The exact meaning of the processes, their detailed
specifications and the requirements are omitted. The example illustrates the look-and-feel
of the I-Mathic method and I-Mathic Studio. A complete illustration of I-Mathic is
provided by an I-Mathic course at Imtech ICT.

The example comprehends the interaction between a user and an embedded system.
The user interacts with the system via a graphical user interface (GUI). The embedded
system is a system controller consisting of three subsystems; a supervisory controller and
two peripheral controllers. See Figure 3. The kernel controller performs the supervisory
control over the transport and pick & place controllers. The transport and pick & place
controllers contain other subsystems. These subsystems are omitted in this paper. Each
controller is a process that is connected via channels; see the arrows in the Figure. The
focus of this example is on the embedded system and not on the GUI.

Figure 3. Process architecture of controllers.

The process names and process classes are given in Figure 4. The process class System
describes a white box specification by a network of processes, since we peek inside System.
The Kernel process class is the specification that needs to be developed.

Figure 4. Network of processes with identifiers.

system : System

kernel : Kernel

trans : Transport equip : PPEquipment

System Controller

GUI

Kernel Controller

Transport Controller Pick & Place Controller

…

 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio 307

Coincidentally, the system, trans and equip processes have the same interface and they
must behave similar. Hence, they have the same black box specifications. The black box
specification is defined by the Peripheral process class. We must prove that the process
classes System, Transport and PPEquipment are equivalent to Peripheral. See Figure 5.

Figure 5. Equivalence relationships specifying refinement verifications.

Since Transport and PPEquipment are customer-made components, they have no white
box specification. These components needs to be tested using test cases. In this example,
we assume that Transport and PPEquipement are equivalent to Peripheral. The Kernel
specification must be developed such that System fulfils the functional requirements and
that System is equivalent to the Peripheral specification.

In case System, Transport and PPEquipment are equivalent to Peripheral then Peripheral
can be used instead for further refinement verification. This optimizes the refinement
verification. FDR will use less state space and the model-checking will perform faster.

The Peripheral specification is given in I-Mathic Studio in Figure 6. The Peripheral
process class is selected in the tree view. The expanded Peripheral process class shows the
ports, services it can offer and an internal event (Error).

Figure 6. Peripheral process class in I-Mathic Studio.

system : System
≡ Peripheral

kernel : Kernel

trans : Transport
≡ Peripheral

equip : PPEquipment
≡ Peripheral

308 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

The sequence enumeration table on the right side shows the input ports (and services)
and internal event (spontaneous (Error)) in the accept fields for each state. The internal event
can occur inside the process (like a spontaneous exception) and therefore it is not passed via
the process interface.

The white rows are specified transitions going to a next state. The grey rows are so-
called ILLEGAL transitions. ILLEGAL transitions are supposed not to happen. The model-
checker will notify the user if there is a possibility that the process can end in an ILLEGAL
state, due to an illegal service request. Thus, illegal transitions are detected during
refinement verification and not at run-time. This saves time and the method guarantees that
all illegal requests are detected and solved at the early specification phase of the
development.

For each sequence enumeration table a state transition diagram (STD) can be shown.
An STD gives an overview of states, transitions and a sequential thread of control. The
ILLEGAL states are not shown in an STD because this would make the STD unnecessary
complex. Figure 7 shows the STD of the Peripheral specification.

Figure 7. State transition diagram of Peripheral process class.

The System process class describes a network of processes, which can be depicted by a

process diagram (PD). Figure 8 shows the network of processes and connections. The
System process class is clearly a white box specification. A PD can be shown at every level
in the process hierarchy.

A concrete specification can be tested for equivalence by specifying an abstract
specification. For example Figure 9 shows the properties of the System process class. Here,
Peripheral is specified as the abstract specification. Therefore, the System process class will
be verified against the Peripheral process class. This is also done for the Transport and
PPEquipment process classes. The Kernel process class does not have an equivalence
relationship specified and therefore kernel will only be part of the System specification.

 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio 309

Figure 8. Process diagram of Kernel process class.

Figure 9. System should be equivalent to Peripheral.

FDR checks the model successfully. Each equivalence relationship is true and the
system is deadlock free. Unfortunately, we did not succeed to make a screenshot in time of
the Linux machine on which FDR runs. The results of FDR are not further discussed.

5. Conclusions

The method allows the user to describe software specifications in terms of processes. A
process can be described by a sequence enumerations table or by a network of parallel
processes. This process-oriented framework allows the user to compose a complex system
by simpler sub-systems. The absence of objects allows the user to reason clearly about the
functional behaviour of the system and not being disturbed by the limitations of (inherently
sequential) object-oriented structures. Eventually, object-oriented and multithreaded
structures in the implementation are determined by the process architecture.

The software specification refinement and verification method has been improved with
CSP programming concepts. These concepts provide the user with practice software
engineering constructs to describe concurrent behaviours in software specifications. I-
Mathic includes sequential, parallel and choice constructs, and channels that synchronize
parallel sequence enumerations (processes). These concepts are required for the
compositionality and scalability of software specifications.

The CSP/FDR framework allows for refinement verification between abstract (black
box) and concrete (white box) software specifications. This refinement verification process

310 G.H.Hilderink / Software Specification Refinement and Verification Method with I-Mathic Studio

proves the completeness and correctness of the software specifications. Also, deadlock,
livelocks and race conditions are checked.

I-Mathic Studio has a graphical user interface which includes features that assist the
user with the development process of software specifications. This improves the
productivity and the user does not have to an expert in formal methods.

6. Future work

The CSP programming paradigm provides I-Mathic a road map of extra new features that
are useful for describing software specifications of complex and mission-critical embedded
systems. A list of additional features, such as debugging in I-Mathic Studio (rather than in
FDR), animation of execution, colouring deadlocks and livelocks in sequence enumeration
tables and graphical modelling are planned to be implemented in I-Mathic Studio.

References

[1] Broadfoot, G. H. (2005). "Introducing Formal Methods into Industrial using Cleanroom and CSP."
Dedicated Systems Magazine Q1.

[2] Hilderink, G. H. (2005). Managing Complexity of Control Systems through Concurrency. Control
Laboratory. Enschede, The Netherlands, University of Twente.

[3] Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice Hall.
[4] Prowell, S. J., C. J. Trammell, et al. (1998). Cleanroom Software Engineering - Technology and Process,

Addison-Wesley.
[5] Roscoe, A. W. (1998). The Theory and Practice of Concurrency, Prentice Hall.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

