
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

123

Portable CSP Based Design for
Embedded Multi-Core Systems
Bernhard H.C. SPUTH, Oliver FAUST and Alastair R. ALLEN

Department of Engineering, University of Aberdeen,
Aberdeen, AB24 3UE, UK

{b.sputh , o.faust , a.allen}@abdn.ac.uk

Abstract. Modern lifestyle depends on embedded systems. They are everywhere:
sometimes they are hidden and at other times they are handled as a fashion acces-
sory. In order to serve us better they have to do more and more tasks at the same
time. This calls for sophisticated mechanisms to handle concurrency. In this paper
we present CSP (Communicating Sequential Processes) as a method which helps to
solve a number of problems of embedded concurrent systems. To be specific, we de-
scribe implementations of the commstime benchmark in multithreaded, multiproces-
sor and architecture fusion systems. An architecture fusion system combines machine
and hardware-logic architectures. Our results are twofold. First, architecture fusion
systems outperform all the other systems we tested. Second, we implemented all the
systems without a change in the design philosophy. The second point is the more im-
portant result, because it shows the power of CSP based design methods.

Keywords. Embedded systems, System on chip, Architecture fusion, Multithreaded,
Multi-core

Introduction

Embedded systems offer more and more processing power. As the processing power rises
there is a need to control or make good use of the new features incorporated into such sys-
tems. This paper details different aspects of this rise in processing power. The first aspect
is multithreaded programs in embedded systems. To achieve multithreading a supportive OS
(Operating System) is required. This OS must be as lightweight as possible. One example of
such a lightweight OS is MANTIS, by ShahBhatti et al [1]. It offers multithreading capabili-
ties and requires less then 500kB of RAM. But not only is the sheer multithreading capability
important the real time capabilities of the OS must be considered too. Inadequate schedul-
ing and unfavourable resource distribution degrade real time performance [2]. Unfortunately,
even with the best possible support from the OS, embedded system engineers find themselves
trapped in a jungle of mutexes, semaphores and monitors. To overcome these problems we
provide CSP capabilities for the XMK (Xilinx Micro Kernel) [3].

Next we considered embedded multiprocessor systems. Such systems provide the oppor-
tunity to create very powerful and energy efficient processing machines [4]. But, of course
there is the danger of producing under achieving systems if the process distribution is not
considered carefully enough. The desire for multi-core systems has yielded a whole range of
different inter-processor communication methods [5,6]. All these methods have their advan-
tages and disadvantages, but the main problem for all of them is that they lack a consistent
mathematical basis which describes the communication.

The fusion between machine and hardware-logic architectures unleashes the real power
of FPGA (Field Programmable Gate Arrays). Low power consumption and physical size are



124 B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems

key targets of embedded system design. The power consumption of a clocked IC (Integrated
Circuit) depends quadratically on the clockspeed. Therefore, an embedded systems designer
tries to reduce the clockspeed to a minimum. The use of ASICs (Application Specific In-
tegrated Circuits) allows one to move functionality from software to hardware: this is one
way to lower the clockspeed of the system. The drawback of the use of ASICs is that the
system has now a larger physical size, caused by the use of extra components. This brings us
to the last aspect of this paper: the fusion of machine and hardware-logic architectures. One
example of such fusion between machine and hardware-logic architectures was presented by
B.C. O’Neill et al. in the form of a SOPC (System on a Programmable Chip)[7]. Watt et al.
have presented a programming language for such hybrid systems consisting of a standard PC
and an FPGA [8]. Machine architectures, such as Harvard and Von Neumann, are very flexi-
ble, because their functionality entirely depends on the instruction addressed by the program
counter. In other words, the functionality of a machine architecture is altered by jumping
to new code segments. This great flexibility requires strictly sequential processing. This is
the reason why machine architectures are slow compared with hardware-logic. The fusion
between machine and hardware-logic architectures requires some sort of communication be-
tween them. Traditionally, multi-processor systems consist of multiple interconnected CPUs
of the same type. In our system this is not the case because it combines flexible but slow ma-
chine architectures with inflexible but fast hardware-logic architectures. As for the previous
cases, engineers came up with various solutions to tackle these problems [9]. But again an
overall strategy is missing.

All the aspects of multithreading, multiprocessors and architecture fusion boil down to
communication problems in embedded systems. In all cases we have independent entities
which must communicate with each other. This paper describes how we applied methods
based on CSP [10,11] to solve this communication problem in a consistent way. This consis-
tency allows developers to concentrate on what they want to achieve, in a concurrent fashion,
without worrying about how their concurrent processes communicate. This is because the
designer of the CSP back-end has already worried about the communication. We demonstrate
how easy it is to break up a problem into smaller communicating parts which are implemented
in different architectures.

Applying CSP principles to develop FPGA implementations is by no means a new idea.
In fact there has been a lot of work done in the past. First to mention here is Handel-C [12], a
programming language inspired by CSP. Cook et al. developed a compiler translating occam
code into a hardware-logic-core for an FPGA [13]. HCSP [14] is an extension of CSP with
priority and true concurrency (multiple events happening at once) to allow one to prove the
correctness of a hardware implementation.

We have chosen the commstime benchmark [15] as example, because the resulting sys-
tems are simple and yield an agreed upon benchmark figure. The next section provides a
brief introduction to the commstime benchmark. Section 2 introduces the libcsp [16] port to
XMK. This extension allows us to create multithreaded programs that communicate and syn-
chronise in a well understood manner. Section 3 describes the hardware system used for the
benchmark tests. The following subsections describe the individual implementations going
from single core to multi-core and to a fusion of machine and hardware-logic architecture.
Section 4 contains a discussion of the benchmark results. Sections 5 and 6 are conclusions
and further work.

1. Commstime Benchmark

The commstime benchmark is a widely applied method [15,17,18,19,20,21] to measure the
overhead of channel communication between parallel processes. This allows us to compare



B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems 125

different CSP environment implementations at one of their core activities: channel communi-
cation. Another reason for choosing commstime as example is that it consists of four simple
processes, which communicate over channels. This allows us to distribute them over multiple
processor cores and even to implement one of the processes as hardware-logic. In this section
we give a brief introduction to the commstime benchmark.

PREFIX DELTA

SUCC CONSUME

a

b
d c

Figure 1. Process network of the commstime benchmark

The process COMMSTIME (Equation 1) is the top-level process of the benchmark. The
diagram of Figure 1 illustrates the different processes and their connections1. The commstime
benchmark consists of a ring of three processes: PREFIX, DELTA and SUCC (Equations 2
– 5). The DELTA process connects this ring to the process CONSUME (Equation 6), which
performs the measurements. In our implementation DELTA behaves as sequential delta, thus
sending out the messages sequentially, instead of concurrently. We reflect this in the model
we show here.

COMMSTIME = PREFIX(0, d, a)‖DELTA(a, b, c)‖ SUCC(b, d)‖CONSUME(c) (1)

with:

PREFIX(value : Z, in, out) = out!value → COPY(in, out) (2)

COPY(in, out) = inx : Z → out!x → COPY(in, out) (3)

DELTA(in, out1, out2) = in?x : Z → out1!x → out2!x → DELTA(in, out1, out2) (4)

SUCC(in, out) = inx : Z → out!(x + 1) → SUCC(in, out) (5)

CONSUME(in) = c?x : Z → CONSUME(in) (6)

The process PREFIX starts the communications on the ring by sending the initial inte-
ger value: value, to DELTA. This process then sends the value to SUCC and to CONSUME.
SUCC increments the value by one and then sends it to PREFIX, which now behaves like
COPY (Equation 3) and sends the value to DELTA. This ring operates as long as DELTA is
able to send the value over its second channel to CONSUME. Thus for each round the mes-
sage makes in the ring, CONSUME receives one message. This allows CONSUME to mea-
sure how much time passes between receiving two messages. Because each round requires
four channel communications it is possible to determine how long an individual channel
transaction takes.

1Please note that we omit the parameter list when referring to the processes of the commstime benchmark.
Furthermore, when we omit the alphabets of the parallel operator (‖), we imply that the processes bring their
whole alphabet.



126 B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems

2. A CSP Back-end for XMK

To ease the development of multithreaded software for Xilinx MicroBlaze [22] based SOPCs
in embedded systems we decided on extending XMK (Xilinx Microkernel) [3] with CSP ca-
pabilities. The Xilinx MicroBlaze is a configurable SoftCPU for Xilinx FPGAs. This allows
one to tailor the CPU to ones needs by omitting unnecessary units: for instance, a floating
point unit. Furthermore, the Xilinx MicroBlaze can be combined with hardware-logic to form
architecture fusion systems like the one we present in this paper.

One of the options for this extension was an occam based approach, using either KRoC
[15] or SPoC [23]. But we decided against the use of occam because this would have meant
to extend the tool chain of either KRoC or SPoC to the MicroBlaze instruction set. Thus the
resulting system would have been processor specific instead of OS specific.

After deciding against occam we considered C, C++, or Java based CSP environments.
Unfortunately there seems to be no JVM (Java Virtual Machine) available for the MicroBlaze
processor, which prevented the use of JCSP [24] or CTJ [25]. Xilinx provides tool chains only
for C and C++, for use with the MicroBlaze processor. This limits our options to: C++CSP
[19], CCSP [17] and libcsp [16]. Unfortunately, the C++ tool chain does not implement all
features of the C++ standard. The provided C++ compiler failed to compile C++CSP, —
it stumbled across some template definitions in C++CSP. Looking at CCSP and libcsp we
decided to go for libcsp — it requires less memory during runtime and is easier to port than
CCSP.

Libcsp is a library that provides CSP style communication and synchronisation mecha-
nisms for C programs. It uses the pthreads [26] API (Application Programmer Interface), to
create and synchronise threads. The pthreads API is part of the POSIX (Portable Operating
System Interface) standard, to which many available OS conform. This practical OS indepen-
dence allows developers to utilise libcsp whenever they want to use CSP in a project. This
section details the problems faced during the porting of libcsp to XMK.

XMK is a small OS for the Xilinx MicroBlaze SoftCPU and FPGA internal PowerPC
405. It provides a subset of the POSIX API, which includes an incomplete implementation
of pthreads.

Unfortunately, this pthreads API subset does not include an implementation of condi-
tional variables, a monitor like synchronisation mechanism, on which the libcsp channel im-
plementation depends. Therefore, we extended the pthreads API of XMK appropriately. This
allowed us to avoid any modification of the libcsp channel implementation.

Another problem is that XMK has only mediocre support for dynamic memory man-
agement. To overcome this, we preallocate memory heaps at compile time, using arrays, and
manually manage these heaps at runtime. These heaps allow us to determine at compile time
whether or not a program fits into the available memory. This effectively prevents the occur-
rence of “out of memory errors” at runtime. However, the tradeoff is that one needs to know
the required heap size during compilation.

For instance, libcsp uses dynamic memory management to allocate channels and pro-
cesses. We adjusted these functions to use preallocated heaps of the corresponding data struc-
tures. Unfortunately, this required extended modifications of the libcsp API, which in fact is
close to the API of the original INMOS C compiler, making the libcsp for XMK incompatible
with its origin. To make this clear we may decide to change the name in the future. However,
the core of the library is still the same and we made sure that the modified version of libcsp
still compiles on OS other than XMK.



B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems 127

3. Implementations

This section describes five different implementations of the commstime benchmark. These
implementations reflect different types of embedded systems designs.

All implementations were done using a Xilinx Virtex-II FPGA (Model: XC2V3000
[27]), with 3M system gates and a speed grade of -4, which is the slowest available for the
Virtex-II family. For the commstime example this chip hosts three MicroBlaze processor
cores (MB0, MB1 and MB2) and one SUCC hardware-logic core.

The individual components are connected by FSLs (Fast Simplex Links) [28]. An FSL
(Fast Simplex Link) is a low latency, unidirectional point-to-point data streaming interface.
The FSLs supported by the MicroBlaze are up to 32 bits wide and offer two modes of op-
eration: blocking and non-blocking. FSLs always contain a FIFO (First In First Out) buffer.
This buffer holds between one and 8192 messages, the number being determined before gen-
erating the configuration bitstream for the FPGA. Therefore, only the required amount of
buffer is allocated on the FPGA. This together with their ability to block the processor from
proceeding when the buffer is not ready, makes fast simplex links in fact buffered-channels.
Two fast simplex links of opposite directions form one FDL (Fast Duplex Link).

XC2V3000

MB0 MB1

MB2SUCC

RS232 RS232

FDL

FSL

Figure 2. Top-level view of our SOPC, with the interconnects between the different processing entities

Figure 2 shows the simplified block diagram of the system. Each MicroBlaze processor
core has access to 64kB of RAM and is clocked at 50MHz. Each MicroBlaze connects over
the OPB (On-chip Peripheral Bus) [22] to its own timer. Once started, the timer counts the
number of clock impulses (50MHz) in a 32-bit register. We use this timer in CONSUME to
measure the time required to execute a certain number of loops. Figure 3 shows the setup
of MB0 which is identical to MB1, omitting any FSL. Both connect to an RS232 interface
via their OPB interface. This RS232 interface can be used to establish a serial link with an
external terminal. MB2 is not connected to an RS232 interface.

MB0

MicroBlaze core + RAM RS232 Timer

OPB

Figure 3. Individual Processor setup for MB0

3.1. Single-core Multithreaded

In the first test a single CPU, MB0, executed the commstime benchmark. Native XMK
threads represented all processes of the commstime benchmark. The processes exchanged
messages over libcsp channels. Figure 4 illustrates the process distribution. This implemen-
tation was straightforward, using the commstime benchmark as provided by libcsp, with
small adjustments to accommodate the modified API. For 100, 000 loops the system required
36.694s.



128 B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems

MB0

PREFIX DELTA

SUCC CONSUME

a

b
d c

libCSP

Figure 4. Process distribution over a single core system

3.2. Dual-core

As the name suggests dual-core implementation utilises two CPU cores: MB0 and MB1.
Both processors run XMK and libcsp. The commstime benchmark is split, such that the
processes PREFIX and SUCC run in MB0 whereas the processes DELTA and CONSUME
are executed in MB1. MB0 and MB1 communicate via two FSLs. These links represent
channels a and b. Figure 5 illustrates the process distribution. With this setup, the commstime
benchmark performs 100, 000 loops in 10.106s, almost four times faster than the single-core
implementation. In Section 4 we explain why this implemenation is almost four times faster
than the single-core implementation.

MB0 MB1

PREFIX DELTA

SUCC CONSUME

a

b
d c

FSL

libCSP

Figure 5. Process distribution over a dual-core system

3.3. Triple-core

With the triple core setup we studied the effects of process distribution on the benchmark
results.

The first triple-core example utilises all three MicroBlazes. They all run XMK and
libcsp. The processes are distributed as follows: PREFIX on MB0, CONSUME on MB1 and
DELTA and SUCC on MB2. FSLs now provide the channels a, d and c. Figure 6 shows
the process distribution. Commstime requires 10.114s to perform the 100, 000 loops, a slight
performance degradation.

The first triple-core implementation did not show any speedup compared to the dual-
core implementation. In fact it was even a little bit slower. Why is this? Because there is
still a relatively slow libcsp channel between DELTA and SUCC. The slow communication
of the libcsp channel is caused by the fact that it has to perform context switches. Context
switches require a lot of computing resources. In this position the libcsp channel is part of a
sequence of channel transactions on the channels a, b and d. Channel c connecting DELTA
and CONSUME is used concurrently with the channels of the ring. Therefore, when placing



B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems 129

MB0
MB2

MB1

PREFIX DELTA

SUCC CONSUME

a

b
d c

FSL

libCSP

Figure 6. Process distribution I over a triple-core system

all fast channels (FSLs) in the ring and the slow libcsp channel concurrently with them, the
performance should increase.

This is exactly what we have done in the second triple-core example, Figure 7 shows the
process distribution. The total runtime for this setup was 10.106s, only a slight increase in
performance. However, it is still not faster than the dual-core implementation.

MB0

MB2

MB1

PREFIX DELTA

SUCC CONSUME

a

bd c

FSL

libCSP

Figure 7. Process distribution II over a triple-core system

3.4. Architecture Fusion

To evaluate the performance of the FSLs and to determine whether the libcsp channel is
really to blame we implemented the SUCC core. The SUCC core connects over two FSLs to
MB2 and MB0. In this setup (Figure 8) each MicroBlaze executes only one process, avoiding
context switches. Thus we have now a system with hardware concurrency, instead of software
simulated concurrency. The runtime of the commstime benchmark, for 100, 000 loops now
drops to 0.043s. At a first glance it may seem that this speedup is caused by the use of the
dedicated hardware: however, this is only half the story. The SUCC core can only pass on
messages as fast as it receives them, because it is only recycling messages, not generating
new ones. That means that the other participating processors need to do their share as well for
the commstime benchmark to execute. Therefore, this measurement result indicates that the
context switching required by the libcsp channel is responsible for preventing the triple-core
system from being faster than the dual-core system.

4. Measurement Results and Discussion

Table 1 gives the measured results for the different implementations of the commstime bench-
mark. To determine how much faster the multi-core implementation is compared to the
single-core implementation, we calculated the speedup (S). Equation 7 gives the definition



130 B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems

MB0

logic

MB2

MB1

PREFIX DELTA

SUCC CONSUME

a

b
d c

FSL

Figure 8. Communication network of the commstime benchmark

Implementation Cores Channel cost Speedup (S)
Single-core 1 91.74µs 1

Dual-core 2 25.27µs 3.63
Triple-core I 3 25.28µs 3.63

Triple-core II 3 25.27µs 3.63
Architecture Fusion 4 0.11µs 859

Table 1. Measurement results

CSP Environment Channel cost (µs)
CCSP (GNU C) [17] 0.68
CCSP (occam)[17] 0.41
JCSP [21] 23
tranx86 [18] 0.067
C++CSP (own scheduler) [19] 1.25
C++CSP (GNU pth scheduler) [19] 15

Table 2. Channel cost of other CSP environments

of the speedup. SCPT is the time the single-core implementation requires for the task and
MCPT is the time the multi-core implementation requires.

S =
SCPT
MCPT

(7)

The speedup of an algorithm when executing should not exceed the number of available
processors, assuming that the processors are uniform. However, the speedup of the dual-core
implementation is 3.63 which is almost double the amount of used processors. The reason for
this phenomenon is that in the dual-core implementation two software channels have been
substituted by two hardware channels (FSLs). These hardware channels perform the hand-
shaking between sender and receiver not in software but in hardware, this explains this vast
speedup. In the case of the two triple-core implementations we experience no speedup com-
pared to the dual-core implementation. The reason for this is that there is still one software
channel in use, which is the weakest link of the process chain and therefore determines its
speed. The architecture fusion implementation removes this last software channel and thus
allows the system to demonstrate its raw communication speed. This results in a speedup
of 859. However, this speedup comes with a high price: the design now contains a hard to
change hardware-logic component and uses the largest silicon area.

Table 2 is a collection of published channel communication cost acquired using the
commstime benchmark. Please note that these results were obtained using different test sys-
tems. There are three different groups to differentiate here: implementations operating in a
virtual machine (JCSP), implementations that have adjustments to a specific OS (C++CSP)



B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems 131

and implementations that contain optimisations to the OS and the target CPU (tranx86,
CCSP). The more dependent an implementation becomes towards a specific OS or CPU the
faster it becomes. This is of course not a new discovery, however it is nice to see that it holds
also for these implementations. In Table 1 we experience the same effect, the single-core im-
plementation is portable among different CPU and OS, it just needs a recompile. Adjustments
made to the available hardware in the dual- and triple-core implementations lead to an in-
creased performance. However, this implementation is still portable onto other SOPCs which
offer two or three interconnected MicroBlaze processor cores. Finally, the implementation
with a hardware SUCC process is a few magnitudes faster than the other implementations.
However, this comes at high cost — being practically non-portable.

In [13] Cook et al. present a pure hardware-logic implementation of the commstime
benchmark. Similarly to ours it is clocked at 50.4MHz and requires 15ns for one channel
transaction, more than 7 times faster than our architecture fusion system. This solution [13] is
optimised down to the gate level, by the use of a special occam-to-FPGA compiler, making
the incorporation of existing hardware-logic-cores difficult.

Embedded systems, especially when battery operated, should consume as little power as
possible. Our system consumes 0.660W when the FPGA is unconfigured. Configured with
the architecture fusion bitstream and executing it, the system draws 1.485W. As comparison,
tranx86 [18], the fastest system as of Table 2, uses an Intel Pentium III clocked at 800MHz.
According to the Pentium III datasheet [29], the core of this CPU consumes maximal 27.2W2.
We assume that the power consumption is close to the maximum rating. Because the comm-
stime benchmark exercises parts of the CPU to the limit. Even if the CPU actually consumes
less power, this figure excludes the power drawn by other vital components, such as chipset
and RAM. To be fair their power consumption should be included as well. However, even
without them it is obvious that our system consumes less energy.

5. Conclusions

In this paper we described the implementation of the commstime benchmark in three differ-
ent embedded system setups. The different setups were realised in the same FPGA chip with
the same clock frequency. This makes the benchmark results comparable. The first scenario
was a single MicroBlaze soft-processor running the XMK operating system, libcsp extension
and the complete commstime benchmark. This was the slowest system in the test. The multi-
processor system performs better then the single-core system, however there is the additional
burden of process distribution. That process distribution matters was shown with the triple-
core example. Different process distributions yield different benchmark values. The fastest
implementation was the architecture fusion system: there each processor had to only execute
one process, thus avoiding slow context switches.

The main result presented in this paper is the sheer ease with which we moved from one
implementation to the other. Basically, the CSP style communication and synchronisation
allows us to overcome the traditional design borders. Effortlessly, we moved processes from
one processor to another and from machine architecture to hardware-logic architecture. This
is a powerful design method for embedded systems, because it helps to utilise the capabilities
of different processing architectures. This ability of interlinking different architectures allows
developers to utilise the architecture that is best suited to deal with their problems. This free
architecture choice, within the SOPC, allows the designer to create power efficient systems,
that furthermore require little physical space. The experiments show that it does not require

2Intel publishes a Vcccore of 1.7V and an Icccore of 16.0A for a Pentium III with 800MHz and a CPUID of
0x686.



132 B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems

much effort to run an operating system on a soft processor alongside hardware or hardware-
logic components.

6. Further Work

Distributed sensor networks consist of a large number of sensor nodes. Depending on their
deployment, these nodes may be battery operated systems. This places a high emphasis on
minimising the energy consumption of a node. A sensor network node has to provide high
processing capabilities for source and channel coding as well as signal modulation. This pro-
cessing power can be achieved with architecture fusion systems. Reconfigurable hardware,
such as FPGAs, allow us to move processes almost effortlessly from software to hardware-
logic and back. So we can control all relevant parameters such as chip utilisation, processing
time and energy consumption.

Naturally, also the inter node communications could be modelled using CSP. However,
the links between sensor nodes may be unreliable. This has two causes. First of all, the envi-
ronment in which the nodes are deployed may block certain links. Secondly, the sensor nodes
themselves are unreliable and may cease to function. In [30] we present a simple protocol
that allows one to securely broadcast a message to all sensor nodes of a cluster3. However,
this is only the beginning of our investigation.

The current port of libcsp is still work in progress. This means it is in a state where it
works, but is not pretty. There are a couple of areas where the current version of libcsp lacks
support for specialities of the MicroBlaze environment. One of these areas is the integration
of the FSL. At present we use these channels directly and are therefore unable to alternate
over software channels and FSLs. By abstracting the FSL and using them like the transputer
used its links it would be possible to create an even easier environment to develop in. The
architecture fusion implementation demonstrated that an FSL provides a large enough band-
width to multiplex a large number of channels over it, without making the FSL a bottle neck.

Another worthwhile direction of research is to develop a unified language to describe
the hardware and software, similar to the work presented the Watt et al. in [8]. However, we
strongly suggest to allow the use of existing hardware-logic-cores from within this language,
to allow developers easy integration of already existing hardware-logic-cores.

A big problem still open is that the current implementation assumes that the developers
use the provided CSP primitives correctly. Libcsp does not check whether the CSP primitives
are used correctly. One possibility to overcome this is to extract the use of the CSP primi-
tives from the C source code and translate it to CSPM script. This CSPM script model of the
communication could then be checked using FDR [31]. However, this would also require a
complete CSPM script model of the C environment. Work in this area (Java to CSPM script)
has been presented by Hui Shi in form of Java2CSP [32].

References

[1] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker, Charles Gruen-
wald, Adam Torgerson, and Richard Han. MANTIS OS: An Embedded Multithreaded Operating System
for Wireless Micro Sensor Platforms. Mobile Networks and Applications, 10(4):563–579, 2005.

[2] J. Kreuzinger, A. Schulz, M. Pfeffer, T. Ungerer, U. Brinkschulte, and C. Krakowski. Real-time scheduling
on multithreaded processors. In Seventh International Conference on Real-Time Computing Systems and
Applications (RTCSA’00), page 155ff, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

[3] Xilinx, Inc, 2100 Logic Drive San Jose, California 95124 United States of America. OS and Libraries
Document Collection, 24 October 2005.

3A cluster means here all reachable sensor nodes



B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems 133

[4] Marco Bekooij, Orlando Moreira, Peter Poplavko, Bart Mesman, Milan Pastrnak, and Jef van Meerbergen.
Predictable embedded multiprocessor system design. Lecture Notes in Computer Science, 3199:77–91,
January 2004.

[5] Mohamed Shalan and III Vincent J. Mooney. Hardware support for real-time embedded multiprocessor
system-on-a-chip memory management. In CODES ’02: Proceedings of the tenth international symposium
on Hardware/software codesign, pages 79–84, New York, NY, USA, 2002. ACM Press.

[6] Joann M. Paul, Donald E. Thomas, and Andrew S. Cassidy. High-level modeling and simulation of single-
chip programmable heterogeneous multiprocessors. ACM Trans. Des. Autom. Electron. Syst., 10(3):431–
461, 2005.

[7] Brian C. O’Neill, P.W. Moore, and S. Clark. A Single Chip Solution for Distributed Processing Systems.
In Jan F. Broenink and Gerald H. Hilderink, editors, Communicating Process Architectures 2003, pages
83–90, September 2003.

[8] D. R. Watt and David May. A Programming Language for Hardware/Software Co-Design. In Alan G.
Chalmers, Majid Mirmehdi, and Henk Muller, editors, Communicating Process Architectures 2001, pages
167–178, 2001.

[9] David Andrews, Douglas Niehaus, Razali Jidin, Michael Finley, Wesley Peck, Michael Frisbie, Jorge Or-
tiz, Ed Komp, and Peter Ashenden. Programming models for hybrid FPGA-CPU computational compo-
nents: a missing link. IEEE Micro, 24(4):42–53, 2004.

[10] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–677, 1978.
[11] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River, New Jersey 07485

United States of America, first edition, 1997.
[12] Celoxica Ltd, 66 Milton Park Abingdon Oxfordshire OX14 4RX United Kingdom. DK3 Handel-C Lan-

guage Reference Manual, 2004.
[13] Barry M. Cook and Roger M. A. Peel. Occam on Field Programmable Gate Arrays - Steps towards the

Para-PC. In Barry M. Cook, editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques
for Concurrent Systems, pages 211–228, 1999.

[14] Adrian E. Lawrence. HCSP: Imperative State and True Concurrency. In James Pascoe, Roger Loader, and
Vaidy Sunderam, editors, Communicating Process Architectures 2002, pages 39–56, 2002.

[15] David C. Wood and Peter H. Welch. The Kent Retargettable occam Compiler. In Brian C. O’Neill, editor,
Proceedings of WoTUG-19: Parallel Processing Developments, pages 143–166, March 1996.

[16] Rick D. Beton. libcsp - a Building mechanism for CSP Communication and Synchronisation in Mul-
tithreaded C Programs. In Peter H. Welch and André W. P. Bakkers, editors, Communicating Process
Architectures 2000, pages 239–250, February 2000.

[17] James Moores. CCSP - A Portable CSP-Based Run-Time System Supporting C and occam. In Barry M.
Cook, editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent Sys-
tems, pages 147–169, March 1999.

[18] Frederick R. M. Barnes. tranx86 – An Optimising ETC to IA32 Translator. In Alan G. Chalmers, Ma-
jid Mirmehdi, and Henk Muller, editors, Communicating Process Architectures 2001, pages 265–282,
September 2001.

[19] Neil C. Brown and Peter H. Welch. An Introduction to the Kent C++CSP Library. In Jan F. Broenink
and Gerald H. Hilderink, editors, Communicating Process Architectures 2003, pages 139–156, September
2003.

[20] Jan F. Broenink, Marcel A. Groothuis, and Geert K. Liet. gCSP occam Code Generation for RMoX. In
Communicating Process Architectures 2005, pages 375–383, September 2005.

[21] Nan C. Schaller, Gerald H. Hilderink, and Peter H. Welch. Using Java for Parallel Computing - JCSP
versus CTJ. In Peter H. Welch and Andrè W. P. Bakkers, editors, Communicating Process Architectures
2000, pages 205–226, September 2000.

[22] Xilinx, Inc., 2100 Logic Drive San Jose, California 95124 United States of America. MicroBlaze Processor
Reference Guide, 21 February 2006.

[23] Denis A. Nicole, Sam Ellis, and Simon Hancock. occam for reliable embedded systems: lightweight
runtime and model checking. In Jan F. Broenink and Gerald H. Hilderink, editors, Communicating Process
Architectures 2003, pages 167–172, September 2003.

[24] P. H. Welch and P. D. Austin. JCSP home page http://www.cs.kent.ac.uk/projects/ofa/jcsp/.
[25] Jan F. Broenink, André W. P. Bakkers, and Gerald H. Hilderink. Communicating Threads for Java. In

Barry M. Cook, editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concur-
rent Systems, pages 243–262, September 1999.

[26] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads programming. O’Reilly & Asso-
ciates, first edition, 1998. ISBN: 1-56592-115-1.

[27] Xilinx, Inc., 2100 Logic Drive San Jose, California 95124 United States of America. Virtex-II Platform



134 B. Sputh, O. Faust and A. Allen / Portable CSP Based Design for Embedded Multi-Core Systems

FPGAs: Complete Data Sheet, v3.4 edition, 1 March 2005.
[28] Xilinx, Inc., 2100 Logic Drive San Jose, California 95124 United States of America. Fast Simplex Link

(FSL) Bus (v2.00a), 1 December 2005.
[29] Intel Corporation, 2200 Mission College Blvd. Santa Clara, CA 95052 USA. Pentium III Processor for

the PGA370 Socket at 500 MHz to 1.13 GHz Datasheet, 8 edition, June 2001.
[30] Oliver Faust, Bernhard H.C. Sputh, and Alastair R. Allen. A study of percolation phenomena in process

networks. In Peter Welch, Jon Kerridge, and Fred Barnes, editors, Communicating Process Architectures
2006, September 2006.

[31] Formal Systems (Europe) Ltd., 26 Temple Street, Oxford OX4 1JS England. Failures-Divergence Refine-
ment: FDR Manual, 1997.

[32] Hui Shi. Java2CSP: A System for Verifying Concurrent Java Programs. In G. Schellhorn, W. Reif, editor,
FM-TOOLS 2000, number 2000-07 in Ulmer Informatik-Berichte, pages 111 – 115, 2000.


