Communicating Process Architectures 2006 339
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)

I0S Press, 2006

(© 2006 The authors. All rights reserved.

A Circus Development and Verification
of an Internet Packet Filter

Alistair A. McCEWAN

Department of Computing, University of Surrey,
Guildford, Surrey, GU2 7XH, UK.

a.mcewan@surrey.ac.uk

Abstract. In this paper, we present the results of a significant anctlagge study
in Circus Development is top-down—from a sequential abstract fipation about
which safety properties can be verified, to a highly conatri@plementation on a
Field Programmable Gate Array. Development steps invaghydying laws ofCircus
allowing for the refinement of specifications; confidencehi torrectness of the de-
velopment is achieved through the applicability of the lapplied; proof obligations
are discharged using the model-checker for CSP, FDR, antthétoeem prover for Z,
Z/Eves. An interesting feature of this case study is thatdibsign of the implemen-
tation is guided by domain knowledge of the application—apgplication of this do-
main knowledge is supported by, rather than constraineti&galculus. The design
is not what would have been expected had the calculus bedie@pgthout this do-
main knowledge. Verification highlights a curious error mawl early versions of the
implementation that were not detected by testing.

Keywords. Circus, Development, Verification, Reconfigurable haradwétandel-C

Introduction

In this paper a case study where a security device is spedatésigned, and implemented, is
investigated. The interesting aspect of this case studhaistihe device is to be implemented
in hardware, and some of the design requirements are depenaé¢he hardware on which
it deployed. The development of the device is guided by ttws laf Circus, and proof obli-
gations for development steps centre around proving thecmess of the resulting refine-
ment on each major development phase. The case study inajuissin Internet packet filter
[3,6], a device which sits on a network, monitoring traffispiag through it, and watching
for illegal traffic on the network. Typically, these deviaemn be employed to monitor, route,
or prevent traffic on networks: in all of these cases, buigaerly in the case of prevention,
confidence in the correctness of the implementation is sacg# network security is to be
assured. The major contributions of this paper can be sursetHy the following points:

1. The presentation of a top-down design strategy from a fsetquirements and a
verification strategy for such a development using Z/EvesrDR.

2. A demonstration of the calculation of concurrency fromegugential specification
using laws ofCircuspresented in [5], including the generalised chaining dpera

3. The presentation of design patterns for refifiigusprocesses intblandel-Cmod-
els, incorporating a model of synchronous clock timing.

4. Evidence that laws d€ircus allow the exploration of refinements, guided by engi-
neering intuition where requirements may not have beera@ikipl the specification.

340 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

0 3 7 1516 31
service

ver | IHL total length
type

identifier flags offset

“m’% to | protocol| header checksum

source address

destination address

Figure 1. An IP v4 packet header

Section 1 presents the problem domain, and some relevakgitoamnd material. This is fol-
lowed by a formalisation of requirements and an abstraatiBpation in section 2. In sec-
tion 3 through to section 6, different components of the enpéntation are developed and
verified. Section 7 presents the composition of this devakaqt as a finaHandel-Cmodel.
Finally, in section 8, some conclusions are drawn.

1. Background
1.1. Packet Filters

An Internet packet filter is an application that monitorsweek traffic, and performs actions
based on criteria concerning that traffic. In this case stindypacket filter monitors traffic on
a local section of Ethernet, flagging observations of ped@ined source/destination address
pairs. An important property of a monitoring device suchhas one is it must not interfere
with traffic of no concern to it: essentially, its presenceudd be effectively unobservable
unless it is required to take action.

The packet filter assumes traffic is transmitted using therett protocol (IP), version 4
[2,9]. InIP v4, a packet consists oteader and apayload The header contains accounting
information, whilst the payload contains the informatiteelf. For instance, if a user were
accessing a web page, the header would contain informaticdmas their machine address,
the address of the web server, and the size of the payloatk thiei payload would contain
(parts of) the web page itself. The structure of an IP v4 pe&ader is given in figure 1.

Traffic is assumed to be transmitted as a byte-stream. THeappn should passively
observe this byte-stream, identify when sections cormedpo a packet header, and investi-
gate the addresses contained within. This is a non-triagK:tthe stream is passing at a rapid
rate, and the vast majority of the stream will be payload.déta device must be able to iden-
tity a packet header, including performing necessary chaokcalculations, extract source
and destination address from the header, compare it toiarcy of known addresses, and
return the result of this comparison before the full headerpassed through the stream; and
this must be done with the minimum amount of interferencééostream.

1.2. ldentifying Packets

Packet headers are identified in the stream by performingeakslim calculation, which
should equal 0 in ones complement, checking the IP versiombey which should equal
4, checking the least significant bit, which should alway9band checking the protocol
number, which in this case should be 6, representing TC®R/en IP packets are identified,
they are further examined to identify whether or not the packquires action by the filter.
In this case study the filter does not attempt to prevent gass# simply observes and
acknowledges source/destination address pairs predetstio be of interest.

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 341
1.3. Motivation and Related Works

Previous works exist describing how a filter such as this @amiplemented on a standard
FPGA in a network environment [3,6]. These works explaindhghitecture of the packet
filter and propose techniques, implementable in hardwanégwallow the identification of
packets and the lookup of addresses in real network timema tihat is no longer than it
takes for the network to communicate the traffic. Experirabmeasurements are presented
justifying the design and implementation on a small comrnydelPGA in 100M-Bit Ethernet.

Attempts to verify the correctness of the implementatioistex [12,4]. These works
use the model of the Unifying Theory to model the existinggoamn. The model uses both
Z and CSP constructs, and whilst their combination is jstiin the Unifying Theory, they
are not combined in a syntactic way to give a structured miodisle way thaCircus does.
Nevertheless, these works show that such a model is feasitledelling the implementation
if certain problems can be overcome—for instance, infiméed generation arising from
modelling clock ticks.

These works all contribute to modelling existing prograifisis paper goes further in
showing that with an understanding Bandel-Cand the FPGA, an abstract specification
can be developed into a concurrent implementation. Thetsitr@i of theCircus specification
combined with laws for calculating concurrency allow foe gtructured verified development
of the implementation.

1.4. Content Addressable Memories

A Content Addressable Memory (CAM), also known asaasociative memorys a device
in which search operations are performed based on contietr lhan on address. Retrieval
of data in a CAM is done by comparing a search term with the esastof the memory
locations. If the contents of a location match the supplegd da match is signalled. Typically,
searching in a CAM can be performed in a time independentofittmber of locations in the
memory, which is where it differs to, for instance, a hashealdarious CAM architectures,
and associated speed/area cost trade-offs have been @ddpas3].

1.5. Building a CAM on an FPGA

A CAM needs the following:

Storage for data

Circuitry to compare the search term with the terms in memory

A mechanism to deliver the results of comparisons

A mechanism to add and delete the data in memory if the diatiois not fixed

Conventional CAMs require circuitry to performaord parallel bit parallelsearch on words
in memory. While this offers the fastest lookups becauséefftlly parallel nature of the
search, it has very high hardware costs. [6] shows how thkepditter application benefits
from content based lookups, as fast, constant time lookigaseguired over an arbitrary data
setin the form of a pipeline data stream. The design of CAMpéetbis called &otated ROM
CAM[6,3], shown in figure 2. Each dictionary word stored has aoeagated comparator, and
this comparator iterates along the word, comparing thdivelgositions in the dictionary
with the search term word. Its simplicity makes it an idealNMCArchitecture to implement
on an FPGA because the reconfigurable nature of the FPGA ntieainthe ROM can be
designed to be as wide as the number of words in the CAM diatioand as deep as the
width of the words in the dictionary. This design is choserntasploits the architecture
of the FPGA, allowing a trade-off between hardware coststardspeed of lookups. The
trade-off is in the way that the words in memory are not sesdch a fully parallel manner,

342 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

Storage Locations &
&
8
g
IS,
Q.
S
o
(&S]
5
i
=
— J
| Referende | word |
N

Figure 2. A word parallel, bit serial CAM

thus reducing the amount of hardware required to searchithierthry, bringing with it an
increase in the time it takes to search the dictionary.

1.6. Implementation Architecture

The application consists of a number of discrete systemsséd are:

e A feeder process taking bytes from the stream and passingtththe packet detector
e The packet detector

e The search engine

e A process to output results

The packet detector is the process responsible for mongdhe data passed to the appli-
cation, and signalling when a subset of this data conssitatelP packet. When a packet is
detected, the search engine decides if it is a packet ofeisitéry comparing the source and
destination addresses with those stored in the CAM.

1.7. The Approach to Verification

In this paper, many laws dircusare used—for instance to manipulate actions into a form
where they may be split. Each law typically has a proof obiggaassociated with it. Dis-
charging of all these proof obligations by hand in a largeettgyment is infeasible: there
may be many of them. The technique adopted in this case study¢h more pragmatic, and
is intended to work more as a realistic industrial developtmieaws ofCircusare repeatedly
applied in order to manipulate the actions into the requweah. Instead of proving the appli-
cation of each law, the proof is to show that the final residtvalid refinement of the starting
point. This proof obligation is met by model-checking. Th8P,, used in verification for
each stage may be easily reconstructed.

In order to alleviate the problem of state space explosidfDR, some simplifications
have been employed in th&SP,, . Firstly, only three addresses exist. Two of these are in the
CAM—meaning that concurrent lookups are required. Thelthddress is not in the CAM,
meaning that there is an address not of interest. Secoidyfunctionaddr that returns
the address (pairs) in a packet reads the value of many pipeélls, but in the CSPy,
it only looks at one. Thirdly, each cell may only have a valnéhe range)..3. Fourthly,
the checksum calculation is simplified: instead of beingedymate over a number of cells,

1The pipeline is the component of the application that stde¢a read in from the network, and consists of a
series of individual cells. As an analogy, the pipeline mayhought of as an array, and a cell is analogous to
an element in the array.

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 343

it only considers the first cell in the pipeline. A data refircould be proved between

this simplification and the real data types implemented;dw@w this is not necessary as the
CSP,, verification is really concerned with the action structund aot the data values. Other

investigations may require this.

The CSP,; model grows very large when the pipeline is greater than fements. This
has an impact on the CAM lookup, which should take 16 cyclé® dictionary therefore
has been carefully chosen such that the words are all dishgble in the first few bits,
so correct results are known long before 16 comparisons heee made. In this way, the
requirement that the CAM can output a correct result befopacket has left a (shorter)
pipeline may still be met.

Some laws require manipulation of user state. This uses,statl operations on it, are
encapsulated by Z schemas. Where there are proof obligagsociated with schema and
abstract data type manipulation, these are discharged dsiEves. The source input for
Z/Eves is in-linedAIEX in this paper. In some cases, tli$EX has been manipulated into a
more readable form for presentation purposes—for instantire schemas— that requires
to be re-written back as full schemas before it can be remrkves. For Z theorems, the
tactics needed to instruct Z/Eves to complete the proofisie in the associated proofs.

The complete development, including all of steps and thé applied to proof obli-
gations at each step, is given graphically in figure 3, figund figure 9. The first dia-
gram represents the decomposition of the abstract spéidfidato the three major compo-
nents. The second diagram represents the decomposita aitained pipeline and a CAM
with sequentialised lookups. The third represents theewsfent of this model into a clocked
Handel-Cimplementation.

2. An Abstract Specification

In this section an abstract sequential specification of duket filter is presented. The packet
filter reads in a set of bytes from the network; looking to spdtiresses. At this stage of
development it is not necessary know detail about the reptason of these, so they are
specified as given sets.

Definition 1 Given sets and axiomatic definitions :

[Byte, Addr, BitPair]
RESULT ::= yes | no

dictsize : N
pipesize : N
addr : (N + Byte) + (Addr x Addr)
chk : (N - Byte) — B
last : (N - Byte) -+ Byte

dictsize > 1
pipesize = 20

O

Addresses of interest are to be stored in a dictionary, wihddytes currently being examined
will be stored in a pipeline. At this stage of developmentiinobt yet known how many
addresses will be stored in the dictionary when it is finapldyed, so this constant is left
loose. An IP header is 20 bytes long: this constant is thetheoigthe pipeline?

2The development could have started with a more abstractigtien of the problem, with a data refinement
between it and the concrete. However in this paper the carisadeveloping the concrete data model into a
concurrent implementation.

344 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

The partial functioruddr takes a sequence of bytes and returns a pair of addresséess, whi
the functionchk takes a sequence of bytes and returns a boolean result. herfwill later
be used to extract addresses from a packet, and the lat@erntfy a packet. The function
last takes a sequence of bytes and returns the element at the #edseiquence. The precise
definitions are omitted for space.

Definition 2 The abstract packet filter :

process Filter = begin
USt = [pipe : N - Byte; dict : N - (Addr x Addr) |
dom pipe = 1..pipesize A dom dict = 1..dictsize |

— UpdateAll
AUSt
b? : Byte

pipe’ = {z : 1..pipesize — 1; y : Byte |
zr—y€Epipe Nz +1€dompipeez+1— ytU{l— b7}
dict’ = dict

Run =varc:N; h: (Addr x Addr); pX e
(in?b — SKIP ||| out!last(pipe) — SKIP);
if = chk(pipe) then UpdateAll; X
else (h := addr(pipe); c¢:=1; pY o UpdateAll;
if ¢ < pipesize — 1 then (in?b —||| outllast(pipe) — SKIP); c:=c+1; Y
else (in?b — SKIP || out!last(pipe) — SKIP || match!(h € dict)) — SKIP); X))
o Run
end

O

The local state of the abstract system, given in definitioma®, two components: a pipeline
and a dictionary. As the pipeline will be built in hardwaree tstate invariant does not allow
its size to ever change. The size of the dictionary is alsstawrt. Unusually, an initialisation
operation has not been specified for these. In the case offibkne, this is because initially
the values are meaningless: when hardware is powered ugtersghave an arbitrary value.
In the case of the dictionary, this is because the speciicati purposefully being left loose
with regards to the addresses of interest. When the finaleimehtation is deployed, these
would be giver?

An operation to update the local state exists. This oparasikes the state of the pipeline,
and a new byte as input. It adds the new byte to the head of piedime, and drops the last
byte in the pipeline. The dictionary remains unchangedrdhee no outputs.

The main action of the process reads an input into the logébia b and outputs the
last element in the pipeline. Then the predicdig returnstrue or false indicating whether
or not it believes the pipeline to correspond to a packet éedfohot, the new data is stored
and shifted. If it does then the address pair in the pipeBnrec¢orded in the local variable
before the shift. Anothepipesize — 2 shift cycles are permitted before a result is output on
the channelnatch indicating whether or not the addresses were known to thedary. The
condition onpipesize ensures that the result is know to the environment before ke has
fully left the pipeline.

3Where, and when these were given would depend upon the iangleimentation environment. For instance,
for a purpose built hardware CAM, they could be included i $tate invariant; whilst for a software imple-
mentation such as a hash table, it may be done by adding a revatimm to initialise the dictionary variable.

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 345

3. Refining the Abstraction into a Pipeline and a Checksum
3.1. Process Splitting

A technique for introducing concurrency intdCarcus specification igrocess splittingdis-
cussed in [10] and built on in [5]. If the process paragraplksdisjoint—i.e, the actions of
the process each access different components of the stage-tie process may be split in
two with respect to those disjoint actions and state. Gdlggnapcesses must be manipulated
into an appropriate form.

Let pd stand for the process declaration below, whéreps and R.pps stand for the
process paragraphs of of the procesBesnd (); and F' for an arbitrary context (a function
on processes). The operatotakes a set of process paragraphand schema expressions
(), and joins the process paragraphsifofvith Z(@. For the expression to be well-formed,
the paragraphs i must not change any state ¢h This is the general form of processes to
which process splitting laws apply.

process P =
begin
State = Q.st \ R.st
Q.pps T R.st
R.pps T Q.st
e F(Q.act, R.act)

end

The state ofP is defined as the conjunction of two other state scheghas and R.st. The
actions of P are Q.pps T R.st andR.pps T ().st. They must handle the partitions of the
state separately. 1§.pps T R.st each schema expression@hpps is conjoined withe R. st.
Similar comments apply t&.pps T Q.st.

Law 1 Process splitting
pd = (processP = F(Q.act, R.act))

provided Q.pps and R.pps are disjoint sets of paragraphs segpect to R.st and Q.st. O

Two sets of process paragraphss and pps’ are said to be disjoint with respect to states
s ands’ if and only if pps = pps’ T s" andpps’ T s, and no action expression iwps
refers to components af or to paragraph names jps’; further, no action irpps’ refers to
components of or to paragraph names jps.

The development is aimed at producing an implementationgutie Rotated ROM
CAM, thus meeting area and speed requirements on the FPGRAabstract specification
must be split into three components: a pipeline, a CAM, anbescksum calculation. Each
of these can then further be refined into their respe¢faedel-Cimplementations.

Inspecting definition 2 suggests a strategy. The main actiay be split into two: one
which acts on the dictionary, one on the pipeline; the remment is that dictionary and
pipeline state must also be split. To s@itin, it must be manipulated into a suitable form.

3.2. Splitting the Main Action

The implementation is to contain a pipeline of cells, stgata from the network. As these
are to be implemented as concurrent registers, user stagéelncell must be disjoint from the
next—the requirement faProcess splittinglaw 1). Counter-intuitively, therefore, the first
development step is to separate thecksum calculatioftom the rest the application.

346 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

Key

~ Processs
User State (2) :

\
Process action|

'
|
|

CSP channel
State split

Pipeling,;

Action split/refinemen
R e

get, ready, done

Figure 3. The development and proof strategy for the first system nefames

This is non-obvious as a first step, but is vitally importdartie checksum requires to
inspect the value of a number of pipeline cells, and given tia states must be disjoint
it cannotbe implemented as a global predicate over these cells. Téwfigation must be
manipulated such that the checksum inspects a local copeqgdipeline.

The goal of this development phase is to split the comporfgheaction that maintains
the pipeline from that which calculates the checksum antbpas the lookup. This is done
by replicating the behaviour in two actions, and then remg¥he unrequired behaviours in
each. In doing so, there are several synchronous propeftibe specification that care must
be taken to preserve. Firsthy and out occur pairwise. Secondly, when a match occurs, it
must interleave the correct pairof andout events. Thirdly, the address to be looked up must
be stored and made available on the corigebut cycle. To achieve this, two new events are
introduced. The everiitock is used to de-limitn-out cycles after eacl/pdateAll operation.

On each iteration a second new eveats is introduced that communicates the values held
in the pipeline to those who may desire read access. In thisfa@lowing definitions the
actions that pass local state across are factored out iritaefiB for presentation.

Definition 3 Passing pipeline state :

Pass = in?b — SKIP ||| out!last(pipe) — SKIP ||| (||| % : dom pipe e pass.ilpipe(i) — SKIP)
Pass’ = in?b — SKIP || out!last(pipe) — SKIP || (|| 7 : dom pipe e pass.i?copy(i) — SKIP)
Match = Pass || match!(h € dict) — SKIP

Match’ = Pass' || match!(h € dict) — SKIP

Definition 4 Introducing internal eventslock and pass, and a new concurrent action :

Runyg =varc:N; h: (Addr x Addr); pX e
Pass; if = chk(pipe) then UpdateAll; block — X
else h := addr(pipe); c:=1; uY @
UpdateAll; block — SKIP;
if ¢ < pipesize — 1 thenPass; ¢ :=c+1; block — Y
else Match; block — X

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 347

Runp = var copy : N - Byte | dom copy = 1..pipesize; ¢ : N; h: (Addr x Addr); pX e
Pass’; if = chk(pipe) then block — X
else h := addr(copy); c:=1; uY @
block — SKIP;
if ¢ < pipesize — 1then Pass’; ¢ := ¢+ 1; block — Y
else Match'; block — X

Run = (Runy |[{in, out, match, pass, block[}]| Runp)
O

The checksum behaviour must also be factored out. This slieg on the property that when
det(P), P = P || P. Run is deterministic, so may be placed in parallel with a second
copy of itself. However, although the two actions synchsendn their events—preserving
the deterministic property—the operation schemas and statable assignments do not. If
this were disregarded the action would, for instance, exeCudate All twice every time it
were intended to execute once. The second copy of this atievefore has its own copies of
local variables: andh; and does not write to global state. In fact, this developrstep goes
one stage further: it introduces a new variablgy to the new action that has the same type
as the pipeline, and eaglass cycle updates the local copy. This step further relies orslaw
for local variable introduction, and for introducing a diten in thepass communication.
The replicated action is given in definition 4.

Definition 5 Removing replicated behaviours in the pipeline :
Runai = p X e Pass; UpdateAll; block — X
O

The next step is to separate concerns between the two aetibissrelies on the properties of
synchronisation and distributed co-termination of theut-pass sequenceRun is to form
the pipeline, therefor&ung should not engage im or out. Given thathlock was introduced
to de-limit the in-out sequences, thein and out can safely be dropped froRung and
removed from the synchronisation. In fact, the same argtiraso holds formatch: the
pipeline should not be aware of matches, therefore it candygpeéd fromRun 4. This allows
a further simplification: the variable no longer plays a role iRun4, S0 its scope may be
restricted toRung. Moreover, the role played by was to implement a loop that caused
a number of shifts before match—this is no longer necessary itun,. Each of the two
components may be individually labelled. This is given ifiM&on 5 and definition 6, where
Runy, reads data in and out whilst passing it across toRhes;, which records this data
and indicates the result of a lookup when appropriate.

Definition 6 Removing replicated behaviours in the CAM and checksum :

Runpy = var copy : N - Byte | dom copy = 1..pipesize; ¢ : N; h: (Addr x Addr); pX e
(Il % : dom copy e pass.i?copy(i) — SKIP);
if = chk(copy) then block — X
elsec:=1; h:= addr(copy); pY e
block — SKIP;
if ¢ < # dom copy — 1 then
(|l 7 : dom copy e pass.i?x — SKIP); ¢ := c+1; block — Y
else
(|l 7 : dom copy e pass.i?x — SKIP || match!(h € dict) — SKIP);
block — X

O

348 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

Run,, and Rung, can be seen to be disjoint with respect to user state. There moof
obligation associated with this— but if it were not true,thar development would fail.
However there is an obligation to show that the new actiong theeen correctly derived—
theorem 1, which states that the parallel combination oh#ve actions is a refinement of the
specification. This may be proved by asserting the equivaddimement relation using FDR.

Theorem 1 The calculated actions are a refinement
Run T4 (Runay |[{{pass, block[} || Rungpy) \ {pass, block|}

Proof

assert
Run Crp (Runay |[{pass, block}]| Rungy) \ {pass, block[} v

3.3. Partitioning the Global User State

Although the actions have now been split, they both stidtrefice the single global user state.
Run 4, accesses the pipeline state, whilenz; accesses the dictionary. In order to show that
this process meets the form applicable to process splittivege states, and the operations
upon them, must be disjoint. In this section, the disjoiatest are calculated and verified
using Z/Eves. By relying on the properties of schema conjangcthe original user state can
be splitin two.

Definition 7 Partitioned user state :

PipeSt = [pipe : N -+ Byte | dom pipe = 1..pipesize |
DictSt = | dict : N + (Addr x Addr) | dom dict = 1..dictsize |

O
Theorem 2 The partitioned states are correct Ust < (PipeSt A DictSt)
Proof prove by reduce; O
The update operation only acts on the pipeline, and leaeegdithionary unchanged.
Definition 8 Partitioning the Update operation :
UpdateAll' =
[APipeSt; b?: byte |
pipe’ = {z : 1..# dom pipe; y : Byte |
z—y Epipe Nz +1€dompipe ez +1— ytU{l— b7}]
O

Theorem 3 The partitioned Update is correct : UpdateAll < (UpdateAll" A ZDictSt)

Proof prove by reduce; O

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 349
3.4. A First Application of Process Splitting

The actions and the state are now of the correct fornfPfocess splittindo be applied. The

abstract pipeline is a very simple process. It contains atradt data type that holds all of
the data present in the pipeline. On each iteration, it readsnew value, outputs the oldest
value, informs the environment of the current state of tipeloe, and then shifts all the data.

Definition 9 The abstract pipeline process :

process Pipelines; = begin
PipeSt = [pipe : N - Byte | dom pipe = 1..pipesize]
UpdateAll' = definition 8
Runay = definition 5

® Runaq

end

O

The abstract checksum and lookup process of definition 1@twthe dictionary. The main
action of this process performs the checksum calculatiah@tocal copy of the state that is
passed to it on each pipeline shift, and outputs the restitisoiookup accordingly.

Definition 10 The abstract CAM/checksum process :

process CamChecksump, = begin
DictSt = [dict : N - (Addr x Addr)]
Rungi = definition 6

e Runpgi

end

O

The complete packet filter is the pipeline in parallel wite thecksum synchronising on the
channel used to pass pipeline state across. Both also gymnshmon the channélock, thus
maintaining the synchronous nature of the behaviour betileztwo components.

Definition 11 The split packet filter :
Filter’ = (CamChecksump; |[{pass, block[}]| Pipelinea1) \ {pass, block[}

4. Implementing the Pipeline as Concurrent Cells

The next stage of development is to implement the pipelinegss as an array of concurrent
cells, using the generalised chaining operator of [5].

4.1. Implementing the Update Operation

[10] shows a Z-style promotion distributes throug@iecusprocess. By factoring out a pro-
motion from the abstract specification of the pipeline, gl&rcell is exposed. However, the
UpdateAll' operation describes a shift of the entire pipeline: the fask, therefore, is to
rewrite this in terms of a single element. The schelipdate defines an update on a single
element of the pipeline, identified by the input variahle

Definition 12 A single update :

Update = | APipeSt; b? : Byte; i? : N | pipe’ = pipe ® {i? — b7}]

350 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

Checksum Cam
DictSt ¢

Pipeline,,

Z/Eves ‘
Promotion | Action chaining FDR
‘ Introduce sequential

concurrent lookup

ChainingV ‘

Figure 4. The development and proof strategy for the second systeneneéints

For this operation to implement a complete pipeline shiftnust act upon all elements of
the pipeline. This may be achieved by replicating and iatesing pipeline copies of the
operation. It is necessary to store the initial state of ipelme in a local variable to ensure
that each interleavelpdate acts on the correct initial value of its predecessor element

Definition 13 Interleaved updates :

1Update =
varcopy : N -» Byte | copy = pipe o ||| i : 1..pipesize ® (i £ 1 A b = copy(i — 1); Update)

O

Now, the local state may be described in terms of a promotianeeal data type with a
schema describing its relation to the global state. A lotahent is simply aByte, while
the global state of the system is a function from natural nensthe index of each element
in the pipeline) to the elements. The update operation adsag individual element to the
value of the input variable.

Definition 14 Local and global views :

PipeCell = [elem : Byte|]
GlobalPipe = [pipe : N + PipeCell |
UpdateCell = [APipeCell; b? : Byte | elem’ = b?]

O

The global view of the system, in terms of the local elemenggien by the schem@omote.

Definition 15 The promotion schema :

__ Promote
A GlobalPipe
A PipeCell
i?7:N

1?7 € dom pipe
0 PipeCell = pipe(i?)
pipe’ = pipe & {i? — O PipeCell}

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 351

For this promotion to be factored out of the system, it is seagy that it ifree That is to say

there is no global constraint that cannot be expressedyotfahis were not the case, then
each local element of state would need to be aware of otharétements of state: something
that is not permitted if processes are to be concurrentyéimed captures this. Theorem 5
states that the promoted update operation is equivalehetsihgle update operation above.

Theorem 4 The promotion is free :
3 PipeCell’ @ 3 GlobalPipe’ ® Promote = ¥V PipeCell’ @ 3 GlobalPipe’ ® Promote

Proof prove by reduce; prove

Theorem 5 Promoted update is correct :
Single Update < 3 A PipeCell o PipeCell N Promote

Proof prove by reducef]

4.2. A Local Process Implementing a Cell

A single pipeline cell is a process that encapsulates thad ttata, with an unpromoted input
and output action.

process Cell = begin
PipeCell = [elem : Byte]
UpdateCell = [APipeCell; b? : Byte | elem’ = b?]
Runc=puX e
(in?b — SKIP ||| out!elem — SKIP || pass.ilelem — SKIP); UpdateCell; block — X

e Rung
end

Now it seems possible to concurrently compose a humber gkthells to form a pipeline
using a law such as process indexing of [10]. However, thislvei insufficient—this law
requires that there is no interference between local psesed his is precisely not the case
here, where each process requires the local value of itsmeipredecessor in the pipeline—
this was the role played by the local variabley in the definition of Update earlier in this
section. Furthermore, only the first inputand the last inpubut are externally visible.

4.3. Composing Local Processes

This is exactly the scenario that is achieved by generatibathing. The promotion of each
cell is the function from local to global state, and the statrd local operations are shown
to observe the requirement that they are disjoint as the gtiomis free. Promoting (and
renaming) then, lastout, tick andtock events gives the global action with all the internal
communications hidden. The index of each progasgaken from the promotion schema.
The operator composespesize copies of the proces€ell concurrently. A parameter
which is given to the operator is a pair of events that are &drchto synchronise—events in
numerically adjacent processes, these pairs of eventayealy renamed and placed in the
synchronisation sets of adjacent processes accordinigly.synchronisation can be used to
communicate the initial value of one cell to its neighbograell. Internal events are hidden.
Theripple effectof nearest neighbour communication ensures that the igmat®utputs are
ordered correctly. This construction is exampled for a lngeof three cells in figure 5.

352 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

'

Celll Cell Cell

in finout: my 1in outt my in outt | gy

l{ltlcktockl} """"""""" '

Figure 5. The proces$in « out, {tick, tock[}] 3 e Cell

Definition 16 The pipeline implementation :

Pipeline = [in < out, {block[}|pipesize o Cell

Theorem 6 The implementation of the pipeline is correct
Pipelinesy CTp Pipeline

Proof

assert
Pipelineay Cpp Pipeline v

4.4. Modelling the Local Processes as Handel-C Variables

The description of a single cell is very closeHandel-C The remaining task is to include the
model of the clock. Assignments take place on a rising claigjeethis can be modelled using
an eventick. All assignments in all processes must happen before a chardk completes,

and this can be modelled using an eviat:. In adapting the description of a cell to behave as

aHandel-Cprocess this clock model must be included. It is trivial irsttase: each process
performs a single assignment after its communicationsefbee each iteration iRunc, is

a single clock cycle. The evehiock ensured the synchronous behaviour of pipeline cells on

each iteration: this function is now achieved by the clockp®ck may be dropped.This
description of a clocked cell is now only a syntactic stepyatvam the implementation of
each cell as a simple variable.

Definition 17 A Handel-C model of Cell implementation :

process ClockedCell = begin
PipeCell = [elem : Byte]
UpdateCell = [APipeCell; b? : Byte | elem’ = b7

Runci = puX e
(in?b — SKIP ||| out!elem — SKIP ||| pass.ilelem — SKIP);
tick — UpdateCell; tock — X
o Runcy
end

O

4Alternatively, this step could be regarded as renaming: to tock and including theick event to globally
synchronise and separate communications from state \gdate

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 353

oldl old0

> checksum -

> calculation

Figure 6. The checksum calculation

Adapting the chained processes is trivial: all instancemeslthe same clock, and this is
achieved by placing the events in the global (shared) sypmibeition set.

Definition 18 The clocked Handel-C pipeline implementation :
ClockedPipeline = [in < out, {tick, tock[}] pipesize o ClockedCell
O

In the above definition, the clock may be hidden if no furthergesses are to be introduced
to theHandel-Cimplementation, or if they use a separate clock; howeverlgft visible in
this implementation as the CAM will share the same globaticl@heorem 6 states that the
clocked implementation is correct.

Theorem 7 The implementation of the clocked pipeline is correct
Pipeline \ {block} Cp ClockedPipeline \ {|tick, tock|}

Proof

assert
Pipeline \ {blocky Cpp ClockedPipeline \ {tick, tock]} v

O

5. Separating the Checksum and the CAM

The checksum is a ones complement sum of 16 bit segments pathket header, and is a
standard checksum used in IP packet identification. If trecksum calculation returns the
same result as that contained within the header, and s@tbealsanity checks also hold then
the state of the pipeline represents an IP packet headesolinee and destination addresses
in the pipeline are stored for subsequent inspection. Tké stage of development is to
separate out the checksum from the process that perforesection on the addresses.

Definition 19 Adding the partner action :

Runps = var h : (Addr x Addr)... e
nX e if ¢ < pipesize —2then...; X
else (... || ready — match!(h € dict) — done — SKIP); X
[{lready, match, donell]|
nY e ready — matchl(h € dict) — done — Y

354 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

The first steps in separating the checksum and the CAM foll@mwalar pattern to before.
A match is prefixed withready and followed withdone. A new second action agrees to this
ready-match-done cycle. As beforematch may now be dropped from the original. This is
shown in definition 19; some parts of the definition not refd\a this design step have been
abbreviated.

If Rungs isto be split, it must not share the global variabl@ he main tool for removing
such dependencies is the introduction of a new event to conoaiie stateget is introduced
for this purpose. Now restricting the scope/ofand of copy and ¢ to the first action) is
trivial, and Rung, may be rewritten as two separate actiéghs:, and Rung.

Definition 20 The checksum action :

Runp = var copy : N + Byte | dom copy = 1..pipesize; ¢ : N; p X o
(Il @ : dom copy e pass.i?copy(i) — SKIP);
if = chk(copy) then block — Check
else ¢ := 1; getladdr(copy) — SKIP e 'Y e block — SKIP;
if ¢ < dom copy — 1then
(Il ¢ : dom copy e pass.i?copy(i) — SKIP); block - c¢=c+1; YV
else ready — (||| ¢ : dom copy e pass.i?copy(i) — SKIP); done — block — X

O
Definition 21 The CAM action :

Rung = u X e get?term — ready — match!(term € dict) — done — X

5.1. Splitting the Checksum and CAM

The two actions are now of a form that allows the process toplie $he correctness of
this development step can be verified by proving the refineémedation holds between the
main action of the abstract CAM and checksum process of tiefinl0 and the newly split
actions.

Theorem 8 The split actions are a refinement

Runpy C4 (Runp |[{get, ready, donel} || Rung) \ {get, ready, donel}

Proof

assert
Runpy Cpp (Runp |[{get, ready, donel} || Rung) \ {get, ready, donel} v

Definition 22 The abstract CAM process :

process Camg = begin
DictSt = [dict : N - (Addr x Addr) | dom dict = 1..dictsize]
Rung = definition 21

e Run

end

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 355

In the checksum, local variables may be encapsulated asénestate of the process.

Definition 23 The checksum implementation :

process Checker = begin
USt = [copy : N - Byte; ¢ : N | dom copy = 1..pipesize]
Runp = definition 20

e Runp

end

O

The process monitoring the checksum calculation is nowyré@dmplementation, and may
have the program clock introduced. The interleayegs events are actually emulating read
access to the pipeline process, so they must appear befarg—athere is no value to be
latched in. Other assignments, such as to the local variablest be latched between the
tick and thetock. The clock now additionally performs the role of making stin& eachpass
cycle is synchronous with respect to pipeline shifts (astbek is shared with the pipeline),
so block may be dropped.

Another less obvious role of the clock comes from the fact tha eventseady and
done occur exactly# dom copy — 2 clock cycles after get is issued (counting starts at 1).
These events were introduced to ensure that the CAM woulglibthe result at the correct
time. As the CAM is to be implemented on the same FPGA, withstirae global clock, the
assumption that thevatch output will happen# dom copy — 2 clock cycles after it receives
a get can be made. As long as the development of the CAM respestasbumptioneady
and done no longer play a significant role in the behaviour of the clseck and the CAM,
and may be dropped. This step has not been made as a resulrettaagplication of a law
or of laws: more is said about this in section 6.

Definition 24 The clocked checksum action :

Runp1 =puX e
(Il % : dom copy e pass.i?copy(i) — SKIP);
if chk(copy) then tick — tock — Check
else get!addr(copy) — tick — ¢ :=1; tock — SKIP e 1Y
if ¢ < #dom copy — 1 then
(Il % : dom copy e pass.i?copy(i) — SKIP); tick — ¢ = ¢+ 1; tock — Y
else (||| ¢ : dom copy e pass.i?copy(i) — SKIP); tick — tock — X

O
Definition 25 A Handel-C model of the checksum implementation :
process ClockedChecker = begin
USt = [copy : N - Byte; ¢ : N | dom copy = 1..pipesize]
Runpi = definition 24
e Runpi
end
O

Theorem 9 states that the clocked implementation is correct

Theorem 9 The clocked checksum is correct

Checker \ {ready, done, block[} Cp ClockedChecker \ {tick, tockl}

356 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

Proof

assert
Checker \ {ready, done, block[} Crp ClockedChecker \ {tick, tock[} v/

6. Implementing the Content Addressable Memory

The size of an IP packet header, combined with the clock aggjairements of the compo-
nents implemented so far is a useful piece of informationgsighing the CAM implemen-
tation. It allows splitting combinatorial logic over mute clock cycles (thereby decreasing
wall clock time requirements) and a more serial impleméonaif a CAM, which may re-use
comparand registers and reduce area requirements.

The Rotated ROMlesign of [6,3] consists of ROMs of depth 16 bits, and widthtg,b
giving 32 bit words: each one of which corresponds to an asdoé interest. The search
circuitry compares 2 bits at a time, meaning that 16 compassire required to compare the
search term with a word in the dictionary. The circuitry gasia value to a flag indicating
whether a word matches the search term or not.

Figure 8 shows the area costs of this design on a sample FR@&lAha clock speeds
attainable for increasing CAM sizes in figure 7: these expental results confirm that a
Rotated ROM CAM of the sizes under consideration will pertiné FPGA to be clocked at
a sufficiently fast speed to allow the rest of the applicatomonitor a network in real time.

60

T T
unconstrained —+—
speed optimised ---x---

50 Fi X i
T S i

30 E

Circuit speed in MHz

0 I I

L L
0 500 1000 1500 2000
Number of words in dictionary

Figure 7. Clock speeds of the Rotated ROM CAM on a Xilinx 40150 FPGA

There are 20 clock cycles available after a packet arrivdspipeline before the match
result must be output. This can be exploited: the compairstire dictionary can be designed
to use many—even all—of these clock cycles, thus reducimgb@matorial logic costs and
expensive comparators—and the Rotated ROM CAM is an aathre that exploits this. In
this section, the abstract CAM of definition 22 is refined itiitie implementation.

6.1. Making the Dictionary Tight

Initially, the definition of the dictionary state was lefdge. This section begins by making
it tight—given in the replacement definition éfictSt below, with values taken from table

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 357

5000

4500 B

4000 B

3500 B

3000 B

2500 B

Number of CLBs

2000 B

1500 | o

1000 B

500 B

L L
0 500 1000 1500 2000
Number of words in dictionary

Figure 8. Area costs of the Rotated ROM CAM on a Xilinx 40150 FPGA

Direction IP address 2x16 bitwise representation

Sourceg 163.1.27.192 10,10,00,11,00,00,00,01,00,01,10,100100,00
Destinatiop 163.1.27.18 10,10,00,11,00,00,00,01,00,01,10,111000010
Source 163.1.27.152 10,10,00,11,00,00,00,01,00,01,10,10111),00

Destination 163.1.27.162 10,10,00,11,00,00,00,01,00,01,10,1101@),10

Table 1. Example address pairs

1. The state in the schemaict is the source/destination addresses givenxas62Bit Pair
representations. As the dictionary is being implementddhndware, the values are invariant
(statically determined)—there is no need for an initidl@aoperation, as they never change.
User state now contains a dictionary consisting of four cetecaddresses, implemented
as fourBitPair sequences of length 8n implementing the lookup it is tempting to specify
this by defining simple equality tests over elements; howetie design goal is directed by
area and speed concerns—optimally, a single, comparateatd word in the dictionary.

Definition 26 The state of the dictionary :

__ DictSt

dict : N + seq BitPair

dom dict = 1.4

dict.1 = {(1,0),(1,0), (0,0),(1,1),(0,0),(0,0), (0,0), (0, 1),
(0,0),(0,1),(1,0),(1,1),(1,1),(0,0), (0,0), (0,0))

dict.2 = ((1,0), (1,0), (0,0), (1,1),(0,0), (0,0), (0,0), (0, 1),
(0’0)7(0’1)7(1’0)7(1’1)7(0’0)7(0’1)7(0’0)7(1’0)>

dict.3 = ((1,0), (1,0), (0,0), (1,1),(0,0), (0,0), (0,0), (0, 1),
(0’0)7(0’1)7(1’0)7(1’1)7(1’0)7(0’1)7(1’0)7(0’0)>

dict.4 = ((1,0), (1,0), (0,0), (1,1),(0,0), (0,0), (0,0), (0, 1),
(0,0),(0,1),(1,0), (1,1),(1,0), (1,0), (0,0), (1,0))

O

In the Rotated ROM CAM, local variables are used to maintaeresults of a lookup and
index iterations. The definition of the main CAM action belmflects this. The local array

5The replacement definition d¥itPair is omitted as it is clear from its usage here.

358 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

result stores the boolean result of comparing each dictionaryemith the search term.
The match line outputs a result indicating whether or not any of the parsons returned
true—this is implemented as the disjunction over the elémanthe result array. Rather
than a simple comparison over each word, it is implementethateration over comparing
each BitPair with the relevant corresponding place in the search ternaning that there
are 16 comparisons performed for each word, withithecomparison for each word being
performed in parallel. When a comparison fails, the fact that dictionary word does not
match the search term is recorded. Implementation of a 2dvitparator is cheap: in this
way, the area costs have been reduced, the combinatoriall@s been drastically reduced.
The eventseady anddone ensure that the implementation still meets the constréuatsthe
lookup should be complete before the word has left the pipeli

Definition 27 Sequencing the comparators :

Rungi = var result : domdict — B; u X o
get?term — ¢ := 0; ranresult := true; u Y o
if ¢ = 16 then ready — match!(true € ranresult) — done — X
elseV i : dom result o result(i) = result(i) A dict.i(c) = head(term);
term := tail(term); c:=c+1; Y

O

The universal quantifier in definition 27 may be expanded-ditieg) in the conjunction of
the set of assignments indexed hyAs these assignments are all disjoint with respect to the
state that they evaluate and assign to they may be implechenéa arbitrary order.

Definition 28 Concurrent words :

Rungo = result : dom dict — B; X o
get?term — c :=0; ranresult := true; pY o
if ¢ = 16 then ready — match!(true € ranresult) — done — X
else||| ¢ : dom result o result(i) = result(i) A dict.i(c) = head(term);
term := tail(term); c:=c+1; YV

O

Unlike the other components in this case study, concurreniogt introduced using process
splitting—it has been introduced with concurrent assigm1& user state. To attempt pro-
cess splitting is not useful: although each entry in theaetry and the comparisons are dis-
joint, the result array is not. To split these processes—ta@fore the result array—and col-
late results using further communications would mean tiaeethe clock cycle constraint
is not met, or that the implementation is less serial.

Definition 29 The CAM implementation :

process Cam = begin
DictSt = definition 26
Rungs = definition 28

o Rungs

end

O

As the implementation is to be iHandel-Con the same FPGA as the other components the
global clock may now be introduced, in definition 30. The falsick cycle reads in and as-
signs the value of the search term. The last clock cycle fgrgaren lookup is occupied by
outputting the result. In between, there are 16 clock cyaleslable for the lookup—this is
the assumption that was made in the final development stépdatocked checksum process

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 359

in definition 25 that allowed the events:dy anddone to be dropped. The lookup itself actu-
ally consists of a sequence of assignments to the resut arnere each element in the array
is assigned concurrently. As an assignmeritdandel-Cis latched in during a clock cycle,
each assignment in the sequence is a single clock cycle efs #ie 16 assignments, one for
eachBitPair in an address, there are 16 clock cycles. Although this stagevelopment
can be seen to follow from the properties of hiding, it hashesn calculated from a direct
application of a law as the hiding does not cleanly distelihtough concurrency.

It is important that the clock does not block when the prodgssaiting for input—a
communication oryet will not happen on every clock cycle. If the extra choice eadming
tick andtock were not included here, this would be a modelling error thatat apparent
in the implementation—in reality, Blandel-Cprocess cannot block the clock from ticking
whilst waiting for a communication. However, this modefjiarror would prevent accurate
verification of the implementation.

Definition 30 The clocked CAM action :

Rungs = result : dom dict — B; uX e
tick — tock — X
O
get?term — tick — ¢ := 0; ran result := true; tock — SKIP; Y e
if ¢ = 16 then match!(true € ran result) — tick — tock — X
else || i : dom result o |[{tick, tock]}]| result(i) = result(i) A dict.i(c) = head(term);
tick — term := tail(term); ¢ := ¢+ 1; tock — Y

O
Definition 31 The clocked CAM :
process ClockedCam = begin
DictSt = definition 26
Rungs = definition 30
® Rungs
end
O

Verification of the clocked implementation proves to beriesting. If theCSP,, assertion
corresponding to theorem 10 is checked, it is found to faithis assertion, as with all the
other checks of clocked processes, the clock must be hiddendure the alphabets of the
processes match. Consequently a divergence existéoitked Cam: where it is waiting for
an input it may perform an infinite series of clock ticks angt&inever occurs.

Verification therefore needs more care: it must ignore thisrgence. A simplistic way
of achieving this would be to disallow this possibility arelcheck; however this may not
always be possible for more general examples. Insteadettimigue is to show that the
divergence did not result from threal activities of the process: it is shown to be divergence
free when all events other thaick and tock are hidden. The divergence, therefore, must
have come from the clock. If the process can then be shown éofditures refinement then
the implementation is correct.

Theorem 10 The CAM implementation is valid
Cam \ {ready, donel} Cp ClockedCam \ {tick, tock|}

Definition 32 The equivalent’SP,, assertions :

assert
ClockedCam \ {get, matchl; : divergence free v
Cam \ {ready, donel}} Crp ClockedCam \ {tick, tock[} v

360 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

Checksum Cam
~ DictSt

Pipeline
’ Chaining ;

pass, block

| FDR ' FDR
' Clock introduction 1 Clock introducti
1 Clock divergence checking

C;IockedCam

Clocked
1 Checksum

i(Chaining

|
|
|
L.

pass, tick,tock

Figure 9. The development and proof strategy for the final clockedesysefinements

7. The Final Implementation

The final implementation is the parallel combination of eaftine processes developed. This
is given in definition 33.

Definition 33 The final clocked implementation :

process ClockedFilter =
((ClockedPipeline |[{Jtick, tock, pass[}]| ClockedChecker) \ {pass|}
[{lget, done, tick, tock]}]|
ClockedCam) \ {get, done, tick, tock|[}

Theorem 11 The Handel-C implementation is correct

Filter Cp ClockedFilter \ {tick, tock[}

Proof From the correctness of each stage of development and mocibgmf refinementd

From the development strategy of figure 3, figure 4, figure 8, @onotonicity of refine-
ment, confidence in the correctness of the implementati@sssired. Generally industrial
developments are too large to model-check, and monotgmiuit be relied upon.

7.1. A Final Twist

In definition 34, the actiorBadRunp is presented. This action is included because it high-
lights an interesting error that may be made in the assummtio

Definition 34 A bad checksum process :

BadRunp = pu X e
(Il @ : dom copy e pass.i?copy(i) — SKIP);
if chk(copy) then getladdr(copy) — tick — tock — X else tick — tock — X

O

In the correct checksum process when the calculation retwne the pipeline is not tested
again until that packet has left. The above definition evakithe checksum on each iteration.

A.A. McEwan / A Circus Development and Verification of anrireePacket Filter 361

When it returns true, it passes the address to the CAM. If tA®I @S in the middle of a
lookup it refuses to accept an address. Therefore, if thaitlefi above is used the system
will deadlock if the checksum returns true before the CAM fiaished the last instructed
lookup. This version is not a valid refinement: checking theket filter using this process
results in a counter-example evidencing the deadlock. Tioe was present in early versions
of the application. In hardware, leaving a test conditiochsas this on@ermanently running
often appears to be a natural, and inconsequential, assumpte code was extensively
tested in simulation and on real networks and the deadlosknetdiscovered.

The assumption about the checksum is that it will not proguizdse positive: if it does,
it may result inapparentheaders overlapping. In reality, the chance of it doing sxiemely
remote: otherwise network routers would encounter the Iprobregularly. In fact routers
typically protect against this problem by disregardingueg@ackets. This is why testing did
not highlight the issue, as the sample data set had beereddrifia router.

Not only does this highlight the value of the formal devel@mnin Circus, but provides
an interesting starting point for requirements checking avestigating the real security
offered by the device. While real networks may not presemptbssibility for false positives,
formal development has shown that the device does not imitihey did actually happen—
and this may form the starting point for a malicious attackledevice.

8. Summary

The case study began with a high level abstract specificaticm network packet filter.

Through a series of design steps—each one of which was glngetbmain knowledge

rather tharCircus—an implementation that corresponds tblandel-Cprogram was calcu-

lated. The correctness of each major design step was veu$ied) Z/Eves and FDR. By
manipulating the processes into forms applicable to theqe® splitting law, calculating
concurrency in the specification proved to be relativelgigtitforward; however some of
the manipulations—specifically those where assumptioms weade about a global clock—
relied heavily in places on post-mortem verification. Thredure, and rigour, of the devel-
opment is the most advanced recorded in the the literatutddodel-CandCircus

The intention was to capture the level of rigour and appildgiof domain expertise
that may be adhered to in an industrial development, and #haithis level of rigour is both
feasible and sufficient for large projects. This was achdeirefact, an erroneous assumption
in the original design was uncovered that testing alone loaéxposed.

Due to its simplicity, the implementation has a natural magpntoHandel-C although
as a formal semantics fddandel-Chas not yet been approvedhis final step is not as
formal as that of [7] or [1]. Due to the nature of refinemen€Cincus, some of the traditional
problems irHandel-Cwere naturally avoided: for instance, it should not norgnlaél possible
to derive a program where two processes attempt to assignddable concurrently. This
leads to an interesting artifact in the model: althoughHbedel-Ccode may share access to
variables—in particular read access—@iecusmodel may not. An idiom involving regular
updates of local state was appealed to in order to emulateré¢lad access. However, in
the final code, there is no need to copy the state of the pgelithe checksum process—
it is Circusthat requires this. This is clearly an important considerafor hardware area
constraints; and is a problem in need of further attention.

Decisions about the design of the device, and where and hasauceency was intro-
duced and exploited was governed by domain knowledge andiealgvidence, rather than
solely by laws ofCircus The necessity of supporting application of domain knogéed im-

6An item of work we are currently engaged in is a timed model 8PGhat matches the timing semantics of
Handel-C

362 A.A. McEwan / A Circus Development and Verification of anrireePacket Filter

portant. Significant gains in the end product were made lgetarg design steps at features
of Handel-Cand the FPGA. A different correct implementation could hiagen developed
without this knowledge; but it may not have met the speed aga @equirements which only
become apparent after hardware has been built and testdyg.eXperiences, gained from
empirical experiments, guided these judgements. A methadctuding wall clock speed,
and hardware area, parameters explicitly into the desigogss may well make for a de-
velopment method which becomes very cumbersome, and tefram the elegance of the
natural refinement laws. More work is needed to fully consitis.

The most significant achievement of this case study is tltptirements have been met
by drawing on expert domain knowledge; and that the coresstrof applying this knowl-
edge has been verified at every stage by drawing on formahipabs. This is a significant
demonstration in the applicability of formal techniquesittypical engineering process.

The application was compiled and run on a Xilinx 40150 selfBSA which clocked
at 20MHz; operating on traffic running at 160M-Bit/s—suféictly fast to operate as a real
time device on standard fast Ethernet. Sample dictionafisgveral hundred IP addresses
were used on genuine network traffic. The application fourdlidentified the same packets
in the stream as standard network monitoring utilities saggnoop

Acknowledgements

The author would like to thank Steve Schneider, Jim WoodcAok Cavalcanti, and Wilson
Ifill for their technical guidance, assistance and suggastwith this work.

References

[1] A. L. C. Cavalcanti.A Refinement Calculus for. DPhil thesis, The University of Oxford, 1997.

[2] S. Kent and R. Atkinson. IP Authentication Header. TachhReport RFC-2401, The Internet Society,
November 1998.

[3] Alistair McEwan, Jonathan Saul, and Andrew Bailey. Alinigpeed reconfigurable firewall based on pa-
rameterizable FPGA based Content Addressable MemorigBrokeedings of the International Confer-
ence on Parallel and Distributed Processing TechniquesApplications volume 2, pages 1138-1144.
CSREA Press, June 1999.

[4] Alistair A. McEwan. The design and verification bfandel-Cprograms. Technical report, Oxford Uni-
versity Computing Laboratory, 2001. Invited talk, DARPAX0

[5] Alistair A. McEwan. Concurrent program developmenDPhil thesis, The University of Oxford, To
appear.

[6] Alistair A. McEwan and Jonathan Saul. A high speed regpnfible firewall based on parameterizable
fpga-based content addressable memofiég. Journal of Supercomputing9(1):93-105, May 2001.

[7] Carroll Morgan. Programming from Specificationsgnternational Series in Computer Science. Prentice-
Hall, 1990.

[8] Behrooz Parhami. Architectural tradeoffs in the desijWLSI-based associative memoriekournal of
Microprocessing and Microprogramming8:27—41, 1993.

[9] J. Postel. Internet Protocol. Technical Report RFC; 791 Internet Society, September 1981.

[10] Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. rieefient inCircus In Lars-Henrick Eriksson
and Peter Alexander Lindsay, editoRRVIE 2002: Formal Methods—Getting IT Righgtages 451-470.
Springer-Verlag, 2002.

[11] Kenneth J. Schultz and P. Glenn Gulak. Architecturesdi@e capacity CAMSINTEGRATION, the VLSI
Journal 18:151-171, 1995.

[12] J. C. P Woodcock and Alistair A. McEwan. An overview oktkerification of aHandel-Cprogram.

In Proceedings of the International Conference on Paralled @istributed Processing Techniques and
Applications CSREA Press, 2000.

