
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

339

A Circus Development and Verification
of an Internet Packet Filter

Alistair A. McEWAN

Department of Computing, University of Surrey,
Guildford, Surrey, GU2 7XH, UK.

a.mcewan@surrey.ac.uk

Abstract. In this paper, we present the results of a significant and large case study
in Circus. Development is top-down—from a sequential abstract specification about
which safety properties can be verified, to a highly concurrent implementation on a
Field Programmable Gate Array. Development steps involve applying laws ofCircus
allowing for the refinement of specifications; confidence in the correctness of the de-
velopment is achieved through the applicability of the lawsapplied; proof obligations
are discharged using the model-checker for CSP, FDR, and thetheorem prover for Z,
Z/Eves. An interesting feature of this case study is that thedesign of the implemen-
tation is guided by domain knowledge of the application—theapplication of this do-
main knowledge is supported by, rather than constrained by the calculus. The design
is not what would have been expected had the calculus been applied without this do-
main knowledge. Verification highlights a curious error made in early versions of the
implementation that were not detected by testing.

Keywords. Circus, Development, Verification, Reconfigurable hardware, Handel-C

Introduction

In this paper a case study where a security device is specified, designed, and implemented, is
investigated. The interesting aspect of this case study is that the device is to be implemented
in hardware, and some of the design requirements are dependent on the hardware on which
it deployed. The development of the device is guided by the laws of Circus, and proof obli-
gations for development steps centre around proving the correctness of the resulting refine-
ment on each major development phase. The case study in question is an Internet packet filter
[3,6], a device which sits on a network, monitoring traffic passing through it, and watching
for illegal traffic on the network. Typically, these devicescan be employed to monitor, route,
or prevent traffic on networks: in all of these cases, but particularly in the case of prevention,
confidence in the correctness of the implementation is necessary if network security is to be
assured. The major contributions of this paper can be summarised by the following points:

1. The presentation of a top-down design strategy from a set of requirements and a
verification strategy for such a development using Z/Eves and FDR.

2. A demonstration of the calculation of concurrency from a sequential specification
using laws ofCircuspresented in [5], including the generalised chaining operator.

3. The presentation of design patterns for refiningCircusprocesses intoHandel-Cmod-
els, incorporating a model of synchronous clock timing.

4. Evidence that laws ofCircus allow the exploration of refinements, guided by engi-
neering intuition where requirements may not have been explicit in the specification.

340 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

ver IHL

identifier

time to protocol

service

type
total length

flags offset

header checksum
live

source address

destination address

0 3 7 15 16 31

Figure 1. An IP v4 packet header

Section 1 presents the problem domain, and some relevant background material. This is fol-
lowed by a formalisation of requirements and an abstract specification in section 2. In sec-
tion 3 through to section 6, different components of the implementation are developed and
verified. Section 7 presents the composition of this development as a finalHandel-Cmodel.
Finally, in section 8, some conclusions are drawn.

1. Background

1.1. Packet Filters

An Internet packet filter is an application that monitors network traffic, and performs actions
based on criteria concerning that traffic. In this case study, the packet filter monitors traffic on
a local section of Ethernet, flagging observations of predetermined source/destination address
pairs. An important property of a monitoring device such as this one is it must not interfere
with traffic of no concern to it: essentially, its presence should be effectively unobservable
unless it is required to take action.

The packet filter assumes traffic is transmitted using the Internet protocol (IP), version 4
[2,9]. In IP v4, a packet consists of aheader, and apayload. The header contains accounting
information, whilst the payload contains the information itself. For instance, if a user were
accessing a web page, the header would contain information such as their machine address,
the address of the web server, and the size of the payload; while the payload would contain
(parts of) the web page itself. The structure of an IP v4 packet header is given in figure 1.

Traffic is assumed to be transmitted as a byte-stream. The application should passively
observe this byte-stream, identify when sections correspond to a packet header, and investi-
gate the addresses contained within. This is a non-trivial task: the stream is passing at a rapid
rate, and the vast majority of the stream will be payload data. The device must be able to iden-
tity a packet header, including performing necessary checksum calculations, extract source
and destination address from the header, compare it to a dictionary of known addresses, and
return the result of this comparison before the full header has passed through the stream; and
this must be done with the minimum amount of interference to the stream.

1.2. Identifying Packets

Packet headers are identified in the stream by performing a checksum calculation, which
should equal 0 in ones complement, checking the IP version number, which should equal
4, checking the least significant bit, which should always be0, and checking the protocol
number, which in this case should be 6, representing TCP/IP.When IP packets are identified,
they are further examined to identify whether or not the packet requires action by the filter.
In this case study the filter does not attempt to prevent passage—it simply observes and
acknowledges source/destination address pairs predetermined to be of interest.

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 341

1.3. Motivation and Related Works

Previous works exist describing how a filter such as this can be implemented on a standard
FPGA in a network environment [3,6]. These works explain thearchitecture of the packet
filter and propose techniques, implementable in hardware, which allow the identification of
packets and the lookup of addresses in real network time—a time that is no longer than it
takes for the network to communicate the traffic. Experimental measurements are presented
justifying the design and implementation on a small commodity FPGA in 100M-Bit Ethernet.

Attempts to verify the correctness of the implementation exist in [12,4]. These works
use the model of the Unifying Theory to model the existing program. The model uses both
Z and CSP constructs, and whilst their combination is justified in the Unifying Theory, they
are not combined in a syntactic way to give a structured modelin the way thatCircusdoes.
Nevertheless, these works show that such a model is feasiblein modelling the implementation
if certain problems can be overcome—for instance, infinite trace generation arising from
modelling clock ticks.

These works all contribute to modelling existing programs.This paper goes further in
showing that with an understanding ofHandel-Cand the FPGA, an abstract specification
can be developed into a concurrent implementation. The structure of theCircusspecification
combined with laws for calculating concurrency allow for the structured verified development
of the implementation.

1.4. Content Addressable Memories

A Content Addressable Memory (CAM), also known as anassociative memory, is a device
in which search operations are performed based on content rather than on address. Retrieval
of data in a CAM is done by comparing a search term with the contents of the memory
locations. If the contents of a location match the supplied data, a match is signalled. Typically,
searching in a CAM can be performed in a time independent of the number of locations in the
memory, which is where it differs to, for instance, a hash table. Various CAM architectures,
and associated speed/area cost trade-offs have been proposed [11,8].

1.5. Building a CAM on an FPGA

A CAM needs the following:

• Storage for data
• Circuitry to compare the search term with the terms in memory
• A mechanism to deliver the results of comparisons
• A mechanism to add and delete the data in memory if the dictionary is not fixed

Conventional CAMs require circuitry to perform aword parallel bit parallelsearch on words
in memory. While this offers the fastest lookups because of the fully parallel nature of the
search, it has very high hardware costs. [6] shows how the packet filter application benefits
from content based lookups, as fast, constant time lookups are required over an arbitrary data
set in the form of a pipeline data stream. The design of CAM adopted is called aRotated ROM
CAM [6,3], shown in figure 2. Each dictionary word stored has an associated comparator, and
this comparator iterates along the word, comparing the relative positions in the dictionary
with the search term word. Its simplicity makes it an ideal CAM architecture to implement
on an FPGA because the reconfigurable nature of the FPGA meansthat the ROM can be
designed to be as wide as the number of words in the CAM dictionary and as deep as the
width of the words in the dictionary. This design is chosen asit exploits the architecture
of the FPGA, allowing a trade-off between hardware costs andthe speed of lookups. The
trade-off is in the way that the words in memory are not searched in a fully parallel manner,

342 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

Reference word

W
 1

-b
it

co
m

pa
ra

to
rs

Storage Locations

Figure 2. A word parallel, bit serial CAM

thus reducing the amount of hardware required to search the dictionary, bringing with it an
increase in the time it takes to search the dictionary.

1.6. Implementation Architecture

The application consists of a number of discrete systems. These are:

• A feeder process taking bytes from the stream and passing them to the packet detector
• The packet detector
• The search engine
• A process to output results

The packet detector is the process responsible for monitoring the data passed to the appli-
cation, and signalling when a subset of this data constitutes an IP packet. When a packet is
detected, the search engine decides if it is a packet of interest by comparing the source and
destination addresses with those stored in the CAM.

1.7. The Approach to Verification

In this paper, many laws ofCircusare used—for instance to manipulate actions into a form
where they may be split. Each law typically has a proof obligation associated with it. Dis-
charging of all these proof obligations by hand in a large development is infeasible: there
may be many of them. The technique adopted in this case study is much more pragmatic, and
is intended to work more as a realistic industrial development. Laws ofCircusare repeatedly
applied in order to manipulate the actions into the requiredform. Instead of proving the appli-
cation of each law, the proof is to show that the final result isa valid refinement of the starting
point. This proof obligation is met by model-checking. TheCSPM used in verification for
each stage may be easily reconstructed.

In order to alleviate the problem of state space explosion inFDR, some simplifications
have been employed in theCSPM . Firstly, only three addresses exist. Two of these are in the
CAM—meaning that concurrent lookups are required. The third address is not in the CAM,
meaning that there is an address not of interest. Secondly, the functionaddr that returns
the address (pairs) in a packet reads the value of many pipeline cells1, but in theCSPM

it only looks at one. Thirdly, each cell may only have a value in the range0..3. Fourthly,
the checksum calculation is simplified: instead of being a predicate over a number of cells,

1The pipeline is the component of the application that storesdata read in from the network, and consists of a
series of individual cells. As an analogy, the pipeline may be thought of as an array, and a cell is analogous to
an element in the array.

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 343

it only considers the first cell in the pipeline. A data refinement could be proved between
this simplification and the real data types implemented; however this is not necessary as the
CSPM verification is really concerned with the action structure and not the data values. Other
investigations may require this.

TheCSPM model grows very large when the pipeline is greater than five elements. This
has an impact on the CAM lookup, which should take 16 cycles. The dictionary therefore
has been carefully chosen such that the words are all distinguishable in the first few bits,
so correct results are known long before 16 comparisons havebeen made. In this way, the
requirement that the CAM can output a correct result before apacket has left a (shorter)
pipeline may still be met.

Some laws require manipulation of user state. This user state, and operations on it, are
encapsulated by Z schemas. Where there are proof obligations associated with schema and
abstract data type manipulation, these are discharged using Z/Eves. The source input for
Z/Eves is in-lined LATEX in this paper. In some cases, this LATEX has been manipulated into a
more readable form for presentation purposes—for instancein-line schemas— that requires
to be re-written back as full schemas before it can be re-run in Z/Eves. For Z theorems, the
tactics needed to instruct Z/Eves to complete the proof are listed in the associated proofs.

The complete development, including all of steps and the tool applied to proof obli-
gations at each step, is given graphically in figure 3, figure 4and figure 9. The first dia-
gram represents the decomposition of the abstract specification into the three major compo-
nents. The second diagram represents the decomposition into a chained pipeline and a CAM
with sequentialised lookups. The third represents the refinement of this model into a clocked
Handel-Cimplementation.

2. An Abstract Specification

In this section an abstract sequential specification of the packet filter is presented. The packet
filter reads in a set of bytes from the network; looking to spotaddresses. At this stage of
development it is not necessary know detail about the representation of these, so they are
specified as given sets.

Definition 1 Given sets and axiomatic definitions :

[Byte,Addr ,BitPair]
RESULT ::= yes | no

dictsize : N

pipesize : N

addr : (N 7→ Byte) 7→ (Addr × Addr)
chk : (N 7→ Byte) → B

last : (N 7→ Byte) 7→ Byte

dictsize ≥ 1
pipesize = 20

2

Addresses of interest are to be stored in a dictionary, whilethe bytes currently being examined
will be stored in a pipeline. At this stage of development it is not yet known how many
addresses will be stored in the dictionary when it is finally deployed, so this constant is left
loose. An IP header is 20 bytes long: this constant is the length of the pipeline.2

2The development could have started with a more abstract description of the problem, with a data refinement
between it and the concrete. However in this paper the concern is developing the concrete data model into a
concurrent implementation.

344 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

The partial functionaddr takes a sequence of bytes and returns a pair of addresses, while
the functionchk takes a sequence of bytes and returns a boolean result. The former will later
be used to extract addresses from a packet, and the latter to identify a packet. The function
last takes a sequence of bytes and returns the element at the end ofthe sequence. The precise
definitions are omitted for space.

Definition 2 The abstract packet filter :

processFilter =̂ begin

USt =̂ [pipe : N 7→ Byte; dict : N 7→ (Addr × Addr) |
dom pipe = 1..pipesize ∧ dom dict = 1..dictsize]

UpdateAll

∆USt

b? : Byte

pipe ′ = {x : 1..pipesize − 1; y : Byte |
x 7→ y ∈ pipe ∧ x + 1 ∈ dom pipe • x + 1 7→ y} ∪ {1 7→ b?}

dict ′ = dict

Run =̂ var c : N; h : (Addr × Addr); µX •
(in?b → SKIP ||| out !last(pipe) → SKIP);
if ¬ chk(pipe) then UpdateAll ; X

else (h := addr(pipe); c := 1; µY • UpdateAll ;
if c < pipesize − 1 then (in?b →||| out !last(pipe) → SKIP); c := c + 1; Y

else (in?b → SKIP ||| out !last(pipe) → SKIP ||| match!(h ∈ dict)) → SKIP); X)

• Run

end

2

The local state of the abstract system, given in definition 2,has two components: a pipeline
and a dictionary. As the pipeline will be built in hardware, the state invariant does not allow
its size to ever change. The size of the dictionary is also constant. Unusually, an initialisation
operation has not been specified for these. In the case of the pipeline, this is because initially
the values are meaningless: when hardware is powered up, registers have an arbitrary value.
In the case of the dictionary, this is because the specification is purposefully being left loose
with regards to the addresses of interest. When the final implementation is deployed, these
would be given.3

An operation to update the local state exists. This operation takes the state of the pipeline,
and a new byte as input. It adds the new byte to the head of the pipeline, and drops the last
byte in the pipeline. The dictionary remains unchanged. There are no outputs.

The main action of the process reads an input into the local variableb and outputs the
last element in the pipeline. Then the predicatechk returnstrue or false indicating whether
or not it believes the pipeline to correspond to a packet header. If not, the new data is stored
and shifted. If it does then the address pair in the pipeline is recorded in the local variableh
before the shift. Anotherpipesize − 2 shift cycles are permitted before a result is output on
the channelmatch indicating whether or not the addresses were known to the dictionary. The
condition onpipesize ensures that the result is know to the environment before thedata has
fully left the pipeline.

3Where, and when these were given would depend upon the targetimplementation environment. For instance,
for a purpose built hardware CAM, they could be included in the state invariant; whilst for a software imple-
mentation such as a hash table, it may be done by adding a new operation to initialise the dictionary variable.

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 345

3. Refining the Abstraction into a Pipeline and a Checksum

3.1. Process Splitting

A technique for introducing concurrency into aCircusspecification isprocess splitting, dis-
cussed in [10] and built on in [5]. If the process paragraphs are disjoint—i.e, the actions of
the process each access different components of the state—then the process may be split in
two with respect to those disjoint actions and state. Generally processes must be manipulated
into an appropriate form.

Let pd stand for the process declaration below, whereQ .pps andR.pps stand for the
process paragraphs of of the processesP andQ ; andF for an arbitrary context (a function
on processes). The operator↑ takes a set of process paragraphsP and schema expressions
Q , and joins the process paragraphs ofP with ΞQ . For the expression to be well-formed,
the paragraphs inP must not change any state inQ . This is the general form of processes to
which process splitting laws apply.

processP =̂
begin

State =̂ Q .st ∧ R.st

Q .pps ↑ R.st

R.pps ↑ Q .st

• F (Q .act ,R.act)
end

The state ofP is defined as the conjunction of two other state schemasQ .st andR.st . The
actions ofP areQ .pps ↑ R.st andR.pps ↑ Q .st . They must handle the partitions of the
state separately. InQ .pps ↑ R.st each schema expression inQ .pps is conjoined withΞR.st .
Similar comments apply toR.pps ↑ Q .st .

Law 1 Process splitting

pd = (processP =̂ F (Q .act ,R.act))

provided Q.pps and R.pps are disjoint sets of paragraphs with respect to R.st and Q.st. 2

Two sets of process paragraphspps andpps ′ are said to be disjoint with respect to states
s and s ′ if and only if pps = pps ′ ↑ s ′ and pps ′ ↑ s, and no action expression inpps
refers to components ofs ′ or to paragraph names inpps ′; further, no action inpps ′ refers to
components ofs or to paragraph names inpps.

The development is aimed at producing an implementation using the Rotated ROM
CAM, thus meeting area and speed requirements on the FPGA. The abstract specification
must be split into three components: a pipeline, a CAM, and a checksum calculation. Each
of these can then further be refined into their respectiveHandel-Cimplementations.

Inspecting definition 2 suggests a strategy. The main actionmay be split into two: one
which acts on the dictionary, one on the pipeline; the requirement is that dictionary and
pipeline state must also be split. To splitRun, it must be manipulated into a suitable form.

3.2. Splitting the Main Action

The implementation is to contain a pipeline of cells, storing data from the network. As these
are to be implemented as concurrent registers, user state ineach cell must be disjoint from the
next—the requirement forProcess splitting(law 1). Counter-intuitively, therefore, the first
development step is to separate thechecksum calculationfrom the rest the application.

346 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

E

USt

Run

PipeSt DictSt

DictSt

Z/Eves

FDR

pass, block

FDR

Key

Processs

User State (Z)

Process action

Action split/refinement

State split

CSP channel

get, ready, done

Pipeline

Filter

Run

A1

Run

CamChecksumB1

Checksum

Run Run

CamE

A1

D

B1

Figure 3. The development and proof strategy for the first system refinements

This is non-obvious as a first step, but is vitally important.The checksum requires to
inspect the value of a number of pipeline cells, and given that the states must be disjoint
it cannotbe implemented as a global predicate over these cells. The specification must be
manipulated such that the checksum inspects a local copy of the pipeline.

The goal of this development phase is to split the component of the action that maintains
the pipeline from that which calculates the checksum and performs the lookup. This is done
by replicating the behaviour in two actions, and then removing the unrequired behaviours in
each. In doing so, there are several synchronous propertiesof the specification that care must
be taken to preserve. Firstly,in andout occur pairwise. Secondly, when a match occurs, it
must interleave the correct pair ofin andout events. Thirdly, the address to be looked up must
be stored and made available on the correctin-out cycle. To achieve this, two new events are
introduced. The eventblock is used to de-limitin-out cycles after eachUpdateAll operation.
On each iteration a second new eventpass is introduced that communicates the values held
in the pipeline to those who may desire read access. In this, and following definitions the
actions that pass local state across are factored out in definition 3 for presentation.

Definition 3 Passing pipeline state :

Pass =̂ in?b → SKIP ||| out !last(pipe) → SKIP ||| (||| i : dom pipe • pass .i !pipe(i) → SKIP)
Pass ′ =̂ in?b → SKIP ||| out !last(pipe) → SKIP ||| (||| i : dom pipe • pass .i?copy(i) → SKIP)
Match =̂ Pass ||| match!(h ∈ dict) → SKIP

Match′ =̂ Pass ′ ||| match!(h ∈ dict) → SKIP

2

Definition 4 Introducing internal eventsblock andpass, and a new concurrent action :

RunA =̂ var c : N; h : (Addr × Addr); µX •
Pass ; if ¬ chk(pipe) then UpdateAll ; block → X

elseh := addr(pipe); c := 1; µY •
UpdateAll ; block → SKIP ;

if c < pipesize − 1 thenPass ; c := c + 1; block → Y

elseMatch; block → X

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 347

RunB =̂ var copy : N 7→ Byte | dom copy = 1..pipesize; c : N; h : (Addr × Addr); µX •
Pass ′; if ¬ chk(pipe) then block → X

else h := addr(copy); c := 1; µY •
block → SKIP ;

if c < pipesize − 1 thenPass ′; c := c + 1; block → Y

elseMatch′; block → X

Run =̂ (RunA |[{|in, out ,match, pass , block |}]| RunB)

2

The checksum behaviour must also be factored out. This step relies on the property that when
det(P), P = P ‖ P . Run is deterministic, so may be placed in parallel with a second
copy of itself. However, although the two actions synchronise on their events—preserving
the deterministic property—the operation schemas and state variable assignments do not. If
this were disregarded the action would, for instance, execute UpdateAll twice every time it
were intended to execute once. The second copy of this actiontherefore has its own copies of
local variablesc andh; and does not write to global state. In fact, this development step goes
one stage further: it introduces a new variablecopy to the new action that has the same type
as the pipeline, and eachpass cycle updates the local copy. This step further relies on laws
for local variable introduction, and for introducing a direction in thepass communication.
The replicated action is given in definition 4.

Definition 5 Removing replicated behaviours in the pipeline :

RunA1 =̂ µX • Pass ; UpdateAll ; block → X

2

The next step is to separate concerns between the two actions—this relies on the properties of
synchronisation and distributed co-termination of thein-out-pass sequence.RunA is to form
the pipeline, thereforeRunB should not engage inin or out . Given thatblock was introduced
to de-limit thein-out sequences, thenin andout can safely be dropped fromRunB and
removed from the synchronisation. In fact, the same argument also holds formatch: the
pipeline should not be aware of matches, therefore it can be dropped fromRunA. This allows
a further simplification: the variableh no longer plays a role inRunA, so its scope may be
restricted toRunB . Moreover, the role played byc was to implement a loop that caused
a number of shifts before amatch—this is no longer necessary inRunA. Each of the two
components may be individually labelled. This is given in definition 5 and definition 6, where
RunA1 reads data in and out whilst passing it across to theRunB1, which records this data
and indicates the result of a lookup when appropriate.

Definition 6 Removing replicated behaviours in the CAM and checksum :

RunB1 =̂ var copy : N 7→ Byte | dom copy = 1..pipesize; c : N; h : (Addr × Addr); µX •
(||| i : dom copy • pass .i?copy(i) → SKIP);

if ¬ chk(copy) then block → X

else c := 1; h := addr(copy); µY •
block → SKIP ;

if c < #dom copy − 1 then

(||| i : dom copy • pass .i?x → SKIP); c := c + 1; block → Y

else

(||| i : dom copy • pass .i?x → SKIP ||| match!(h ∈ dict) → SKIP);
block → X

2

348 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

RunA1 andRunB1 can be seen to be disjoint with respect to user state. There isno proof
obligation associated with this— but if it were not true, further development would fail.
However there is an obligation to show that the new actions have been correctly derived—
theorem 1, which states that the parallel combination of thenew actions is a refinement of the
specification. This may be proved by asserting the equivalent refinement relation using FDR.

Theorem 1 The calculated actions are a refinement
Run ⊑A (RunA1 |[{|pass , block |}]| RunB1) \ {|pass , block |}

Proof

assert

Run ⊑FD (RunA1 |[{|pass , block |}]| RunB1) \ {|pass , block |} X

2

3.3. Partitioning the Global User State

Although the actions have now been split, they both still reference the single global user state.
RunA1 accesses the pipeline state, whileRunB1 accesses the dictionary. In order to show that
this process meets the form applicable to process splitting, these states, and the operations
upon them, must be disjoint. In this section, the disjoint states are calculated and verified
using Z/Eves. By relying on the properties of schema conjunction, the original user state can
be split in two.

Definition 7 Partitioned user state :

PipeSt =̂ [pipe : N 7→ Byte | dom pipe = 1..pipesize]
DictSt =̂ [dict : N 7→ (Addr × Addr) | dom dict = 1..dictsize]

2

Theorem 2 The partitioned states are correct :Ust ⇔ (PipeSt ∧ DictSt)

Proof prove by reduce; 2

The update operation only acts on the pipeline, and leaves the dictionary unchanged.

Definition 8 Partitioning theUpdate operation :

UpdateAll ′ =̂
[∆PipeSt ; b? : byte |

pipe ′ = {x : 1..#dom pipe; y : Byte |
x 7→ y ∈ pipe ∧ x + 1 ∈ dom pipe • x + 1 7→ y} ∪ {1 7→ b?}]

2

Theorem 3 The partitioned Update is correct :UpdateAll ⇔ (UpdateAll ′ ∧ ΞDictSt)

Proof prove by reduce; 2

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 349

3.4. A First Application of Process Splitting

The actions and the state are now of the correct form forProcess splittingto be applied. The
abstract pipeline is a very simple process. It contains an abstract data type that holds all of
the data present in the pipeline. On each iteration, it readsin a new value, outputs the oldest
value, informs the environment of the current state of the pipeline, and then shifts all the data.

Definition 9 The abstract pipeline process :

processPipelineA1 =̂ begin

PipeSt =̂ [pipe : N 7→ Byte | dom pipe = 1..pipesize]
UpdateAll ′ =̂ definition 8
RunA1 =̂ definition 5

• RunA1

end

2

The abstract checksum and lookup process of definition 10 contains the dictionary. The main
action of this process performs the checksum calculation onthe local copy of the state that is
passed to it on each pipeline shift, and outputs the result ofthe lookup accordingly.

Definition 10 The abstract CAM/checksum process :

processCamChecksumB1 =̂ begin

DictSt =̂ [dict : N 7→ (Addr × Addr)]
RunB1 =̂ definition 6

• RunB1

end

2

The complete packet filter is the pipeline in parallel with the checksum synchronising on the
channel used to pass pipeline state across. Both also synchronise on the channelblock , thus
maintaining the synchronous nature of the behaviour between the two components.

Definition 11 The split packet filter :

Filter ′ =̂ (CamChecksumB1 |[{|pass , block |}]| PipelineA1) \ {|pass , block |}

2

4. Implementing the Pipeline as Concurrent Cells

The next stage of development is to implement the pipeline process as an array of concurrent
cells, using the generalised chaining operator of [5].

4.1. Implementing the Update Operation

[10] shows a Z-style promotion distributes through aCircusprocess. By factoring out a pro-
motion from the abstract specification of the pipeline, a single cell is exposed. However, the
UpdateAll ′ operation describes a shift of the entire pipeline: the firsttask, therefore, is to
rewrite this in terms of a single element. The schemaUpdate defines an update on a single
element of the pipeline, identified by the input variablei .

Definition 12 A single update :

Update =̂ [∆PipeSt ; b? : Byte; i? : N | pipe ′ = pipe ⊕ {i? 7→ b?}]

2

350 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

Run

PipeSt

Checksum

DictSt

pass, block

Pipeline Checksum Cam

get, ready, done

DictSt

FDR

Introduce sequential
concurrent lookup

C
ell

C
ell

C
ell

Chaining

pass, block get, ready, done

Z/Eves
Promotion

FDR
Action chaining

PipelineA1

A1Run

Run

DRun

D

Cam

E

ERun

E2

Figure 4. The development and proof strategy for the second system refinements

For this operation to implement a complete pipeline shift, it must act upon all elements of
the pipeline. This may be achieved by replicating and interleavingpipeline copies of the
operation. It is necessary to store the initial state of the pipeline in a local variable to ensure
that each interleavedUpdate acts on the correct initial value of its predecessor element.

Definition 13 Interleaved updates :

IUpdate =̂
varcopy : N 7→ Byte | copy = pipe • ||| i : 1..pipesize • (i 6= 1 ∧ b = copy(i − 1); Update)

2

Now, the local state may be described in terms of a promotion—a local data type with a
schema describing its relation to the global state. A local element is simply aByte, while
the global state of the system is a function from natural numbers (the index of each element
in the pipeline) to the elements. The update operation changes an individual element to the
value of the input variable.

Definition 14 Local and global views :

PipeCell =̂ [elem : Byte]
GlobalPipe =̂ [pipe : N 7→ PipeCell]
UpdateCell =̂ [∆PipeCell ; b? : Byte | elem ′ = b?]

2

The global view of the system, in terms of the local elements is given by the schemaPromote.

Definition 15 The promotion schema :

Promote

∆GlobalPipe

∆PipeCell

i? : N

i? ∈ dom pipe

θPipeCell = pipe(i?)
pipe ′ = pipe ⊕ {i? 7→ θPipeCell}

2

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 351

For this promotion to be factored out of the system, it is necessary that it isfree. That is to say
there is no global constraint that cannot be expressed locally. If this were not the case, then
each local element of state would need to be aware of other local elements of state: something
that is not permitted if processes are to be concurrent; theorem 4 captures this. Theorem 5
states that the promoted update operation is equivalent to the single update operation above.

Theorem 4 The promotion is free :
∃PipeCell ′ • ∃GlobalPipe ′ • Promote ⇒ ∀PipeCell ′ • ∃GlobalPipe ′ • Promote

Proof prove by reduce; prove2

Theorem 5 Promoted update is correct :
SingleUpdate ⇔ ∃∆PipeCell • PipeCell ∧ Promote

Proof prove by reduce;2

4.2. A Local Process Implementing a Cell

A single pipeline cell is a process that encapsulates the local data, with an unpromoted input
and output action.

processCell =̂ begin

PipeCell =̂ [elem : Byte]
UpdateCell =̂ [∆PipeCell ; b? : Byte | elem ′ = b?]

RunC =̂ µX •
(in?b → SKIP ||| out !elem → SKIP ||| pass .i !elem → SKIP); UpdateCell ; block → X

• RunC

end

Now it seems possible to concurrently compose a number of these cells to form a pipeline
using a law such as process indexing of [10]. However, this will be insufficient—this law
requires that there is no interference between local processes. This is precisely not the case
here, where each process requires the local value of its numeric predecessor in the pipeline—
this was the role played by the local variablecopy in the definition ofUpdate earlier in this
section. Furthermore, only the first inputin and the last inputout are externally visible.

4.3. Composing Local Processes

This is exactly the scenario that is achieved by generalisedchaining. The promotion of each
cell is the function from local to global state, and the states and local operations are shown
to observe the requirement that they are disjoint as the promotion is free. Promoting (and
renaming) thein, lastout , tick andtock events gives the global action with all the internal
communications hidden. The index of each processi is taken from the promotion schema.

The operator composespipesize copies of the processCell concurrently. A parameter
which is given to the operator is a pair of events that are to chain—to synchronise—events in
numerically adjacent processes, these pairs of events are uniquely renamed and placed in the
synchronisation sets of adjacent processes accordingly. This synchronisation can be used to
communicate the initial value of one cell to its neighbouring cell. Internal events are hidden.
Theripple effectof nearest neighbour communication ensures that the inputsand outputs are
ordered correctly. This construction is exampled for a pipeline of three cells in figure 5.

352 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

{| tick, tock |}

outm m1 2in out in out in outin
CellCellCell

Concrete pipeline

Figure 5. The process[in ↔ out , {|tick , tock |}] 3 • Cell

Definition 16 The pipeline implementation :

Pipeline =̂ [in ↔ out , {|block |}]pipesize • Cell

2

Theorem 6 The implementation of the pipeline is correct
PipelineA1 ⊑P Pipeline

Proof

assert

PipelineA1 ⊑FD Pipeline X

2

4.4. Modelling the Local Processes as Handel-C Variables

The description of a single cell is very close toHandel-C. The remaining task is to include the
model of the clock. Assignments take place on a rising clock edge: this can be modelled using
an eventtick . All assignments in all processes must happen before a clockcycle completes,
and this can be modelled using an eventtock . In adapting the description of a cell to behave as
a Handel-Cprocess this clock model must be included. It is trivial in this case: each process
performs a single assignment after its communications, therefore each iteration inRunC1 is
a single clock cycle. The eventblock ensured the synchronous behaviour of pipeline cells on
each iteration: this function is now achieved by the clock, so block may be dropped.4 This
description of a clocked cell is now only a syntactic step away from the implementation of
each cell as a simple variable.

Definition 17 A Handel-C model of Cell implementation :

processClockedCell =̂ begin

PipeCell =̂ [elem : Byte]
UpdateCell =̂ [∆PipeCell ; b? : Byte | elem ′ = b?]

RunC1 =̂ µX •
(in?b → SKIP ||| out !elem → SKIP ||| pass .i !elem → SKIP);

tick → UpdateCell ; tock → X

• RunC1

end

2

4Alternatively, this step could be regarded as renamingblock to tock and including thetick event to globally
synchronise and separate communications from state updates.

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 353

checksum

calculation

checksum

0old 1 old 0 18 19

Figure 6. The checksum calculation

Adapting the chained processes is trivial: all instances share the same clock, and this is
achieved by placing the events in the global (shared) synchronisation set.

Definition 18 The clocked Handel-C pipeline implementation :

ClockedPipeline =̂ [in ↔ out , {|tick , tock |}] pipesize • ClockedCell

2

In the above definition, the clock may be hidden if no further processes are to be introduced
to theHandel-Cimplementation, or if they use a separate clock; however it is left visible in
this implementation as the CAM will share the same global clock. Theorem 6 states that the
clocked implementation is correct.

Theorem 7 The implementation of the clocked pipeline is correct
Pipeline \ {|block |} ⊑P ClockedPipeline \ {|tick , tock |}

Proof

assert

Pipeline \ {|block |} ⊑FD ClockedPipeline \ {|tick , tock |} X

2

5. Separating the Checksum and the CAM

The checksum is a ones complement sum of 16 bit segments of thepacket header, and is a
standard checksum used in IP packet identification. If the checksum calculation returns the
same result as that contained within the header, and severalother sanity checks also hold then
the state of the pipeline represents an IP packet header. Thesource and destination addresses
in the pipeline are stored for subsequent inspection. The next stage of development is to
separate out the checksum from the process that performs this inspection on the addresses.

Definition 19 Adding the partner action :

RunB2 =̂ var h : (Addr × Addr)... •
µX • ...; if c < pipesize − 2 then ...; X

else (... ||| ready → match!(h ∈ dict) → done → SKIP); X

|[{|ready,match, done|}]|
µY • ready → match!(h ∈ dict) → done → Y

2

354 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

The first steps in separating the checksum and the CAM follow asimilar pattern to before.
A match is prefixed withready and followed withdone. A new second action agrees to this
ready-match-done cycle. As before,match may now be dropped from the original. This is
shown in definition 19; some parts of the definition not relevant to this design step have been
abbreviated.

If RunB2 is to be split, it must not share the global variableh. The main tool for removing
such dependencies is the introduction of a new event to communicate state:get is introduced
for this purpose. Now restricting the scope ofh (and ofcopy and c to the first action) is
trivial, andRunB2 may be rewritten as two separate actionsRunD andRunE .

Definition 20 The checksum action :

RunD =̂ var copy : N 7→ Byte | dom copy = 1..pipesize; c : N; µX •
(||| i : dom copy • pass .i?copy(i) → SKIP);

if ¬ chk(copy) then block → Check

else c := 1; get !addr(copy) → SKIP • µY • block → SKIP ;
if c < dom copy − 1 then

(||| i : dom copy • pass .i?copy(i) → SKIP); block → c = c + 1; Y

else ready → (||| i : dom copy • pass .i?copy(i) → SKIP); done → block → X

2

Definition 21 The CAM action :

RunE =̂ µX • get?term → ready → match!(term ∈ dict) → done → X

2

5.1. Splitting the Checksum and CAM

The two actions are now of a form that allows the process to be split. The correctness of
this development step can be verified by proving the refinement relation holds between the
main action of the abstract CAM and checksum process of definition 10 and the newly split
actions.

Theorem 8 The split actions are a refinement

RunB1 ⊑A (RunD |[{|get , ready , done|}]| RunE) \ {|get , ready , done|}

Proof

assert

RunB1 ⊑FD (RunD |[{|get , ready , done|}]| RunE) \ {|get , ready , done|} X

2

Definition 22 The abstract CAM process :

processCamE =̂ begin

DictSt =̂ [dict : N 7→ (Addr × Addr) | dom dict = 1..dictsize]
RunE =̂ definition 21

• Run

end

2

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 355

In the checksum, local variables may be encapsulated as the user state of the process.

Definition 23 The checksum implementation :

processChecker =̂ begin

USt =̂ [copy : N 7→ Byte; c : N | dom copy = 1..pipesize]
RunD =̂ definition 20

• RunD

end

2

The process monitoring the checksum calculation is now ready for implementation, and may
have the program clock introduced. The interleavedpass events are actually emulating read
access to the pipeline process, so they must appear before atick—there is no value to be
latched in. Other assignments, such as to the local variablec must be latched between the
tick and thetock . The clock now additionally performs the role of making surethat eachpass
cycle is synchronous with respect to pipeline shifts (as theclock is shared with the pipeline),
soblock may be dropped.

Another less obvious role of the clock comes from the fact that the eventsready and
done occur exactly# dom copy − 2 clock cycles after aget is issued (counting starts at 1).
These events were introduced to ensure that the CAM would output the result at the correct
time. As the CAM is to be implemented on the same FPGA, with thesame global clock, the
assumption that thematch output will happen# dom copy − 2 clock cycles after it receives
a get can be made. As long as the development of the CAM respects this assumption,ready
anddone no longer play a significant role in the behaviour of the checksum and the CAM,
and may be dropped. This step has not been made as a result of a direct application of a law
or of laws: more is said about this in section 6.

Definition 24 The clocked checksum action :

RunD1 =̂ µX •
(||| i : dom copy • pass .i?copy(i) → SKIP);

if chk(copy) then tick → tock → Check

else get !addr(copy) → tick → c := 1; tock → SKIP • µY •
if c < #dom copy − 1 then

(||| i : dom copy • pass .i?copy(i) → SKIP); tick → c = c + 1; tock → Y

else (||| i : dom copy • pass .i?copy(i) → SKIP); tick → tock → X

2

Definition 25 A Handel-C model of the checksum implementation :

processClockedChecker =̂ begin

USt =̂ [copy : N 7→ Byte; c : N | dom copy = 1..pipesize]
RunD1 =̂ definition 24

• RunD1

end

2

Theorem 9 states that the clocked implementation is correct.

Theorem 9 The clocked checksum is correct

Checker \ {|ready , done, block |} ⊑P ClockedChecker \ {|tick , tock |}

356 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

Proof

assert

Checker \ {|ready , done, block |} ⊑FD ClockedChecker \ {|tick , tock |} X

2

6. Implementing the Content Addressable Memory

The size of an IP packet header, combined with the clock cyclerequirements of the compo-
nents implemented so far is a useful piece of information in designing the CAM implemen-
tation. It allows splitting combinatorial logic over multiple clock cycles (thereby decreasing
wall clock time requirements) and a more serial implementation of a CAM, which may re-use
comparand registers and reduce area requirements.

TheRotated ROMdesign of [6,3] consists of ROMs of depth 16 bits, and width 2 bits,
giving 32 bit words: each one of which corresponds to an address of interest. The search
circuitry compares 2 bits at a time, meaning that 16 comparisons are required to compare the
search term with a word in the dictionary. The circuitry assigns a value to a flag indicating
whether a word matches the search term or not.

Figure 8 shows the area costs of this design on a sample FPGA, and the clock speeds
attainable for increasing CAM sizes in figure 7: these experimental results confirm that a
Rotated ROM CAM of the sizes under consideration will permitthe FPGA to be clocked at
a sufficiently fast speed to allow the rest of the applicationto monitor a network in real time.

0

10

20

30

40

50

60

0 500 1000 1500 2000

C
irc

ui
t s

pe
ed

 in
 M

H
z

Number of words in dictionary

unconstrained
speed optimised

Figure 7. Clock speeds of the Rotated ROM CAM on a Xilinx 40150 FPGA

There are 20 clock cycles available after a packet arrives inthe pipeline before the match
result must be output. This can be exploited: the comparisonin the dictionary can be designed
to use many—even all—of these clock cycles, thus reducing combinatorial logic costs and
expensive comparators—and the Rotated ROM CAM is an architecture that exploits this. In
this section, the abstract CAM of definition 22 is refined intothis implementation.

6.1. Making the Dictionary Tight

Initially, the definition of the dictionary state was left loose. This section begins by making
it tight—given in the replacement definition ofDictSt below, with values taken from table

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 357

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

N
um

be
r

of
 C

LB
s

Number of words in dictionary

Figure 8. Area costs of the Rotated ROM CAM on a Xilinx 40150 FPGA

Direction IP address 2x16 bitwise representation

Source0 163.1.27.192 10,10,00,11,00,00,00,01,00,01,10,11,11,00,00,00

Destination0 163.1.27.18 10,10,00,11,00,00,00,01,00,01,10,11,00,01,00,10

Source1 163.1.27.152 10,10,00,11,00,00,00,01,00,01,10,11,10,01,10,00

Destination1 163.1.27.162 10,10,00,11,00,00,00,01,00,01,10,11,10,10,00,10

Table 1. Example address pairs

1. The state in the schemaDict is the source/destination addresses given as 2×16 BitPair

representations. As the dictionary is being implemented inhardware, the values are invariant
(statically determined)—there is no need for an initialisation operation, as they never change.

User state now contains a dictionary consisting of four concrete addresses, implemented
as fourBitPair sequences of length 16.5 In implementing the lookup it is tempting to specify
this by defining simple equality tests over elements; however, the design goal is directed by
area and speed concerns—optimally, a single, comparator for each word in the dictionary.

Definition 26 The state of the dictionary :

DictSt

dict : N 7→ seqBitPair

dom dict = 1..4
dict .1 = 〈(1, 0), (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 1),

(0, 0), (0, 1), (1, 0), (1, 1), (1, 1), (0, 0), (0, 0), (0, 0)〉
dict .2 = 〈(1, 0), (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 1),

(0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (0, 0), (1, 0)〉
dict .3 = 〈(1, 0), (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 1),

(0, 0), (0, 1), (1, 0), (1, 1), (1, 0), (0, 1), (1, 0), (0, 0)〉
dict .4 = 〈(1, 0), (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (0, 1),

(0, 0), (0, 1), (1, 0), (1, 1), (1, 0), (1, 0), (0, 0), (1, 0)〉

2

In the Rotated ROM CAM, local variables are used to maintain the results of a lookup and
index iterations. The definition of the main CAM action belowreflects this. The local array

5The replacement definition ofBitPair is omitted as it is clear from its usage here.

358 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

result stores the boolean result of comparing each dictionary entry with the search term.
Thematch line outputs a result indicating whether or not any of the comparisons returned
true—this is implemented as the disjunction over the elements in the result array. Rather
than a simple comparison over each word, it is implemented asan iteration over comparing
eachBitPair with the relevant corresponding place in the search term, meaning that there
are 16 comparisons performed for each word, with thenth comparison for each word being
performed in parallel. When a comparison fails, the fact that that dictionary word does not
match the search term is recorded. Implementation of a 2-bitcomparator is cheap: in this
way, the area costs have been reduced, the combinatorial costs have been drastically reduced.
The eventsready anddone ensure that the implementation still meets the constraintsthat the
lookup should be complete before the word has left the pipeline.

Definition 27 Sequencing the comparators :

RunE1 =̂ var result : dom dict → B; µX •
get?term → c := 0; ran result := true; µY •

if c = 16 then ready → match!(true ∈ ran result) → done → X

else∀ i : dom result • result(i) = result(i) ∧ dict .i(c) = head(term);
term := tail(term); c := c + 1; Y

2

The universal quantifier in definition 27 may be expanded—resulting in the conjunction of
the set of assignments indexed byi . As these assignments are all disjoint with respect to the
state that they evaluate and assign to they may be implemented in an arbitrary order.

Definition 28 Concurrent words :

RunE2 =̂ result : dom dict → B; µX •
get?term → c := 0; ran result := true; µY •

if c = 16 then ready → match!(true ∈ ran result) → done → X

else ||| i : dom result • result(i) = result(i) ∧ dict .i(c) = head(term);
term := tail(term); c := c + 1; Y

2

Unlike the other components in this case study, concurrencyis not introduced using process
splitting—it has been introduced with concurrent assignments to user state. To attempt pro-
cess splitting is not useful: although each entry in the dictionary and the comparisons are dis-
joint, the result array is not. To split these processes—andtherefore the result array—and col-
late results using further communications would mean that either the clock cycle constraint
is not met, or that the implementation is less serial.

Definition 29 The CAM implementation :

processCam =̂ begin

DictSt =̂ definition 26
RunE2 =̂ definition 28

• RunE2

end

2

As the implementation is to be inHandel-Con the same FPGA as the other components the
global clock may now be introduced, in definition 30. The firstclock cycle reads in and as-
signs the value of the search term. The last clock cycle for any given lookup is occupied by
outputting the result. In between, there are 16 clock cyclesavailable for the lookup—this is
the assumption that was made in the final development step forthe clocked checksum process

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 359

in definition 25 that allowed the eventsready anddone to be dropped. The lookup itself actu-
ally consists of a sequence of assignments to the result array, where each element in the array
is assigned concurrently. As an assignment inHandel-Cis latched in during a clock cycle,
each assignment in the sequence is a single clock cycle. As there are 16 assignments, one for
eachBitPair in an address, there are 16 clock cycles. Although this stageof development
can be seen to follow from the properties of hiding, it has notbeen calculated from a direct
application of a law as the hiding does not cleanly distribute through concurrency.

It is important that the clock does not block when the processis waiting for input—a
communication onget will not happen on every clock cycle. If the extra choice containing
tick and tock were not included here, this would be a modelling error that is not apparent
in the implementation—in reality, aHandel-Cprocess cannot block the clock from ticking
whilst waiting for a communication. However, this modelling error would prevent accurate
verification of the implementation.

Definition 30 The clocked CAM action :

RunE3 =̂ result : dom dict → B; µX •
tick → tock → X

2

get?term → tick → c := 0; ran result := true; tock → SKIP ; µY •
if c = 16 thenmatch!(true ∈ ran result) → tick → tock → X

else‖ i : dom result • |[{|tick , tock |}]| result(i) = result(i) ∧ dict .i(c) = head(term);
tick → term := tail(term); c := c + 1; tock → Y

2

Definition 31 The clocked CAM :

processClockedCam =̂ begin

DictSt =̂ definition 26
RunE3 =̂ definition 30

• RunE3

end

2

Verification of the clocked implementation proves to be interesting. If theCSPM assertion
corresponding to theorem 10 is checked, it is found to fail. In this assertion, as with all the
other checks of clocked processes, the clock must be hidden to ensure the alphabets of the
processes match. Consequently a divergence exists inClockedCam: where it is waiting for
an input it may perform an infinite series of clock ticks and aget never occurs.

Verification therefore needs more care: it must ignore this divergence. A simplistic way
of achieving this would be to disallow this possibility and re-check; however this may not
always be possible for more general examples. Instead, the technique is to show that the
divergence did not result from thereal activities of the process: it is shown to be divergence
free when all events other thantick and tock are hidden. The divergence, therefore, must
have come from the clock. If the process can then be shown to bea failures refinement then
the implementation is correct.

Theorem 10 The CAM implementation is valid
Cam \ {|ready , done|} ⊑P ClockedCam \ {|tick , tock |}

Definition 32 The equivalentCSPM assertions :

assert

ClockedCam \ {|get ,match|} : divergence free X

Cam \ {|ready, done|} ⊑FD ClockedCam \ {|tick , tock |} X

2

360 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

D1

Pipeline Checksum Cam

DictStC
ell

C
ell

C
ell

Chaining

pass, block get, ready, done

ClockedPipeline ClockedCam
Chaining

C
ell

C
ell

C
ell pass, tick,tock get, tick, tock

DictSt

FDR FDR FDR
Clock introduction Clock introduction

Clocked
Checksum

Clock introduction
Clock divergence checking

DRun

E3

E2Run

RunRun

Figure 9. The development and proof strategy for the final clocked system refinements

7. The Final Implementation

The final implementation is the parallel combination of eachof the processes developed. This
is given in definition 33.

Definition 33 The final clocked implementation :

processClockedFilter =̂
((ClockedPipeline |[{|tick , tock , pass |}]| ClockedChecker) \ {|pass |}
|[{|get , done, tick , tock |}]|
ClockedCam) \ {|get , done, tick , tock |}

2

Theorem 11 The Handel-C implementation is correct

Filter ⊑P ClockedFilter \ {|tick , tock |}

Proof From the correctness of each stage of development and monotonicity of refinement.2

From the development strategy of figure 3, figure 4, figure 9, and monotonicity of refine-
ment, confidence in the correctness of the implementation isassured. Generally industrial
developments are too large to model-check, and monotonicity must be relied upon.

7.1. A Final Twist

In definition 34, the actionBadRunD is presented. This action is included because it high-
lights an interesting error that may be made in the assumptions.

Definition 34 A bad checksum process :

BadRunD =̂ µX •
(||| i : dom copy • pass .i?copy(i) → SKIP);

if chk(copy) then get !addr(copy) → tick → tock → X else tick → tock → X

2

In the correct checksum process when the calculation returns true the pipeline is not tested
again until that packet has left. The above definition evaluates the checksum on each iteration.

A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter 361

When it returns true, it passes the address to the CAM. If the CAM is in the middle of a
lookup it refuses to accept an address. Therefore, if the definition above is used the system
will deadlock if the checksum returns true before the CAM hasfinished the last instructed
lookup. This version is not a valid refinement: checking the packet filter using this process
results in a counter-example evidencing the deadlock. The error was present in early versions
of the application. In hardware, leaving a test condition such as this onepermanently running
often appears to be a natural, and inconsequential, assumption. The code was extensively
tested in simulation and on real networks and the deadlock was not discovered.

The assumption about the checksum is that it will not producea false positive: if it does,
it may result inapparentheaders overlapping. In reality, the chance of it doing so isextremely
remote: otherwise network routers would encounter the problem regularly. In fact routers
typically protect against this problem by disregarding rogue packets. This is why testing did
not highlight the issue, as the sample data set had been verified by a router.

Not only does this highlight the value of the formal development inCircus, but provides
an interesting starting point for requirements checking and investigating the real security
offered by the device. While real networks may not present the possibility for false positives,
formal development has shown that the device does not function if they did actually happen—
and this may form the starting point for a malicious attack onthe device.

8. Summary

The case study began with a high level abstract specificationof a network packet filter.
Through a series of design steps—each one of which was guidedby domain knowledge
rather thanCircus—an implementation that corresponds to aHandel-Cprogram was calcu-
lated. The correctness of each major design step was verifiedusing Z/Eves and FDR. By
manipulating the processes into forms applicable to the process splitting law, calculating
concurrency in the specification proved to be relatively straightforward; however some of
the manipulations—specifically those where assumptions were made about a global clock—
relied heavily in places on post-mortem verification. The structure, and rigour, of the devel-
opment is the most advanced recorded in the the literature for Handel-CandCircus.

The intention was to capture the level of rigour and applicability of domain expertise
that may be adhered to in an industrial development, and showthat this level of rigour is both
feasible and sufficient for large projects. This was achieved: in fact, an erroneous assumption
in the original design was uncovered that testing alone had not exposed.

Due to its simplicity, the implementation has a natural mapping ontoHandel-C; although
as a formal semantics forHandel-Chas not yet been approved6, this final step is not as
formal as that of [7] or [1]. Due to the nature of refinement inCircus, some of the traditional
problems inHandel-Cwere naturally avoided: for instance, it should not normally be possible
to derive a program where two processes attempt to assign to avariable concurrently. This
leads to an interesting artifact in the model: although theHandel-Ccode may share access to
variables—in particular read access—theCircusmodel may not. An idiom involving regular
updates of local state was appealed to in order to emulate this read access. However, in
the final code, there is no need to copy the state of the pipeline in the checksum process—
it is Circus that requires this. This is clearly an important consideration for hardware area
constraints; and is a problem in need of further attention.

Decisions about the design of the device, and where and how concurrency was intro-
duced and exploited was governed by domain knowledge and empirical evidence, rather than
solely by laws ofCircus. The necessity of supporting application of domain knowledge is im-

6An item of work we are currently engaged in is a timed model of CSP that matches the timing semantics of
Handel-C.

362 A.A. McEwan / A Circus Development and Verification of an Internet Packet Filter

portant. Significant gains in the end product were made by targeting design steps at features
of Handel-Cand the FPGA. A different correct implementation could havebeen developed
without this knowledge; but it may not have met the speed and area requirements which only
become apparent after hardware has been built and tested. Early experiences, gained from
empirical experiments, guided these judgements. A method of including wall clock speed,
and hardware area, parameters explicitly into the design process may well make for a de-
velopment method which becomes very cumbersome, and detracts from the elegance of the
natural refinement laws. More work is needed to fully consider this.

The most significant achievement of this case study is that requirements have been met
by drawing on expert domain knowledge; and that the correctness of applying this knowl-
edge has been verified at every stage by drawing on formal techniques. This is a significant
demonstration in the applicability of formal techniques toa typical engineering process.

The application was compiled and run on a Xilinx 40150 seriesFPGA which clocked
at 20MHz; operating on traffic running at 160M-Bit/s—sufficiently fast to operate as a real
time device on standard fast Ethernet. Sample dictionariesof several hundred IP addresses
were used on genuine network traffic. The application found and identified the same packets
in the stream as standard network monitoring utilities suchassnoop.

Acknowledgements

The author would like to thank Steve Schneider, Jim Woodcock, Ana Cavalcanti, and Wilson
Ifill for their technical guidance, assistance and suggestions with this work.

References

[1] A. L. C. Cavalcanti.A Refinement Calculus for Z. DPhil thesis, The University of Oxford, 1997.
[2] S. Kent and R. Atkinson. IP Authentication Header. Technical Report RFC-2401, The Internet Society,

November 1998.
[3] Alistair McEwan, Jonathan Saul, and Andrew Bailey. A high speed reconfigurable firewall based on pa-

rameterizable FPGA based Content Addressable Memories. InProceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques andApplications, volume 2, pages 1138–1144.
CSREA Press, June 1999.

[4] Alistair A. McEwan. The design and verification ofHandel-Cprograms. Technical report, Oxford Uni-
versity Computing Laboratory, 2001. Invited talk, DARPA 2001.

[5] Alistair A. McEwan. Concurrent program development. DPhil thesis, The University of Oxford, To
appear.

[6] Alistair A. McEwan and Jonathan Saul. A high speed reconfigurable firewall based on parameterizable
fpga-based content addressable memories.The Journal of Supercomputing, 19(1):93–105, May 2001.

[7] Carroll Morgan. Programming from Specifications. International Series in Computer Science. Prentice-
Hall, 1990.

[8] Behrooz Parhami. Architectural tradeoffs in the designof VLSI-based associative memories.Journal of
Microprocessing and Microprogramming, 38:27–41, 1993.

[9] J. Postel. Internet Protocol. Technical Report RFC-791, The Internet Society, September 1981.
[10] Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Refinement inCircus. In Lars-Henrick Eriksson

and Peter Alexander Lindsay, editors,FME 2002: Formal Methods—Getting IT Right, pages 451–470.
Springer-Verlag, 2002.

[11] Kenneth J. Schultz and P. Glenn Gulak. Architectures for large capacity CAMs.INTEGRATION, the VLSI
Journal, 18:151–171, 1995.

[12] J. C. P Woodcock and Alistair A. McEwan. An overview of the verification of aHandel-Cprogram.
In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and
Applications. CSREA Press, 2000.

