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Abstract. The concept of exception handling is important for building reliable 
software. An exception construct is proposed in this paper, which implements an 
exception handling mechanism that is suitable for concurrent software architectures. 
The aim of this exception construct is to bring exception handling to a high-level of 
abstraction such that exception handling does scale well with the complexity of the 
system. This is why the exception construct supports a CSP-based software design 
approach. The proposed exception construct embraces informal semantics, but 
which are intuitive and suitable to software engineering. The exception construct is 
prototyped in the CSP for Java library, called CTJ. 
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Introduction 

Reliable software should deal with all circumstances in its environment, which can affect 
the behaviour of the program. The environment of the program encompasses the computer 
hardware. Unusual circumstances are exceptional occurrences that can bring the program, 
when not dealt with, in a state of undesirable behaviour. This causes an exceptional state, 
which manifests an error or simply an exception. The processes in the program that are 
affected by the exception should not progress after the occurrence of the exception. Each 
process that is encountering an exception should escape to a handler process that is able to 
deal with the exception. This handler process is called an exception handler. 

Reasoning about the behaviour of the program in the presence of exceptions can be very 
complex. Branching to an exception handler can occur at many places in the program. 
Exceptions occurring in exception handlers require branching from exception handler to 
exception handler. Exceptions are related to the concurrent behaviour of the system. 
Exceptions can occur asynchronously and simultaneously in concurrent systems. There can 
be too many states to consider when tracing the behaviour of exception handling. 

Exceptions should be handled by proper design concepts that deal with its complexities. 
A proper concurrency model is inevitable in order to manage the complexity of exception 
handling. Proper design concepts can be found in the CSP concurrency model. The CSP 
concepts provide sufficient abstraction, compositionality and sound semantics that are very 
suitable for designing and implementing mission-critical embedded software. However, 
CSP does not specify a simple solution for describing exception handling. 

An informal description of an exception construct is presented, which offers a simple 
solution to handle exceptions in concurrent software architectures. On one hand, the 
approach is in accordance with CSP terminology. A formal description and analysis in CSP 
is not part of this paper. The feasibility of the exception construct has been investigated. 
The exception constructs has been prototyped in the Communicating Threads for Java 
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(CTJ) library [1; 2]. On the other hand, the approach is based on a software engineering 
perspective. 

The notion of exceptions is discussed in Section 1. This notion follows the CSP 
terminology. The role of the environment of the program, poisoning channels and processes 
are discussed. The concept of exception handling is discussed in Section 2. An example 
program with nested exception constructs is described in Section 3. Various aspects of the 
exception construct are discussed in Section 5. Section 5 deals with the conclusions. 

1. Exceptions 

1.1. Processes, Events, and Channels 

An elegant way to design an implement mission-critical software in embedded systems 
is the use of Communicating Sequential Processes (CSP) concepts [3; 4]. CSP is a theory of 
programming, which offers formal concepts for describing and reasoning about the 
behaviour of concurrent systems. Furthermore, CSP offers pragmatic concepts and 
guidelines for developing reliable and robust concurrent process architectures. These 
concepts are process-oriented and they offer abstraction, compositionality, separation of 
concerns and a concurrency model with simple and clean semantics. 

CSP is a notation for describing concurrent systems by means of processes and events. 
Processes are self-contained entities, which are defined in terms of events. Processes do not 
see each other, but they interact with other processes via channels. An event is an 
occurrence in time and space. An event represents a mutual synchronisation between two or 
more processes. A process that is willing to engage in an event must wait until other 
processes are also willing to engage in the event. This is called the rendezvous or 
handshake principle. 

The rendezvous between two processes that are willing to communicate via a shared 
channel is called the communication event. A process that successfully terminates engages 
in a termination event with its subsequent process. 

1.2. Process in Exception 

An exception is a state in which  

a) An instruction is causing an error and the instruction cannot complete or successfully 
terminate; e.g. division by zero or illegal address. 

b) A communication event is refused by the environment of the program; e.g. the 
channel implementation is malfunctioning. 

In either case, the environment in which the program runs cannot let a process continue 
after the point of exception. A process in exception will never engage in any event after the 
exception has been raised in the process; i.e. it behaves as STOP. Furthermore, a process is 
in exception when at least one of its sub-processes is in exception. 

Conceptually, the exception handling mechanism interrupts the process in exception 
and it will be replaced by the exception handler. If the exception handler terminates, the 
exception handling process terminates normally. 

1.3. The Role of the Environment 

The role of the environment in the exception handling mechanism is important in order to 
understand the source of exceptions. For some reason it could happen that a device in 
hardware (the environment of the program) is malfunctioning and it cannot establish or 
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complete communication. In other words, the communication event is refused by the 
environment of the program. The event will never occur and the process may wait forever 
for the event to happen. This could cause the program to deadlock or livelock. This is an 
inconvenient circumstance, which manifests an exception. It is more convenient for the 
program to escape from the exception and to do something useful; e.g. dealing with the 
exception. 

The environment of a program is usually something complex from which the software 
engineer wants to abstract away from. The software engineer is interested in the causality 
between a misbehaving environment and the behaviour of the program. The CSP channel 
model supports this view. 

Figure 1 illustrates two parallel processes communicating via channel c. The figure is 
called a CSP diagram [1]. The writer process W writes data to the channel and the reader 
process R reads the data from the channel. The figure does not show exactly when they 
communicate. The points of communication will be illustrated in Section 2.2. During the 
design of a program, the environment is not included in the design, but its effect on the 
design should be considered. 

 
Figure 1. Two parallel processes communicate via a channel (CSP diagram). 

The abstract role of the environment is illustrated in Figure 2. Figure 2aillustrates that 
the environment can be depicted as a parallel process, named ENV. The environmental 
process ENV is listening on channel c and it decides whether or not to participate in the 
communication event. ENV is dotted to illustrate that the environmental process is hidden 
in the design, but it is an integral part of the implementation of the design. In fact, the 
channel implementation can be viewed as an environmental process, because the channel 
implementation directly controls the underlying hardware. The interface of the channel 
separates the program from its environment. The processes in the program should only 
access the devices via channels. This abstraction and separation of concern keeps the 
processes free from hardware depending code. Of course, this hardware-independency 
excludes the integrity of the processes, i.e. processes depend on the data provided by the 
channels (or devices). 

 
Figure 2. The role of the environmental process.  

In case the channel c breaks, the environment will refuse c from happening. This is 
illustrated in Figure 2b. Instead, the channel will throw (or raise) an exception to each 
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involved process. The grey arrows indicate the source and destination of throwing 
exceptions from the channel implementation to the invoking processes. 

The channel is modelled as an active partner process in its communications, that can be 
put into “refusal” and exception-throwing mode, where “exceptions” are just events for 
which other processes have (CSP) interrupt handlers awaiting. 

1.4. Poisoning Channels and Processes 

A channel being refused by the environment of the program is called a poisoned channel. A 
poisoned channel will never cause a communication event to happen as long as it is 
poisoned. A poisoned channel devotes its channel ends to throw exceptions to the processes 
that are willing to communicate via its poisoned channel ends. After the exception is 
thrown, the process is poisoned and it will eventually die; i.e. a poisoned process never 
engages in any event with its environment and it never terminates normally. Successively, 
the exception will be caught by a surrounding exception construct. 

In CTJ, the methods refuse(channel), refuse(channel,exc) and 
accept(channel) were introduced [2]. These methods are defined by a static call-
channel that is connected to the environmental process ENV. Invoking one of the refuse 
methods will request a “refuse” service from the environmental process ENV. After ENV 
accepts the request, any communication event on the specified channel will be refused. In 
case the exception argument exc is specified, the channel will throw exc via the channel 
ends on which processes are willing to perform the read or write methods. For example, 
invoking refuse(c,exc) corresponds to the situation as depicted Figure 2b. We prefer 
the method name refuse rather than poison, which is in accordance with the CSP 
terminology of “refusals”. The method accept(channel) requests the environmental 
process to accept communication events on channel; i.e. undo the poisoning, if possible. 

The refuse(..) and accept(..) methods are meant to be used by the 
implementation of channels or by the underlying kernel. The program could use these 
methods for studying the effects of poisoning channels on the behaviour of the program; i.e. 
simulating the effect of malfunctioning devices. In all other situations, we do not encourage 
these methods to be used by the program. Poisoning channels by processes can be error-
prone and therefore it should not be encouraged for deliberately killing processes. For 
example, poisoning channels by an exception handler could cause exceptions to propagate 
outside the scope of the exception construct. If this is not desired, poisoning channels is not 
useful. 

The C++CSP library [5; 6] uses a different approach, whereby the poison() method 
is part of the channel interface. This is called stateful poisoning of channels. A process is 
being poisoned while attempting to access a poisoned channel must poison all channels it 
uses before terminating gracefully. Special functions can be used, which provide channel 
ends that cannot be used to poison the channel. Processes can choose whether the channel 
ends they pass to their sub-processes can be poisoned or not. 

The use of the refuse(..) or poison(..) methods by processes is error-prone 
and it will complicate the understanding of the epidemic of poisoning. It is safer to leave 
the killing (deliberately poisoning) of processes up to the channels and the exception 
constructs. A process in exception does not need to poison its channel ends. The poisoning 
of channel ends should be performed by the exception constructs. This mechanism is 
elaborated in Section 2. 
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1.5. Termination and Resumption 

This exception handling approach encompasses two models of exception handling, namely: 

Resumption model. The resumption model allows an exception handler to correct the 
exception and then return to the point where the exception was thrown. This requires 
that recovery is possible with acceptable overhead costs. The resumption model is 
most easily understood by viewing the exception handler as an implicit procedure 
which is called when the exception is raised. The resumption model is also called retry 
model [7]. 

Termination model. In the termination model, control never returns to the point in the 
program execution where the exception was raised. This will result in the executing 
process being terminated. The termination model is necessary when error recovery is 
not possible, or difficult to realize, with acceptable overhead costs. The termination 
model is also called escape model [7]. 

Error recovery or resumption is sometimes possible at the level of communication, i.e. 
by the channels. The channel implementation can detect errors and possibly fix them with 
if-then-else or try-catch constructs. In case the error is fixed and communication is re-
established by the channel, this can be viewed as resumption. In this case, processes are not 
aware of any exceptions that were fixed. A channel that cannot fix the internal error should 
escape from resumption. The channel should raise (or throw) an exception via its interface 
to the process domain. The process domain and the channel domain are depicted in Figure 3. 

 
Figure 3. Process and channel domains. 

The channel interface separates both domains. The process domain supports the 
termination model and the channel domain supports the resumption and the termination 
model. The exception construct resides in the process domain and supports the termination 
model. 

2. Exception handling 

2.1. Exception Construct 

In Hilderink [1], a notation was introduced to describe exception handling in a 
compositional way. The exception handling is based on an exception construct with a 
formal graphical syntax, but with informal semantics. The exception construct composes 
two processes P and EH, which is written as: 

P EHΔ  exception construct 
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This process behaves as EH when P is in exception; otherwise it behaves as P. Process 
P is in exception on the occurrence of an error from which P must not continue. At the 
point of exception P behaves as STOP. Process EH is the exception handler.  

On the occurrence of an exception, the exception construct requires that all the channel 
ends, being claimed by P, are released. The exception construct must reckon with a 
complex composition of sub-processes of P. The released channel ends can be re-claimed 
by other processes, for example, by the exception handler EH. A poisoned channel end 
cannot be re-claimed as long as it is poisoned. The exception construct has resemblance 
with the interrupt operator in CSP. We will omit a theoretical discussion between the 
formal interrupt operator and the informal exception construct. 

Consider the CSP diagram in Figure 1. This example is enhanced with exception 
constructs.  Figure 4 illustrates two different enhancements. The processes are shown 
transparently. Each compositional diagram depicts a different composition. Figure 4a 
illustrates the two processes W and R that are each guarded by an exception construct. 
Exception handler EHW deals with the exception at the writer’s side of channel c and EHR 
deals with the reader’s side of channels c. On exception in c, the processes EHW and EHR 
run in parallel. Figure 4b illustrates the circumstance where the exception handler EH deals 
with both sides of channel c. EH could be any sequence of EHW and EHR. 

 
Figure 4. Compositional diagrams enhanced with exception handling. 

Figure 5 shows an equivalence property between two compositions. The process SKIP 
doesn’t do anything, except successfully terminating. Since SKIP does not deal with any 
exception and therefore the exception handler EH will take over. 

 
Figure 5. Equivalent exception compositions. 
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2.2. Exception Handling Mechanism 

The conceptual behaviour of the exception handling mechanism of the proposed exception 
construct is described in this section. The required steps that are performed by the 
mechanism are explained by a simple example. Furthermore, the channel ends and the 
scope of the exception construct are explained. 

The following steps that are taken by the exception handling mechanism: 

1. Registering. Register each channel end and nested exception construct, being 
invoked by a process, to the surrounding exception construct. 

2. Notifying. Notify the exception construct that an exception has occurred and the 
exception will be collected by the exception construct. 

3. Poisoning. Poison the registered channel ends and registered (nested) exception 
constructs. A poisoned exception construct will propagate its poison. After all, all 
poisoned channel ends that were claimed by a process will be release. 

4. Throwing. The channel ends throw NULL exceptions, which exceptions propagate 
via the CSP constructs until they are caught by the exception construct. 

5. Healing. Before the exception handler is executed the registered channel ends and 
registered (nested) exception constructs must be healed. Otherwise these channel ends 
cannot be re-claimed by the exception handler. Those channel ends that belong to 
poisoned channels remain poisoned. Those channel ends cannot be re-claimed by the 
exception handler. 

6. Handling. The associated exception handler reads the exception set and handles each 
exception one by one. Exceptions that have been handled by the exception handler 
must be removed from the set. 

Step 1 is performed when no exception has occurred. The steps 2 till 6 are performed on 
the first occurrence of an exception. Each of these steps is explained in the following 
example. 

The example consists of the processes U, P, T and EH. See Figure 6. Process P is 
defined by the processes R and S. The communication relationships a, b and c, and the 
compositional relationships are depicted one diagram. The compositional relationships are 
in grey. Process P is related to the exception handler EH. The channel inputs and outputs 
are depicted by primitive reader and writer processes, respectively labelled with ‘?’ and ‘!’. 
These primitive reader and writer processes mark the channel ends of the associated 
channel. In R and S, the channel ends are related to a sequential composition, which 
defines: first input, then output. 

Each exception construct defines a scope to which a group of channel ends is related. 
This example illustrates that the channel ends in P are in the scope of the nearest exception 
construct associated with EH. The channel ends of U and T are not within the scope of the 
exception construct. 

The processes R and S are randomly scheduled on a single processor system. We start 
with process R. Assume R is performing the input on the channel a. Since the start of P, this 
is the first time this channel end is accessed. On this first access, the channel end is 
registered to the nearest exception construct. See step  in Figure 7. A second access does 
not require registering, since the channel end was already registered to an exception 
construct. Note that each thread keeps a reference to the exception construct to which it is 
part of. After S is scheduled, S is willing to input from channel b. Also this channel end will 
be registered to the exception construct in step . Process S is waiting for channel b. 
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Figure 6. Example of a program consisting of four processes U, P, T and EH.  

 
Figure 7. Registering of channel ends to the exception construct. 

In the meantime something bad happened with the implementation of channel b. After 
R is scheduled and received data from channel a, R is willing to output on channel b. Since 
the channel b is poisoned, its channel ends are also poisoned. Registering of a poisoned 
channel end is not necessary, which saves at least one registering operation. On the output 
operation, the channel end will notify the exception construct that an internal exception has 
occurred. See step  in Figure 8. The exception is collected by the exception construct. 

 
Figure 8. The channel notifies the exception construct that an exception has occurred. 

After notifying the occurrence of an exception to the exception construct, the exception 
construct will immediately poison all registered channel ends. A poisoned channel end will 
release its synchronization with any process. In this example, the registered channel ends 

P 

R S 

EH

T U 
? ??! !!

||

b ca 

|| ||

P 

R 
? !

S 

EH

T U 
? ?! !

||

b ca 

P 

R S 

EH

T U 
? ??! !!

||

b ca 



 G.H. Hilderink / Exception Handling Mechanism in CTJ 321 

were the input channel end in R and the input channel end in S. See step  in Figure 9. The 
input channel end in S is blocking S and therefore it will unblock S. The input channel end 
in R needs no unblocking, because R does no longer claim the channel end of a. 

The procedure of poisoning the registered channel ends can detect other exceptions in 
the associated channels. The newly detected exceptions will be collected by the exception 
construct. It is possible that not all exceptions are detected by this procedure. This is not a 
problem, since the yet undetected exceptions will be detected at a later time or they will not 
be detected at all. In the latter case, no harm will be done since these channel ends are never 
used again. 

 
Figure 9. The exception construct poisons the registered channel ends. 

The channel ends of a poisoned channel will throw NULL exceptions to each process 
that accesses the channel end. These exceptions are passed to the hierarchy of 
compositional constructs until the associated exception construct is reached. See the steps 

 and  for process R and the steps  and  for process S in Figure 10. 

 
Figure 10. NULL exceptions are thrown from the channel end up the parallel 

construct. 

The NULL exception does not contain information about the actual exception. Note: the 
actual exception was already collected in step  in Figure 8 and NULL exceptions are not 
collected. This concept of throwing NULL exceptions provides a mechanism of 
immediately terminating processes in modern programming languages, such as in Java and 
C++. In case a process performs an illegal instruction, an ordinary exception can be thrown 
instead of a NULL exception. This exception will be caught by the CSP construct in which 
the process runs. The CSP construct makes sure that the exception will be collected by the 
nearest exception construct and a single NULL exception will be thrown further. This way, 
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duplicated exceptions are avoided and sets of exceptions do not have to be thrown. 
Furthermore, compatibility is preserved with the try-catch clauses in Java or C++. 

The parallel construct will wait until all parallel branches have joined. Subsequently, a 
NULL exception is passed to the exception construct. See step  in Figure 11. The 
exception construct catches the NULL exceptions and it will try to heal the registered 
channel ends. See step . The channel ends of channel b cannot be healed and they remain 
poisoned as long as the channel remains poisoned. After healing, the exception construct 
will perform process EH. EH gets the set of exceptions. The set of exception must not be 
empty, otherwise EH can be ignored. The non-empty set of exceptions must be read by EH. 
The set of exceptions does not contain NULL exceptions. 

 
Figure 11. The parallel construct throws a NULL exception, which is caught by the 

exception construct. The exception construct tries to heal its channel ends 
before EH is executed. 

After EH has terminated and not all exceptions have been handled, the exception 
construct will notify the upper exception construct and passes the remaining exceptions to 
the exception construct in the same way as channel ends do. 

This example illustrates that the processes U and T are not affected by the exception in 
P. In case U and T must terminate due to an exception in P, the program must be designed 
such that the composition of exception constructs and exception handlers specify this 
behaviour. The method refuse() or poison() is not required. 

2.3. Example of Nested Exception Constructs 

An example of nested exception constructs is illustrated in this section. The steps in the 
previous described example are also briefly discussed in this example. This example 
illustrates that an exception constructs can be composed in various ways, which results in 
nested behaviours. The example will illustrate three kinds of behaviours which can be 
modelled with this exception handling mechanism. This example is implemented with CTJ. 

Figure 12 shows a CSP diagram of the parallel processes P, Q, R and S, which model a 
pipeline of communication via the channels a, b and c. The processes EHPQ and EHR are 
in parallel. 

The grey arrows in Figure 13 illustrate the registration of channel ends to their 
exception construct and the registration of lower exception constructs to upper exception 
constructs. This figure illustrates a complete registration of all elements, i.e. channel ends 
and nested exception constructs. The same arrows depict the possible paths of notification. 
The reverse arrows depict the paths of poisoning and healing the registered elements. See 
Figure 14. 
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Figure 12. Example of nested exception constructs. 

 
Figure 13. Registering elements to the nested exception constructs. 

 
Figure 14. Poisoning or healing elements. 
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In case channel a is in exception and process Q is the first process willing to 
communication via channel a, this process is the first to go in exception. That is, process Q 
will stop engaging in any event. The channel end will add the exception to the associated 
exception construct and throws a NULL exception. This notification starts with the bold 
arrow between the input of process Q and the exception construct. See Figure 15. 

 
Figure 15. Example of a chain reaction in a nested exception construct. 

The exception construct will immediately poison its registered channel ends. The 
exception remains hidden by the exception construct until the exception handler dealt with 
the exception and terminates. The exception cannot be observed by the upper exception 
construct. In case the exception handler terminates and one or more exceptions were not 
handled, the exceptions become observable by the upper exception construct. The exception 
will be notified and passed to the upper exception handler EH. See the chain reaction of the 
dotted arrows. The upper exception construct will poison all other registered elements. This 
makes sure that the sub-processes go into exception. After all sub-processes are in 
exception and the exception construct catches a NULL exception, the registered channel 
ends will be healed. Otherwise EH cannot reclaim the channel ends. See also Figure 14. 
After healing, the exception handler EH will be executed. 

When channel c is poisoned then the exception will be added to the exception construct 
of EHR or to the exception construct of EH. This choice depends on which thread of control 
in R or S was first to execute a channel end of c. 

Assume process S was executed before process R. See the bold arrow in Figure 16. This 
exception starts a chain reaction whereby all process in the scope of the exception construct 
will be poisoned. An exception construct that is poisoned before it executes will not execute 
at all. This can happen for the processes P, Q, and R in this example. 

In case process R outputs on c before S inputs on c, process EHR will be executed. If 
EHR uses channel ends then these channel ends will be poisoned when S is scheduled and 
tries to input from c. EHR will go into exception. However, EHR can perform 
communication events in the meantime. Thus, an exception in channel c results in a non-
deterministic choice between different traces of events. A trace of events is a sequence of 
events in which a process can engage. If certain traces of events are unwanted, the 
following measures can be applied for this example: 

1. EHR should be designed such that it immediately terminates when an exception occurs 
on channel c, i.e. it must not engage in any communication event. EH should take care 
of the exception, not EHR. 
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2. Process S could be executed at a higher priority than R, which makes the choice of 
possible traces of events deterministic. 

 
Figure 16. S detects exception before R on channel c. 

3. Example program 

3.1. Source Code of Program 

In this section, the CTJ (Java) code of the example in the previous section is listed. A 
detailed discussion of the implementation of  the exception construct itself is deferred to a 
later paper. 
 
 public static void main(String[] args) { 
 
  // Declare the channels and channel ends 
 
  final DataChannel<Integer> a = new DataChannel<Integer>(); 
  final ChanIn<Integer>  a_in  = a.in(); 
  final ChanOut<Integer> a_out = a.out(); 
   
  final DataChannel<Integer> b = new DataChannel<Integer>(); 
  final ChanIn<Integer>  b_in  = b.in(); 
  final ChanOut<Integer> b_out = b.out(); 
 
  final DataChannel<Integer> c = new DataChannel<Integer>(); 
  final ChanIn<Integer>  c_in  = c.in(); 
  final ChanOut<Integer> c_out = c.out(); 
 
  // Declare the processes 
 
  Process p = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("P: running"); 
     System.out.println("P: writing to channel a"); 
     a_out.write(10); 
     System.out.println("P: terminated"); 
    } 
  }; 
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  Process q = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("Q: running"); 
     System.out.println("Q: reading from channel a"); 
     int x = a_in.read(null); 
     System.out.println("Q: writing to channel b"); 
     b_out.write(x); 
     System.out.println("Q: terminated"); 
    } 
  }; 
 
  Process r = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("R: running"); 
     System.out.println("R: reading from channel b"); 
     int y = b_in.read(null); 
     System.out.println("R: writing to channel c"); 
     c_out.write(y); 
     System.out.println("R: terminated"); 
    } 
  }; 
   
  Process s = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("S: running"); 
     System.out.println("S: reading from channel c"); 
     int z = c_in.read(null); 
     System.out.println("S: value = " + z); 
     System.out.println("S: terminated"); 
    } 
  }; 
 
  // Declare the exception handlers 
 
  Process ehpq = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("EHPQ: running"); 
     LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet(); 
     //... 
     exclist.removeFirst(); // exception is handled, remove from set 
     System.out.println("EHPQ: terminated"); 
    } 
  }; 
   
  Process ehr = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("EHR: running"); 
     LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet();  
     //... 
     exclist.removeFirst(); // exception is handled, remove from set 
     System.out.println("EHR: terminated"); 
    } 
  }; 
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  Process eh = new Process() { 
   public void run()  
    throws Exception { 
     System.out.println("EH: running"); 
     LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet();  
     //... 
     exclist.removeFirst(); // exception is handled, remove from set 
     System.out.println("EH: terminated"); 
    } 
  }; 
 
  // Declaring the compositional construct 
 
  Process proc = new ExceptionCatch( 
          new Parallel(new Process[] { 
            new ExceptionCatch( 
              new Parallel(new Process[] {p,q}), 
              ehpq), 
            new ExceptionCatch( 
              r, 
              ehr) 
            ,s, 
            }), 
          eh); 
 
  // Poison one or more channels to study its effects 
 
  csp.lang.System.refuse(c, new Exception("Exception in channel c")); 
 
  // Start the program 
 
  try { 
   proc.run(); 
  } catch (Exception ex) { 
   java.lang.System.out.println("Exception = " + ex); 
  } 
  java.lang.System.out.println("\nProgram has terminated"); 
 } 
} 

 
After a data channel is declared, its input and output channel ends must be received 

from the channel using respectively the in() and out() methods on the channel. The 
processes can read from a input channel end or write on a output channel end. 

The references to the channel ends are final, which channel ends are allowed to be 
directly used by the processes. This makes the use of constructors superfluous and keeps 
the program compact (for the purpose of this paper). 

The exception construct is implemented by the process ExceptionCatch. An 
exception handler must retrieve the set of exceptions with 

LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet(); 

The getExceptionSet() method is a read-only static method. The method returns 
the set of exception. Note: The ExceptionCatch plays the role of a call-channel. Any 
process can invoke the getExceptionSet() method. Only exception handlers can 
retrieve the set of exceptions; otherwise the set will be empty. This also implies that the set 
of exception can be retrieved by parallel exception handlers associated to the same 
exception construct. 
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The exception handler can retrieve the first exception in the set with 
exclist.getFirst() as shown in the example. Since the set is an iteration object, 
other useful methods are available. After the exception has been handled, it must be 
removed from the set with exclist.removeFirst() or with other methods that are 
specified by the iteration object. Careful, a race-condition of simultaneously deleting 
elements must be prevented. Therefore, parallel exception handling must be disjoint. 
Handling exception twice is asking for trouble anyways. 

3.2. Results 

In case, channel c is poisoned, the three possible paths of abnormal termination are given in 
the Table 1. 

Table 1. Output of the program with channel c poisoned. 

Result 1 Result 2 Result 3 
 
Q: running 
Q: reading from channel a 
P: running 
P: writing to channel a 
P: terminated 
Q: writing to channel b 
R: running 
R: reading from channel b 
R: writing to channel c 
EHR: running 
EHR: terminated 
Q: terminated 
S: running 
S: reading from channel c 
EH: running 
EH: terminated 
 
Program has terminated 
 

 
S: running 
S: reading from channel c 
EH: running 
EH: terminated 
 
Program has terminated 
 

 
Q: running 
Q: reading from channel a 
P: running 
P: writing to channel a 
P: terminated 
Q: writing to channel b 
S: running 
S: reading from channel c 
EH: running 
EH: terminated 
 
Program has terminated 
 

4. Discussion 

The steps that are performed by the implementation of the exception construct and channel 
ends are concurrent paths of executions. These paths of execution must be properly 
synchronized. This resulted in a multithreaded object-oriented framework that is too 
detailed for the human mind. Fortunately, the exception construct encapsulates this 
framework and turns it into a simple and secure design pattern. 

The exception handling mechanism has been carefully designed such that the overhead 
is reasonable low. The overhead is allotted to the process of registering, poisoning and 
healing of channel ends and nested exception constructs. 

A program that does not move channel ends or processes around will register its 
channel ends and its lower exception constructs only once. For a program that is never in 
exception this costs an instruction (i.e. a Boolean check which remain false) for each 
channel end and entering or leaving the exception constructs. In case the program never 
goes into exception, the exception constructs can be removed from the composition. This 
design decision lowers the overhead even further. In most cases, there is always one outer 
exception construct present. For example, this outer exception construct prints the strings of 
exceptions in the console provided by the operating system. 
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After the channel ends and nested exception constructs are registered to the upper 
exception construct, the process of poisoning or healing by the upper exception construct is 
based on a short list of elements. Poisoning and healing is straightforward, deterministic 
and light weight. 

There can be more than one path of abnormal termination for a single exception. See 
Section 3.2. The performance of each path of abnormal termination needs to be taken into 
account for real-time systems. As long as the traces of events are deterministic, the delays 
will be deterministic. Poisoning channels and processes via the exception construct is faster 
than gracefully termination [8] and faster than poisoning channel ends by processes [6]. 

The read and write operations can be viewed as illegal instructions. Hence, throwing 
exceptions by channels is similar to throwing exceptions by illegal instructions. Therefore 
this approach does not conflict with the ordinary try-catch mechanism in Java or C++. 

The application programming interface (API) was not affected by adding the exception 
construct to CTJ. The protected interfaces of the channel ends required a few additional 
methods for poisoning and healing the channel ends. These methods are invisible for the 
user. 

A process that performs an infinite loop and which does not invoke channel ends, 
cannot be poisoned via channel ends. In this circumstance the static method 
Expr.evaluate(Boolean expression) can be used in while(..) statements; 
e.g. while(Expr.evaluate(i<j)) { … }. Normally, the method returns the result 
of the Boolean expression. The surrounding exception construct can poison the method so 
that it will throw a NULL exception. The loop will immediately terminate. 

In future work, the implementation of the exception construct need to be formalized and 
model-checked in order to prove that the implementation is free from pathological 
problems, such as race-hazards, deadlock or livelock. 

The alternative construct was not discussed in the examples. The alternative construct 
has been adapted to support asynchronous exceptions. The alternative construct has the 
simple task not to perform when at least on guard is poisoned. This is obvious, since no 
legitimate choice can be made when a guard is poisoned. In CTJ, a channel end can play the 
role of a guard. The exception of each poisoned guard must be notified to the surrounding 
exception construct, which collects all the exceptions. Subsequently, the alternative 
construct will throw a NULL exception. 

5. Conclusions 

We succeeded to build a simple exception construct in CJT for capturing exceptions in 
concurrent systems. The steps that are required to perform the exception handling 
mechanism were discussed. This mechanism illustrates the coherency between channel 
ends, the compositional exception constructs, and the CSP constructs. 

Errors in hardware, which cannot be fixed by the underlying software layer, will nicely 
propagate as exceptions via channel towards the exception handling processes in the 
program. 

The use of exception constructs is orthogonal to the development of processes. 
Processes that are reused can be included in exception handling without modifying those 
processes. There is one exception for processes with infinite loops that do not communicate 
via channels. In this case, a Expr.evaluate(..) method is required in the 
while(..) statement, which can be poisoned by the surrounding exception construct. 

The detection of an exception at more than one place in a concurrent program defines 
multiple paths of exception handling. The choice of one of these paths is likely to be non-
deterministic due to the non-deterministic behaviour of thread scheduling. This approach 
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makes non-deterministic paths of exception handling observable and traceable at an 
appropriate level of abstraction. 

The concept of poisoning channels and processes is intuitive and easy to understand. 
The behaviour of exception handling is attributed to the composition of constructs. This 
approach is justified in CSP terms. The semantics of this exception construct is informal 
and need to be formalized in CSP. A full CSP description is in our future work plans. 
Researchers are invited to contribute. 
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