
Communicating Process Architectures 2005 313
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

Exception Handling Mechanism in
Communicating Threads for Java

Gerald. H. HILDERINK
Boulevard 1945 – 139, 7500 AE, Enschede, The Netherlands

g.h.hilderink@zonnet.nl

Abstract. The concept of exception handling is important for building reliable
software. An exception construct is proposed in this paper, which implements an
exception handling mechanism that is suitable for concurrent software architectures.
The aim of this exception construct is to bring exception handling to a high-level of
abstraction such that exception handling does scale well with the complexity of the
system. This is why the exception construct supports a CSP-based software design
approach. The proposed exception construct embraces informal semantics, but
which are intuitive and suitable to software engineering. The exception construct is
prototyped in the CSP for Java library, called CTJ.

Keywords. Exception handling, CSP, concurrency, real-time, embedded software.

Introduction

Reliable software should deal with all circumstances in its environment, which can affect
the behaviour of the program. The environment of the program encompasses the computer
hardware. Unusual circumstances are exceptional occurrences that can bring the program,
when not dealt with, in a state of undesirable behaviour. This causes an exceptional state,
which manifests an error or simply an exception. The processes in the program that are
affected by the exception should not progress after the occurrence of the exception. Each
process that is encountering an exception should escape to a handler process that is able to
deal with the exception. This handler process is called an exception handler.

Reasoning about the behaviour of the program in the presence of exceptions can be very
complex. Branching to an exception handler can occur at many places in the program.
Exceptions occurring in exception handlers require branching from exception handler to
exception handler. Exceptions are related to the concurrent behaviour of the system.
Exceptions can occur asynchronously and simultaneously in concurrent systems. There can
be too many states to consider when tracing the behaviour of exception handling.

Exceptions should be handled by proper design concepts that deal with its complexities.
A proper concurrency model is inevitable in order to manage the complexity of exception
handling. Proper design concepts can be found in the CSP concurrency model. The CSP
concepts provide sufficient abstraction, compositionality and sound semantics that are very
suitable for designing and implementing mission-critical embedded software. However,
CSP does not specify a simple solution for describing exception handling.

An informal description of an exception construct is presented, which offers a simple
solution to handle exceptions in concurrent software architectures. On one hand, the
approach is in accordance with CSP terminology. A formal description and analysis in CSP
is not part of this paper. The feasibility of the exception construct has been investigated.
The exception constructs has been prototyped in the Communicating Threads for Java

314 G.H. Hilderink / Exception Handling Mechanism in CTJ

(CTJ) library [1; 2]. On the other hand, the approach is based on a software engineering
perspective.

The notion of exceptions is discussed in Section 1. This notion follows the CSP
terminology. The role of the environment of the program, poisoning channels and processes
are discussed. The concept of exception handling is discussed in Section 2. An example
program with nested exception constructs is described in Section 3. Various aspects of the
exception construct are discussed in Section 5. Section 5 deals with the conclusions.

1. Exceptions

1.1. Processes, Events, and Channels

An elegant way to design an implement mission-critical software in embedded systems
is the use of Communicating Sequential Processes (CSP) concepts [3; 4]. CSP is a theory of
programming, which offers formal concepts for describing and reasoning about the
behaviour of concurrent systems. Furthermore, CSP offers pragmatic concepts and
guidelines for developing reliable and robust concurrent process architectures. These
concepts are process-oriented and they offer abstraction, compositionality, separation of
concerns and a concurrency model with simple and clean semantics.

CSP is a notation for describing concurrent systems by means of processes and events.
Processes are self-contained entities, which are defined in terms of events. Processes do not
see each other, but they interact with other processes via channels. An event is an
occurrence in time and space. An event represents a mutual synchronisation between two or
more processes. A process that is willing to engage in an event must wait until other
processes are also willing to engage in the event. This is called the rendezvous or
handshake principle.

The rendezvous between two processes that are willing to communicate via a shared
channel is called the communication event. A process that successfully terminates engages
in a termination event with its subsequent process.

1.2. Process in Exception

An exception is a state in which

a) An instruction is causing an error and the instruction cannot complete or successfully
terminate; e.g. division by zero or illegal address.

b) A communication event is refused by the environment of the program; e.g. the
channel implementation is malfunctioning.

In either case, the environment in which the program runs cannot let a process continue
after the point of exception. A process in exception will never engage in any event after the
exception has been raised in the process; i.e. it behaves as STOP. Furthermore, a process is
in exception when at least one of its sub-processes is in exception.

Conceptually, the exception handling mechanism interrupts the process in exception
and it will be replaced by the exception handler. If the exception handler terminates, the
exception handling process terminates normally.

1.3. The Role of the Environment

The role of the environment in the exception handling mechanism is important in order to
understand the source of exceptions. For some reason it could happen that a device in
hardware (the environment of the program) is malfunctioning and it cannot establish or

 G.H. Hilderink / Exception Handling Mechanism in CTJ 315

complete communication. In other words, the communication event is refused by the
environment of the program. The event will never occur and the process may wait forever
for the event to happen. This could cause the program to deadlock or livelock. This is an
inconvenient circumstance, which manifests an exception. It is more convenient for the
program to escape from the exception and to do something useful; e.g. dealing with the
exception.

The environment of a program is usually something complex from which the software
engineer wants to abstract away from. The software engineer is interested in the causality
between a misbehaving environment and the behaviour of the program. The CSP channel
model supports this view.

Figure 1 illustrates two parallel processes communicating via channel c. The figure is
called a CSP diagram [1]. The writer process W writes data to the channel and the reader
process R reads the data from the channel. The figure does not show exactly when they
communicate. The points of communication will be illustrated in Section 2.2. During the
design of a program, the environment is not included in the design, but its effect on the
design should be considered.

Figure 1. Two parallel processes communicate via a channel (CSP diagram).

The abstract role of the environment is illustrated in Figure 2. Figure 2aillustrates that
the environment can be depicted as a parallel process, named ENV. The environmental
process ENV is listening on channel c and it decides whether or not to participate in the
communication event. ENV is dotted to illustrate that the environmental process is hidden
in the design, but it is an integral part of the implementation of the design. In fact, the
channel implementation can be viewed as an environmental process, because the channel
implementation directly controls the underlying hardware. The interface of the channel
separates the program from its environment. The processes in the program should only
access the devices via channels. This abstraction and separation of concern keeps the
processes free from hardware depending code. Of course, this hardware-independency
excludes the integrity of the processes, i.e. processes depend on the data provided by the
channels (or devices).

Figure 2. The role of the environmental process.

In case the channel c breaks, the environment will refuse c from happening. This is
illustrated in Figure 2b. Instead, the channel will throw (or raise) an exception to each

W R W R
c c

throw
exception

environment accepts c environment refuses c

(a) Environment is functioning properly (b) Environment is malfunctioning

ENV ENV
throw

exception

W R
c

(a) Communication diagram

W R
||

(b) Composition diagram

316 G.H. Hilderink / Exception Handling Mechanism in CTJ

involved process. The grey arrows indicate the source and destination of throwing
exceptions from the channel implementation to the invoking processes.

The channel is modelled as an active partner process in its communications, that can be
put into “refusal” and exception-throwing mode, where “exceptions” are just events for
which other processes have (CSP) interrupt handlers awaiting.

1.4. Poisoning Channels and Processes

A channel being refused by the environment of the program is called a poisoned channel. A
poisoned channel will never cause a communication event to happen as long as it is
poisoned. A poisoned channel devotes its channel ends to throw exceptions to the processes
that are willing to communicate via its poisoned channel ends. After the exception is
thrown, the process is poisoned and it will eventually die; i.e. a poisoned process never
engages in any event with its environment and it never terminates normally. Successively,
the exception will be caught by a surrounding exception construct.

In CTJ, the methods refuse(channel), refuse(channel,exc) and
accept(channel) were introduced [2]. These methods are defined by a static call-
channel that is connected to the environmental process ENV. Invoking one of the refuse
methods will request a “refuse” service from the environmental process ENV. After ENV
accepts the request, any communication event on the specified channel will be refused. In
case the exception argument exc is specified, the channel will throw exc via the channel
ends on which processes are willing to perform the read or write methods. For example,
invoking refuse(c,exc) corresponds to the situation as depicted Figure 2b. We prefer
the method name refuse rather than poison, which is in accordance with the CSP
terminology of “refusals”. The method accept(channel) requests the environmental
process to accept communication events on channel; i.e. undo the poisoning, if possible.

The refuse(..) and accept(..) methods are meant to be used by the
implementation of channels or by the underlying kernel. The program could use these
methods for studying the effects of poisoning channels on the behaviour of the program; i.e.
simulating the effect of malfunctioning devices. In all other situations, we do not encourage
these methods to be used by the program. Poisoning channels by processes can be error-
prone and therefore it should not be encouraged for deliberately killing processes. For
example, poisoning channels by an exception handler could cause exceptions to propagate
outside the scope of the exception construct. If this is not desired, poisoning channels is not
useful.

The C++CSP library [5; 6] uses a different approach, whereby the poison() method
is part of the channel interface. This is called stateful poisoning of channels. A process is
being poisoned while attempting to access a poisoned channel must poison all channels it
uses before terminating gracefully. Special functions can be used, which provide channel
ends that cannot be used to poison the channel. Processes can choose whether the channel
ends they pass to their sub-processes can be poisoned or not.

The use of the refuse(..) or poison(..) methods by processes is error-prone
and it will complicate the understanding of the epidemic of poisoning. It is safer to leave
the killing (deliberately poisoning) of processes up to the channels and the exception
constructs. A process in exception does not need to poison its channel ends. The poisoning
of channel ends should be performed by the exception constructs. This mechanism is
elaborated in Section 2.

 G.H. Hilderink / Exception Handling Mechanism in CTJ 317

1.5. Termination and Resumption

This exception handling approach encompasses two models of exception handling, namely:

Resumption model. The resumption model allows an exception handler to correct the
exception and then return to the point where the exception was thrown. This requires
that recovery is possible with acceptable overhead costs. The resumption model is
most easily understood by viewing the exception handler as an implicit procedure
which is called when the exception is raised. The resumption model is also called retry
model [7].

Termination model. In the termination model, control never returns to the point in the
program execution where the exception was raised. This will result in the executing
process being terminated. The termination model is necessary when error recovery is
not possible, or difficult to realize, with acceptable overhead costs. The termination
model is also called escape model [7].

Error recovery or resumption is sometimes possible at the level of communication, i.e.
by the channels. The channel implementation can detect errors and possibly fix them with
if-then-else or try-catch constructs. In case the error is fixed and communication is re-
established by the channel, this can be viewed as resumption. In this case, processes are not
aware of any exceptions that were fixed. A channel that cannot fix the internal error should
escape from resumption. The channel should raise (or throw) an exception via its interface
to the process domain. The process domain and the channel domain are depicted in Figure 3.

Figure 3. Process and channel domains.

The channel interface separates both domains. The process domain supports the
termination model and the channel domain supports the resumption and the termination
model. The exception construct resides in the process domain and supports the termination
model.

2. Exception handling

2.1. Exception Construct

In Hilderink [1], a notation was introduced to describe exception handling in a
compositional way. The exception handling is based on an exception construct with a
formal graphical syntax, but with informal semantics. The exception construct composes
two processes P and EH, which is written as:

P EHΔ exception construct

try-catch
if then

devices

channel

processes

process domain

channel domain

318 G.H. Hilderink / Exception Handling Mechanism in CTJ

This process behaves as EH when P is in exception; otherwise it behaves as P. Process
P is in exception on the occurrence of an error from which P must not continue. At the
point of exception P behaves as STOP. Process EH is the exception handler.

On the occurrence of an exception, the exception construct requires that all the channel
ends, being claimed by P, are released. The exception construct must reckon with a
complex composition of sub-processes of P. The released channel ends can be re-claimed
by other processes, for example, by the exception handler EH. A poisoned channel end
cannot be re-claimed as long as it is poisoned. The exception construct has resemblance
with the interrupt operator in CSP. We will omit a theoretical discussion between the
formal interrupt operator and the informal exception construct.

Consider the CSP diagram in Figure 1. This example is enhanced with exception
constructs. Figure 4 illustrates two different enhancements. The processes are shown
transparently. Each compositional diagram depicts a different composition. Figure 4a
illustrates the two processes W and R that are each guarded by an exception construct.
Exception handler EHW deals with the exception at the writer’s side of channel c and EHR
deals with the reader’s side of channels c. On exception in c, the processes EHW and EHR
run in parallel. Figure 4b illustrates the circumstance where the exception handler EH deals
with both sides of channel c. EH could be any sequence of EHW and EHR.

Figure 4. Compositional diagrams enhanced with exception handling.

Figure 5 shows an equivalence property between two compositions. The process SKIP
doesn’t do anything, except successfully terminating. Since SKIP does not deal with any
exception and therefore the exception handler EH will take over.

Figure 5. Equivalent exception compositions.

P

W R

≡ SKIP SKIP

||
W R

EH

||

EH

P

Y X

W R

(a) Disjoint exception constructs.

EHW EHR

||

P

W R

EH

||

(b) Joint exception construct.

 G.H. Hilderink / Exception Handling Mechanism in CTJ 319

2.2. Exception Handling Mechanism

The conceptual behaviour of the exception handling mechanism of the proposed exception
construct is described in this section. The required steps that are performed by the
mechanism are explained by a simple example. Furthermore, the channel ends and the
scope of the exception construct are explained.

The following steps that are taken by the exception handling mechanism:

1. Registering. Register each channel end and nested exception construct, being
invoked by a process, to the surrounding exception construct.

2. Notifying. Notify the exception construct that an exception has occurred and the
exception will be collected by the exception construct.

3. Poisoning. Poison the registered channel ends and registered (nested) exception
constructs. A poisoned exception construct will propagate its poison. After all, all
poisoned channel ends that were claimed by a process will be release.

4. Throwing. The channel ends throw NULL exceptions, which exceptions propagate
via the CSP constructs until they are caught by the exception construct.

5. Healing. Before the exception handler is executed the registered channel ends and
registered (nested) exception constructs must be healed. Otherwise these channel ends
cannot be re-claimed by the exception handler. Those channel ends that belong to
poisoned channels remain poisoned. Those channel ends cannot be re-claimed by the
exception handler.

6. Handling. The associated exception handler reads the exception set and handles each
exception one by one. Exceptions that have been handled by the exception handler
must be removed from the set.

Step 1 is performed when no exception has occurred. The steps 2 till 6 are performed on
the first occurrence of an exception. Each of these steps is explained in the following
example.

The example consists of the processes U, P, T and EH. See Figure 6. Process P is
defined by the processes R and S. The communication relationships a, b and c, and the
compositional relationships are depicted one diagram. The compositional relationships are
in grey. Process P is related to the exception handler EH. The channel inputs and outputs
are depicted by primitive reader and writer processes, respectively labelled with ‘?’ and ‘!’.
These primitive reader and writer processes mark the channel ends of the associated
channel. In R and S, the channel ends are related to a sequential composition, which
defines: first input, then output.

Each exception construct defines a scope to which a group of channel ends is related.
This example illustrates that the channel ends in P are in the scope of the nearest exception
construct associated with EH. The channel ends of U and T are not within the scope of the
exception construct.

The processes R and S are randomly scheduled on a single processor system. We start
with process R. Assume R is performing the input on the channel a. Since the start of P, this
is the first time this channel end is accessed. On this first access, the channel end is
registered to the nearest exception construct. See step in Figure 7. A second access does
not require registering, since the channel end was already registered to an exception
construct. Note that each thread keeps a reference to the exception construct to which it is
part of. After S is scheduled, S is willing to input from channel b. Also this channel end will
be registered to the exception construct in step . Process S is waiting for channel b.

320 G.H. Hilderink / Exception Handling Mechanism in CTJ

Figure 6. Example of a program consisting of four processes U, P, T and EH.

Figure 7. Registering of channel ends to the exception construct.

In the meantime something bad happened with the implementation of channel b. After
R is scheduled and received data from channel a, R is willing to output on channel b. Since
the channel b is poisoned, its channel ends are also poisoned. Registering of a poisoned
channel end is not necessary, which saves at least one registering operation. On the output
operation, the channel end will notify the exception construct that an internal exception has
occurred. See step in Figure 8. The exception is collected by the exception construct.

Figure 8. The channel notifies the exception construct that an exception has occurred.

After notifying the occurrence of an exception to the exception construct, the exception
construct will immediately poison all registered channel ends. A poisoned channel end will
release its synchronization with any process. In this example, the registered channel ends

P

R S

EH

T U
? ??! !!

||

b ca

|| ||

P

R
? !

S

EH

T U
? ?! !

||

b ca

P

R S

EH

T U
? ??! !!

||

b ca

 G.H. Hilderink / Exception Handling Mechanism in CTJ 321

were the input channel end in R and the input channel end in S. See step in Figure 9. The
input channel end in S is blocking S and therefore it will unblock S. The input channel end
in R needs no unblocking, because R does no longer claim the channel end of a.

The procedure of poisoning the registered channel ends can detect other exceptions in
the associated channels. The newly detected exceptions will be collected by the exception
construct. It is possible that not all exceptions are detected by this procedure. This is not a
problem, since the yet undetected exceptions will be detected at a later time or they will not
be detected at all. In the latter case, no harm will be done since these channel ends are never
used again.

Figure 9. The exception construct poisons the registered channel ends.

The channel ends of a poisoned channel will throw NULL exceptions to each process
that accesses the channel end. These exceptions are passed to the hierarchy of
compositional constructs until the associated exception construct is reached. See the steps

 and for process R and the steps and for process S in Figure 10.

Figure 10. NULL exceptions are thrown from the channel end up the parallel

construct.

The NULL exception does not contain information about the actual exception. Note: the
actual exception was already collected in step in Figure 8 and NULL exceptions are not
collected. This concept of throwing NULL exceptions provides a mechanism of
immediately terminating processes in modern programming languages, such as in Java and
C++. In case a process performs an illegal instruction, an ordinary exception can be thrown
instead of a NULL exception. This exception will be caught by the CSP construct in which
the process runs. The CSP construct makes sure that the exception will be collected by the
nearest exception construct and a single NULL exception will be thrown further. This way,

U

P

R S

EH

T
?? !!

||

b ca
?!

P

R S

EH

T U
?? !!

||

b
?!

ca

322 G.H. Hilderink / Exception Handling Mechanism in CTJ

duplicated exceptions are avoided and sets of exceptions do not have to be thrown.
Furthermore, compatibility is preserved with the try-catch clauses in Java or C++.

The parallel construct will wait until all parallel branches have joined. Subsequently, a
NULL exception is passed to the exception construct. See step in Figure 11. The
exception construct catches the NULL exceptions and it will try to heal the registered
channel ends. See step . The channel ends of channel b cannot be healed and they remain
poisoned as long as the channel remains poisoned. After healing, the exception construct
will perform process EH. EH gets the set of exceptions. The set of exception must not be
empty, otherwise EH can be ignored. The non-empty set of exceptions must be read by EH.
The set of exceptions does not contain NULL exceptions.

Figure 11. The parallel construct throws a NULL exception, which is caught by the

exception construct. The exception construct tries to heal its channel ends
before EH is executed.

After EH has terminated and not all exceptions have been handled, the exception
construct will notify the upper exception construct and passes the remaining exceptions to
the exception construct in the same way as channel ends do.

This example illustrates that the processes U and T are not affected by the exception in
P. In case U and T must terminate due to an exception in P, the program must be designed
such that the composition of exception constructs and exception handlers specify this
behaviour. The method refuse() or poison() is not required.

2.3. Example of Nested Exception Constructs

An example of nested exception constructs is illustrated in this section. The steps in the
previous described example are also briefly discussed in this example. This example
illustrates that an exception constructs can be composed in various ways, which results in
nested behaviours. The example will illustrate three kinds of behaviours which can be
modelled with this exception handling mechanism. This example is implemented with CTJ.

Figure 12 shows a CSP diagram of the parallel processes P, Q, R and S, which model a
pipeline of communication via the channels a, b and c. The processes EHPQ and EHR are
in parallel.

The grey arrows in Figure 13 illustrate the registration of channel ends to their
exception construct and the registration of lower exception constructs to upper exception
constructs. This figure illustrates a complete registration of all elements, i.e. channel ends
and nested exception constructs. The same arrows depict the possible paths of notification.
The reverse arrows depict the paths of poisoning and healing the registered elements. See
Figure 14.

P

R S

EH

T U
!!

||

b ca
?! ? ?

 G.H. Hilderink / Exception Handling Mechanism in CTJ 323

Figure 12. Example of nested exception constructs.

Figure 13. Registering elements to the nested exception constructs.

Figure 14. Poisoning or healing elements.

 Q R

EH

S P
? ??! !!

EHR
EHPQ

a b c

Q R

EH

S P
? ??! !!

||

a

||||

EHR
EHPQ

||

b c

 Q R

EH

S P
? ??! !!

EHR
EHPQ

a b c

324 G.H. Hilderink / Exception Handling Mechanism in CTJ

In case channel a is in exception and process Q is the first process willing to
communication via channel a, this process is the first to go in exception. That is, process Q
will stop engaging in any event. The channel end will add the exception to the associated
exception construct and throws a NULL exception. This notification starts with the bold
arrow between the input of process Q and the exception construct. See Figure 15.

Figure 15. Example of a chain reaction in a nested exception construct.

The exception construct will immediately poison its registered channel ends. The
exception remains hidden by the exception construct until the exception handler dealt with
the exception and terminates. The exception cannot be observed by the upper exception
construct. In case the exception handler terminates and one or more exceptions were not
handled, the exceptions become observable by the upper exception construct. The exception
will be notified and passed to the upper exception handler EH. See the chain reaction of the
dotted arrows. The upper exception construct will poison all other registered elements. This
makes sure that the sub-processes go into exception. After all sub-processes are in
exception and the exception construct catches a NULL exception, the registered channel
ends will be healed. Otherwise EH cannot reclaim the channel ends. See also Figure 14.
After healing, the exception handler EH will be executed.

When channel c is poisoned then the exception will be added to the exception construct
of EHR or to the exception construct of EH. This choice depends on which thread of control
in R or S was first to execute a channel end of c.

Assume process S was executed before process R. See the bold arrow in Figure 16. This
exception starts a chain reaction whereby all process in the scope of the exception construct
will be poisoned. An exception construct that is poisoned before it executes will not execute
at all. This can happen for the processes P, Q, and R in this example.

In case process R outputs on c before S inputs on c, process EHR will be executed. If
EHR uses channel ends then these channel ends will be poisoned when S is scheduled and
tries to input from c. EHR will go into exception. However, EHR can perform
communication events in the meantime. Thus, an exception in channel c results in a non-
deterministic choice between different traces of events. A trace of events is a sequence of
events in which a process can engage. If certain traces of events are unwanted, the
following measures can be applied for this example:

1. EHR should be designed such that it immediately terminates when an exception occurs
on channel c, i.e. it must not engage in any communication event. EH should take care
of the exception, not EHR.

 Q R

EH

S P
? ??! !!

EHR
EHPQ

 a b c

 G.H. Hilderink / Exception Handling Mechanism in CTJ 325

2. Process S could be executed at a higher priority than R, which makes the choice of
possible traces of events deterministic.

Figure 16. S detects exception before R on channel c.

3. Example program

3.1. Source Code of Program

In this section, the CTJ (Java) code of the example in the previous section is listed. A
detailed discussion of the implementation of the exception construct itself is deferred to a
later paper.

 public static void main(String[] args) {

 // Declare the channels and channel ends

 final DataChannel<Integer> a = new DataChannel<Integer>();
 final ChanIn<Integer> a_in = a.in();
 final ChanOut<Integer> a_out = a.out();

 final DataChannel<Integer> b = new DataChannel<Integer>();
 final ChanIn<Integer> b_in = b.in();
 final ChanOut<Integer> b_out = b.out();

 final DataChannel<Integer> c = new DataChannel<Integer>();
 final ChanIn<Integer> c_in = c.in();
 final ChanOut<Integer> c_out = c.out();

 // Declare the processes

 Process p = new Process() {
 public void run()
 throws Exception {
 System.out.println("P: running");
 System.out.println("P: writing to channel a");
 a_out.write(10);
 System.out.println("P: terminated");
 }
 };

 Q R

EH

S P
? ??! !!

EHR
EHPQ

a b c

326 G.H. Hilderink / Exception Handling Mechanism in CTJ

 Process q = new Process() {
 public void run()
 throws Exception {
 System.out.println("Q: running");
 System.out.println("Q: reading from channel a");
 int x = a_in.read(null);
 System.out.println("Q: writing to channel b");
 b_out.write(x);
 System.out.println("Q: terminated");
 }
 };

 Process r = new Process() {
 public void run()
 throws Exception {
 System.out.println("R: running");
 System.out.println("R: reading from channel b");
 int y = b_in.read(null);
 System.out.println("R: writing to channel c");
 c_out.write(y);
 System.out.println("R: terminated");
 }
 };

 Process s = new Process() {
 public void run()
 throws Exception {
 System.out.println("S: running");
 System.out.println("S: reading from channel c");
 int z = c_in.read(null);
 System.out.println("S: value = " + z);
 System.out.println("S: terminated");
 }
 };

 // Declare the exception handlers

 Process ehpq = new Process() {
 public void run()
 throws Exception {
 System.out.println("EHPQ: running");
 LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet();
 //...
 exclist.removeFirst(); // exception is handled, remove from set
 System.out.println("EHPQ: terminated");
 }
 };

 Process ehr = new Process() {
 public void run()
 throws Exception {
 System.out.println("EHR: running");
 LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet();
 //...
 exclist.removeFirst(); // exception is handled, remove from set
 System.out.println("EHR: terminated");
 }
 };

 G.H. Hilderink / Exception Handling Mechanism in CTJ 327

 Process eh = new Process() {
 public void run()
 throws Exception {
 System.out.println("EH: running");
 LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet();
 //...
 exclist.removeFirst(); // exception is handled, remove from set
 System.out.println("EH: terminated");
 }
 };

 // Declaring the compositional construct

 Process proc = new ExceptionCatch(
 new Parallel(new Process[] {
 new ExceptionCatch(
 new Parallel(new Process[] {p,q}),
 ehpq),
 new ExceptionCatch(
 r,
 ehr)
 ,s,
 }),
 eh);

 // Poison one or more channels to study its effects

 csp.lang.System.refuse(c, new Exception("Exception in channel c"));

 // Start the program

 try {
 proc.run();
 } catch (Exception ex) {
 java.lang.System.out.println("Exception = " + ex);
 }
 java.lang.System.out.println("\nProgram has terminated");
 }
}

After a data channel is declared, its input and output channel ends must be received

from the channel using respectively the in() and out() methods on the channel. The
processes can read from a input channel end or write on a output channel end.

The references to the channel ends are final, which channel ends are allowed to be
directly used by the processes. This makes the use of constructors superfluous and keeps
the program compact (for the purpose of this paper).

The exception construct is implemented by the process ExceptionCatch. An
exception handler must retrieve the set of exceptions with

LinkedList<Exception> exclist = ExceptionCatch.getExceptionSet();

The getExceptionSet() method is a read-only static method. The method returns
the set of exception. Note: The ExceptionCatch plays the role of a call-channel. Any
process can invoke the getExceptionSet() method. Only exception handlers can
retrieve the set of exceptions; otherwise the set will be empty. This also implies that the set
of exception can be retrieved by parallel exception handlers associated to the same
exception construct.

328 G.H. Hilderink / Exception Handling Mechanism in CTJ

The exception handler can retrieve the first exception in the set with
exclist.getFirst() as shown in the example. Since the set is an iteration object,
other useful methods are available. After the exception has been handled, it must be
removed from the set with exclist.removeFirst() or with other methods that are
specified by the iteration object. Careful, a race-condition of simultaneously deleting
elements must be prevented. Therefore, parallel exception handling must be disjoint.
Handling exception twice is asking for trouble anyways.

3.2. Results

In case, channel c is poisoned, the three possible paths of abnormal termination are given in
the Table 1.

Table 1. Output of the program with channel c poisoned.

Result 1 Result 2 Result 3

Q: running
Q: reading from channel a
P: running
P: writing to channel a
P: terminated
Q: writing to channel b
R: running
R: reading from channel b
R: writing to channel c
EHR: running
EHR: terminated
Q: terminated
S: running
S: reading from channel c
EH: running
EH: terminated

Program has terminated

S: running
S: reading from channel c
EH: running
EH: terminated

Program has terminated

Q: running
Q: reading from channel a
P: running
P: writing to channel a
P: terminated
Q: writing to channel b
S: running
S: reading from channel c
EH: running
EH: terminated

Program has terminated

4. Discussion

The steps that are performed by the implementation of the exception construct and channel
ends are concurrent paths of executions. These paths of execution must be properly
synchronized. This resulted in a multithreaded object-oriented framework that is too
detailed for the human mind. Fortunately, the exception construct encapsulates this
framework and turns it into a simple and secure design pattern.

The exception handling mechanism has been carefully designed such that the overhead
is reasonable low. The overhead is allotted to the process of registering, poisoning and
healing of channel ends and nested exception constructs.

A program that does not move channel ends or processes around will register its
channel ends and its lower exception constructs only once. For a program that is never in
exception this costs an instruction (i.e. a Boolean check which remain false) for each
channel end and entering or leaving the exception constructs. In case the program never
goes into exception, the exception constructs can be removed from the composition. This
design decision lowers the overhead even further. In most cases, there is always one outer
exception construct present. For example, this outer exception construct prints the strings of
exceptions in the console provided by the operating system.

 G.H. Hilderink / Exception Handling Mechanism in CTJ 329

After the channel ends and nested exception constructs are registered to the upper
exception construct, the process of poisoning or healing by the upper exception construct is
based on a short list of elements. Poisoning and healing is straightforward, deterministic
and light weight.

There can be more than one path of abnormal termination for a single exception. See
Section 3.2. The performance of each path of abnormal termination needs to be taken into
account for real-time systems. As long as the traces of events are deterministic, the delays
will be deterministic. Poisoning channels and processes via the exception construct is faster
than gracefully termination [8] and faster than poisoning channel ends by processes [6].

The read and write operations can be viewed as illegal instructions. Hence, throwing
exceptions by channels is similar to throwing exceptions by illegal instructions. Therefore
this approach does not conflict with the ordinary try-catch mechanism in Java or C++.

The application programming interface (API) was not affected by adding the exception
construct to CTJ. The protected interfaces of the channel ends required a few additional
methods for poisoning and healing the channel ends. These methods are invisible for the
user.

A process that performs an infinite loop and which does not invoke channel ends,
cannot be poisoned via channel ends. In this circumstance the static method
Expr.evaluate(Boolean expression) can be used in while(..) statements;
e.g. while(Expr.evaluate(i<j)) { … }. Normally, the method returns the result
of the Boolean expression. The surrounding exception construct can poison the method so
that it will throw a NULL exception. The loop will immediately terminate.

In future work, the implementation of the exception construct need to be formalized and
model-checked in order to prove that the implementation is free from pathological
problems, such as race-hazards, deadlock or livelock.

The alternative construct was not discussed in the examples. The alternative construct
has been adapted to support asynchronous exceptions. The alternative construct has the
simple task not to perform when at least on guard is poisoned. This is obvious, since no
legitimate choice can be made when a guard is poisoned. In CTJ, a channel end can play the
role of a guard. The exception of each poisoned guard must be notified to the surrounding
exception construct, which collects all the exceptions. Subsequently, the alternative
construct will throw a NULL exception.

5. Conclusions

We succeeded to build a simple exception construct in CJT for capturing exceptions in
concurrent systems. The steps that are required to perform the exception handling
mechanism were discussed. This mechanism illustrates the coherency between channel
ends, the compositional exception constructs, and the CSP constructs.

Errors in hardware, which cannot be fixed by the underlying software layer, will nicely
propagate as exceptions via channel towards the exception handling processes in the
program.

The use of exception constructs is orthogonal to the development of processes.
Processes that are reused can be included in exception handling without modifying those
processes. There is one exception for processes with infinite loops that do not communicate
via channels. In this case, a Expr.evaluate(..) method is required in the
while(..) statement, which can be poisoned by the surrounding exception construct.

The detection of an exception at more than one place in a concurrent program defines
multiple paths of exception handling. The choice of one of these paths is likely to be non-
deterministic due to the non-deterministic behaviour of thread scheduling. This approach

330 G.H. Hilderink / Exception Handling Mechanism in CTJ

makes non-deterministic paths of exception handling observable and traceable at an
appropriate level of abstraction.

The concept of poisoning channels and processes is intuitive and easy to understand.
The behaviour of exception handling is attributed to the composition of constructs. This
approach is justified in CSP terms. The semantics of this exception construct is informal
and need to be formalized in CSP. A full CSP description is in our future work plans.
Researchers are invited to contribute.

Acknowledgements

The author wants to thank Peter Welch for his comments and input. Thoughts have been
exchanged about formalizing this exception construct in CSP.

References

[1] Hilderink, G. H. (2005). Managing Complexity of Control Software through Concurrency, Laboratory of
Control Engineering, University of Twente, ISBN 90-365-2204-8.

[2] Hilderink, G. H. and J. F. Broenink (2003). Sampling and Timing: a Task for the Environmental Proces,

Commmunicating Process Architectures 2003, J. F. Broenink and G. H. Hilderink, IOS Press, University
of Twente, Enschede, 7-10 September 2003, Volume 61.

[3] Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice-Hall, London, UK.

[4] Roscoe, A. W. (1998). The Theory and Practice of Concurrency, Series in Computer Sciences, C. A. R.

Hoare and R. Bird, Prentice-Hall.

[5] Brown, N. C. C. (2004). C++CSP Networked, Communicating Process Architectures 2004, I. R. East, J.

M. R. Martin, P. H. Welch, D. Duce and M. Green, IOS Press, Oxford Brrokes University, United
Kingdom, 5-8 September 2004, Volume 62, pp. 185-200.

[6] Brown, N. C. C. and P. H. Welch (2003). An Introduction to the Kent C++CSP Library, Communicating

Process Architectures 2003, J. F. Broenink and G. H. Hilderink, IOS Press, Enschede, University of
Twente, The Netherlands, 7019 September 2003, Volume 61, pp. 139-156.

[7] Burns, A. and A. Wellings (1990). Real-Time Systems and their Programming Languages, International

Computer Science Series, Addison-Wesley Publishing Company.

[8] Welch, P. H. (1989). Graceful Termination -- Graceful Resetting, Applying Transputer-Based Parallel

Machines, Proceedings of OUG 10, Occam User Group, IOS Press, Enschede, Netherlands, April 1989,
pp. 310-317.

