
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

39

HCSP : Imperative State and True Concurrency

Adrian E. LAWRENCE
Department of Computer Science, Loughborough University, Leicestershire, LE11 3TU UK

A.E.Lawrence@lboro.ac.uk

Abstract. HCSP is an extension ofCSPP which captures the semantics of hardware
compilation. Because it is a superset ofCSPP , it can describe both hardware and
software and so is useful for co-design. The extensions beyondCSPP include: true
concurrency; new hardware constructors; and a simple and natural way to represent
imperative state. BothCSPP andHCSP were invented to cope with problems that
arose while the author was trying to prove that the hardware that he had designed
correctly implementedchannelsbetween a processor and an FPGA. Standard CSP
did not capture priority, yet the circuits in the FPGA and the occam processes in the
transputer both depended on priority for their correctness. The attempt to extend CSP
rigorously to handle such problems of co-design has led to develoments that seem to
have a much wider significance including a new way of unifying theories for imper-
ative programming. This paper reports on the current state ofHCSP and focuses on
handling imperative state and true concurrency. The acceptance denotational seman-
tics is described briefly.

Key words: CSP, CSPP, HCSP, true concurrency, denotational semantics, formal
methods, hardware compilation, VLSI design, specification, parallel systems.

HCSP is an extension of CSP aimed at specifying and describing hardware: it is ‘Hard-
ware CSP’. There is a very short introduction to CSP in the companion paper [1]. One of
the great merits of standard CSP is that it supports various levels of abstraction. One way
is through hiding. And importantly there is an explicit refinement relation. IfPw Q, then
processQ is more abstract thatP: the latter is more specific. So a CSP description can be
relatively abstract, omitting detail and simplifying circuits to their essence. Or it can include
considerable detail. Unfortunately, there are hard limits on how much detail. One such limit
was encountered by the author when trying to prove that the interaction of a circuit generated
by a hardware compilation system based onoccam(Handel-AS) with a softwareoccampro-
cess correctly implemented an array of CSP channels. An immediate problem was that the
circuit depended for its correctness on priority: but CSP could not describe priority. So that
was the first issue to be addressed. And it would be useful for software as well: priority in
ordinaryoccamalso had no formal semantics. A new denotational semantics was invented to
defineHCSP : acceptances. And the first extensionCSPP defined, as described in the com-
panion paper [1]: this differs from fullHCSP in that it does not include true concurrency.

When there is a limit to the detail which a theory can capture as with CSP and priority
above, then one must change to some other theory to prove a design correct. In the case of
circuits, one might consider VHDL or Verilog. However both of those hardware languages
are complex, confusing and have not been designed around a proper mathematical theory.
And they had no formal semantics when this investigation started. Even if proof was fea-
sible there is still the need for a ‘translation’ layer to move between the high level rigorous
description and the detailed circuit language.

How much better if an extension of CSP could cope with fine circuit detail? Hardware is
inherently parallel. CSP is the pre-eminent parallel language.occamhad already been used
to describe hardware, although not in a formal way. So an extension of CSP to capture circuit

40 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

detail was an obvious step. The ability to work at the highest level of abstraction is retained.
Yet we can drop to full circuit detail and relate that to the higher level using refinement. This
is the idea which has driven the development ofHCSP .

occamwas designed around CSP.HCSP is intended to provide the same sort of founda-
tion for hardware extensions ofoccamand for new rigorous hardware description languages.
And just as CSP delivers simplicity, rigor and the ability to abstract away from all the in-
evitable complexities of a concrete language, its extensionHCSP can play the same role for
a hardware designer.

1 Introduction

HCSP is an extension ofCSPP which is in turn an extension of CSP. It aims to extend
CSP to capture idioms useful for hardware compilation using anoccam-like language. An
exploratory version was introduced in [2].

The first step was to extend CSP to capture priority: that is achieved inCSPP , described
in a companion paper [1].

The second step involved finding a way to capture the semantics of synchronous circuits
where the state of many registers is updated simultaneously on a clock edge. Where such reg-
isters are independent that is modelled by standard CSP interleaving semantics, andoccam
usage rules ensure the independence.

However, that is unnecessarily restrictive when true concurrency is present:occam-usage
rules are there to eliminate undesirable non-determinism which arises only in interleaving.
Thus:

PAR
c ! x
d ? x

is invalid in occambecause an implementation would be entitled to perform the two commu-
nications sequentially in either order. So ifx is 3 before execution, and a value 4 is sent on
channeld, the final value ofx can be either of 3 or 4, and the value sent on channelc is also
uncertain.

Yet occamalready included true concurrency in that it includes simultaneous assignments
like ‘x,y := y,x’.

These assignments are not conventionally regarded as CSP events: they do not appear
to involve communication or synchronisation with another process. Yet, as noted in [1],
we can extend the idea of a CSP event to include assignment. Entertain processes that are
‘always ready’: this idea arises naturally in hardware compilation. Consider an environment
which includes all variable names that can appear in a process together with their values.
An assignment may need to read such values, and in general will modify a value: that is a
communication. And this environment is ‘always ready’ and it engages in the communication
which is also a synchronisation: the environment receives information that the assignment has
occurred.

Regardless of the underlying intuition, it is a valid interpretation of theCSPP and
HCSP semantics to admit assignments as ‘events’. The idea has been used informally by
occamprogrammers reasoning about their programs, the real innovation here is to define the
idea precisely usingaurasdescribed below. The idea of an assignment as an event has a little
in common with the notion of an ‘action’ in formalisms like the Temporal Logic of Actions
[3].

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 41

Everyoccamprogrammer is familiar with

x := e =

CHAN OF x.type c:
PAR

c ! e
c ? x

The right hand side is a process composed of a pair engaging in a CSP event, although we
may worry about how far that event is hidden outside the scope of the channel declaration.
Thus the idea that the left hand side also represents (a process engaging in) an event is already
implicit in the definition ofoccam. We will see that inHCSP the transformation above really
amounts to attaching different labels to the same events: they may be called (x:= e), c.e,
c!e, c?x or c.x.e, but these all represent a value determined by the expressione being
passed into the variablex. In all cases there is a communication with an imperativeaura1, an
environment – it becomes an explicit parallel process below – maintaining a variablex and
its value, if any. After the event, we have{x 7→ v}, wherev is the result of evaluatinge.

Classical CSP does not include explicit imperative state: it is normally taken to be a
declarative language. One of the objectives ofHCSP is to capture the semantics ofoccam-
like languages easily andintuitively, so an imperative interpretation to stand along side the
declarative understanding is very useful, and is essential when assignment is present. The
use of one or more parallel processes,auras, to maintain the imperative state is of far wider
significance, and provides a way of unifying theories of imperative languages in general, even
purely sequential languages.

The third step is to introduce new operators needed for hardware compilation. Many of
these operators involve true concurrency so that synchronous circuits can be specified. This
does not preclude the generation of asynchronous systems, perhaps mixed with synchronous
components.

Much of the power of the CSP family of languages comes from the high level of abstrac-
tion. But we also need to be able to specify fine detail in concrete languages including those
designed for hardware compilation. It is sometimes asserted that CSP is not suitable for both
tasks. The development ofCSPP andHCSP shows that to be untrue. We maintain the
highest level of abstraction: we can stay in the core CSP language if we so wish. But we also
have refinements which can capture fine detail, and all within one rigorous framework.

ThusHCSP is an extension of CSP which:

• includesCSPP and so captures priority and is fully descriptive of infinite behaviour;

• extends CSP to handle true concurrency as well as interleaving;

• can support an imperative interpretation; and

• includes constructors useful in hardware compilation.

As with all variants of CSP,HCSP is intended for specification as well as concrete program-
ming with the full rigour of a mathematical language. It first application is to define the
formal semantics of codesign-oriented variants ofoccam.

2 Imperative and Declarative Views

HCSP has two ways of treating variables: the usual declarative way and an imperative op-
tion. Consider

(c?x→ Skip) # d!x→ Stop (1)

1Prototypeauraswere calledhalosin [2]: the new name avoids any confusion with non-standard analysis.

42 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

In the declarative view,x is not free: the input is just an external choice among the events
| c | constituting the channelc. The only possible interpretation is

2
c.x∈|c|

(
c.x→ Skip# d.x→ Stop

)
= 2

c.x∈|c|

(
c.x→ d.x→ Stop

)
(2)

which showsx to be bound by the quantifier2 whose scope is the whole expression.x
represents a value in a binding. In the declarative view, it is not even clear that the expression
in equation (1) is well formed.# would usually be taken as terminating the scope of the
implied2 constructor inc?x. We return to this point below.

In the imperative view of equation (1)x is the constant name of a variable, and the incom-
ing value is stored in there. The input is still just an external choice among events in| c |,
but those events all update a particularx. Notice thatc?y → d!y → Stopinvolves a distinct
set of events, those that updatey rather thanx. In the declarative viewx andy are bound
by an implied quantifier and so the two processes are the same. But there are two distinct
processes when the freex 6= y in the imperative view. There is still an implied quantifier, but
the external choice is over a restricted range of the events of the channel: our two imperative
processes are each only prepared to engage in a subset of the possible events. The first allows
only events of the sortc?x ∈| c |, and the second only the distinct eventsc?y ∈| c |.

It is the latter understanding of equation (1) which is natural for an imperative program-
mer, especially for a hardware engineer who is mapping intuition about registers and memory
arrays onto variable names.HCSP is not intended to be esoteric, but accessible to the ordi-
nary imperative programmer after the notation has been introduced.

With P(x) = c?x → SkipandQ(x) = d!x → SkipconsiderP(x) # Q(x). This represents
quite differentprocesses in the declarative and imperative views. In a declarative context,
P(x) is normally interpreted as an external choice with a boundx. So thex in P(x) has no
connection with thex in the body. But thex in Q(x) is the samex as that in its body. So the
free variablex in the second component is the same as that inP(x) but they have no neces-
sary connection with any input in the body ofP. This is far from the natural interpretation.
Equation (2) here is excluded by the implication thatP(x) is a well defined process.

In the imperative context, theP(x) is prepared to engage in any event ofc that updates x.
And the natural decomposition is permitted becausex is free in bothP(x) andQ(x).

Now considerc!1 → Skip. In the imperative view this is a compliant external choice over
all the events corresponding to the transmission of 1 overc. If the events ofc are all of the
type that update a variable from a setV, | c |= {c.n.v | n ∈ Z ∧ v ∈ V}, perhaps, then it has
the form: ←→

¤
c.1.v∈|c|

c.1.v→ Skip

Notice that this confirms that distinct eventsc.1.x andc.1.y occur in the imperative

(c!1 → Skip) ‖ (c?x→ Skip) and (c!1 → Skip) ‖ (c?y→ Skip)

The distinction between the declarative and imperative views is only relevant when vari-
ables appear in expressions. Ifa is a constant event,a → Stophas only one interpretation.
The semantics of the constructors is the same in either interpretation.

The imperative view is useful even when assignment is absent. Consider

((c1?x1 → d1?y1 → Skip) ||| (c2?x2 → d2?y2 → Skip)) # out!(x1 + x2 + y1 + y2) (3)

In a declarative view, this is either malformed or ifall the variables are free then either it
is does not match the usual intuition or there are implied quantifiers and sorting out their

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 43

scope is tedious. The sequential constructor# is inside that scope. The process then doesnot
decompose into two sequential processes.

On the other hand the imperative interpretation matches a natural intuition: the partic-
ular values ofx1, x2, y1 andy2 communicated in the first component are passed across the
sequential constructor to the second component. This is done by the use of the common free
imperative variables and a parallel aura. Furthermore equation (3) represents a very common
idiom in occamprograms: data is collected in parallel, and then some result subsequently
computed. Yet this is decidedly awkward to express in the usual declarative version of CSP.

The context of anHCSP expression usually indicates whether it is necessary to distin-
guish between the imperative and declarative interpretations: that is whether variables are
free or bound. Otherwise the phrasesimperativeHCSP anddeclarativeHCSP can be used.

3 Events

Pure CSP doesnot require that an event involve exactly two processes.

(a→ Skip‖ a→ Skip‖ a→ Skip) = (a→ Skip‖ a→ Skip)

= a→ Skip

shows that it may not be possible to decide how many processes are associated with any
particular event.

In clasical CSP semantics whereX is an event, albeit rather special, the process

(a→ Skip‖ b→ Skip) # (c→ Stop)

involves 3 partners synchronising onX.
Yet events are almost always regarded as involving precisely two processes in concrete

situations at least conceptually and explicitly when channels are defined. This is a useful
simplification apart fromCSPP andHCSP , not least inoccam. Even in the case ofSHARED
channels, ordinaryoccamstill deals with communication events involving precisely two pro-
cesses. But when we model hardware in CSP we need to include ‘events’ which involve
many processes. The most obvious case is a clock in a synchronous circuit: the clock edges
are naturally regarded as events involving perhaps hundreds of processes. And if we regard
assignment as an ‘event’, then it will involve only a single process in a concrete language.
In all these concrete cases the aura represents the imperative state and is disregarded except
when considering hiding and its relation to scope.

HCSP puts that on a proper basis: assignments are events which update state. In that
light, x,y := y,x, which interchanges the values ofx andy represents a pair ofsimultaneous
events. It can be nothing else. It cannot be an interleaving, for execution in either order gives
quite different results. Moreover, we need this idea of simultaneous events, or rather events
‘tied’ together, for other reasons when compiling hardware. That is particularly clear for
synchronous hardware, especially when there may be several clock domains.

SoHCSP extends the conventional presentation of CSP in these respects:

• events involving one or more processes are standard;

• simultaneous events are introduced:true concurrencyis present; and

• atomic assignment is treated like other events.

Assignment must beatomicas it is in occam and in many synchronous state circuits. Thus
the change of state associated with an assignment event is uniquely determined by that event.
This does not preclude hiding sets of events: that has the standard semantics. But when

44 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

modelling scope in a concrete language, a matching local aura is imported and also hidden.
If the implementation of an event is extended in time and involves fine grained underlying
actions, those actions must not be visible in any concurrently executing event: there must
be no interference between overlapping event implementations. This is of course ensured by
occamusage rules in the interleaving case. An assignment, or indeed any, event must behave
as if it had an instantaneous implementation.

4 HCSP is compositional

HCSP andCSPP arecompositional: the properties of a process or circuit follow from those
of its components. There can be no interference from the surroundings or other processes.
That means that any interaction must be explicit as shared events. This allows understanding,
proof of correctness and simplicity.HCSP andCSPP also support separation of concerns
partly through compositionality. One should not have to worry about too many aspects of
a design at once.HCSP supports and encourages the style in which one builds simple un-
derstandable units, transparently correct, preferably proved correct, and then assembles them
into larger units which again can be seen, and hopefully proven, to be correct. Once the
properties of the smaller units are established, they must not be undermined by assembling
them into a larger system.

One style of hardware compilation makes extensive use of simultaneous assignments as
in:

SYNC
SEQ
x := y
u := y

SEQ
y := x
v := x

=

SEQ
SYNC
x := y
y := x

SYNC
u := y
v := x

=
SEQ

x,y := y,x
u,v := y,x

HereSYNC is a constructor for true concurrency: it is a synchronous, truly concurrent, version
of occamPAR. The left hand side may notappearto be compositional at first sight. How-
ever, remember that assignments here are events shared with an aura recording the value of
variables. So the behaviour is determined by the interactions with parallel partners, and the
systemis compositional. Which is more obvious in the second and third ways of writing the
process above.

Abstraction is also a fundamental tool in compositional design: the minimum level of
detail or specification should be used. This is very economical: the same process might be
implemented in an asynchronous self-timed circuit, or in synchronous hardware with one
or more clocks. But probably more important is that a human has less to worry about at any
given point. The prospect of getting a system correct is much greater if one can dismiss detail
irrelevant at a particular stage. Identifying what is relevant and handling the detail properly
and rigorously when it becomes necessary, but not before, is central to compositional design
with abstraction. These are the characteristics of co-design usingHCSP , which are largely
missing from other methods not based on CSP.

As a small aside, it is often required that real-time safety-critical systems be determinis-
tic. While that may be a necessary requirement for systems designed with inadequate tools,
it is misconceived. What is required is that a system must be proved to meet the timing
constraints. Any further specification is an artificial and possibly dangerous additional con-
straint. It is normally far better and safer to have a nondeterministic system, if only so that it
has the flexibility to work around partial system failure, work efficiently, and relieve the sys-
tem designers of the burden of meeting a more complicated system specification. Of course,

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 45

languages that deal explicitly with time, like those based onHCSP , make these tasks much
easier.

4.1 Examples of compositional design introducing new constructors.

To illustrate compositionality, suppose that we have a process which is to be compiled into a
circuit: it could be an adder, for example. The process might be as simple as

SEQ
PAR

c1 ? x
c2 ? y

out ! x + y

Think of c1 andc2 as two input buses to a circuit that places the result onout, the output
bus. That can be written in imperativeHCSP as

(c1?x→ Skip) ||| (c2?y→ Skip) # out!(x + y) → Skip

HCSP includes an extended form of ‘interleaving’,|||, which allows two disjoint events to
occur simultaneously. So||| includestrue concurrencyas well as interleaving. Using inter-
leaving as in standard CSP orCSPP in (c1?x→ Skip) ||| (c2?y→ Skip) # out!(x+y) → Skip
would only permit one input to occur at one time. But in synchronous circuits, such inputs
will often be ready on the same clock edge, and be executed together. When clocks are
explicit, we find that we require true concurrency to capture the behaviour of the circuit.

In HCSP ||| is extended to permit the possibility of two events happening together coin-
cidentally.

Example 4.1

(a → Stop) ||| (b → Stop) = (a ¦ b → Stop) 2 (a → b → Stop) 2 (b → a → Stop)

where a¦ b represents the events a and b happening together.

Although we still call the symbol||| “interleaving”, as example (4.1) shows, there is now the
possibility of coincidental execution. In a context in which true concurrency is possible, it
would be unnatural to exclude it. Of course one can still generate a process like

(a→ b→ Stop) 2 (b→ a→ Stop)

which is(a → Stop) ||| (b → Stop) in CSP andCSPP . This could also be generated from
theHCSP (a → Stop) ||| (b → Stop) by removinga ¦ b from the alphabet, or by using a
parallel partner imposing such a restriction.

||| is like |||, but captures the frequent case where we desire efficiency:

Example 4.2

(a → Skip) ||| (b → Skip) = (a ¦ b → Skip)
←−
¤

(
(a → b → Skip) 2 (b → a → Skip)

)

46 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

Example 4.2 matches the earlier process:

SEQ
PAR

c1 ? x
c2 ? y

out ! x + y

The programmer will expect a circuit that will perform the inputs onc1 andc2 simultane-
ously whenever possible. Notice how priority arises naturally in capturing the semantics of
circuits like this.

We canrequirethat the two inputs be simultaneous by writing:

SEQ
SYNC -- 3

c1 ? x
c2 ? y

out ! x + y

which is:

(c1?x→ Skip) 3 (c2?y→ Skip) # out!(x + y) → Skip

in imperativeHCSP . And if further it is to be clocked byClock:

TIE Clock -- TIE is <
SEQ

SYNC -- The 3 constructor
c1 ? x
c2 ? y

out ! x + y

which represents the compositionalHCSP process:
(
(c1?x→ Skip) 3 (c2?y→ Skip) # out!(x + y) → Skip

)
<Clock

Any events of the adder now happen only when theClock process generates events.
Presumably these will be standard clock edges determined byClock. But the process above
can only handle simultaneous inputs. Contrast:

TIE Clock
SEQ

PAR
c1 ? x
c2 ? y

out ! x + y

or:
(
(c1?x→ Skip) ||| (c2?y→ Skip) # out!(x + y) → Skip

)
<Clock

which will also complete a communication on a single input if it is ready on a clock edge.
A clocked circuit cannot usually inhibit its controlling clock. The circuit may be inactive

on some clock edges, while it awaits data from a microprocessor, perhaps. So while the
circuit can only perform actions synchronously with the clock, the clock can continue ticking
independently.

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 47

We have seen that3 binds the events of processes even more closely. It should not be
confused with thesync event used in the Kroc compiler.

Notice that now we can write ‘x, y := y, x’ as:

SYNC
x := y
y := x

or:
(x := y→ Skip) 3 (y := x→ Skip) = (x := y) ¦ (y := x) → Skip

In passing we have introduced¦, 3 and< as well as|||. ¦ and3 are closely related.
¦ is used to ‘glue’ events together to form a compound event, and is the primary way that
we capture true concurrency. This is placed on a proper basis later.3 is a constructor that
‘glues’ processes together concurrently.< is particularly useful in synchronous hardware
and makes sure that the events of one processes can only occur in synchrony with those of
another, typically a clock. The symbol for this ‘tie’ operation has been changed from that
used in [2]: the new version suggests the way clock signals are usually drawn on schematics.
It is the task ofHCSP to define precisely such entities.

5 Infinite behaviour

When is||| useful? We have seen that||| is usually preferred to specify an efficient circuit
which eagerly does as much as possible in parallel.

One potential application for||| is in specifyingclocks. Suppose that a system consists
of two synchronous components driven by their own clocksC1 = µ C • t1 → C andC2 =
µ C • t2 → C. These might be two chips each with their own local crystal oscillators: the
clocks are unlikely to be correlated. How do we describe the overall trace, say of just the
clock components?

An extraordinarily cumbersome way would be to have an explicit composite clock like:

t1 → t1 → t1 → t2 → t1 → t1 → t1 → t2 → t1 → t1 ¦ t2 → . . .

which includes the very unlikely case of clock edges exactly coinciding. ThenC1 andC2

could be extracted by hiding. This is so ugly and inelegant that it can be dismissed immedi-
ately for any normal use.

C1 ||| C2 is close to what we need, but it includes too much: a refinement isC1

←−|||C2 = C1

which does not allowC2 to run at all whenC1 is ready.

C1

←→|||C2 is almost right, but again one or other of the clocks could always be excluded:
the non-determinism in selecting a component process at each step could always be resolved
in favour ofC1, for example.

FortunatelyCSPP andHCSP include a form of interleaving whicheventuallyadmits
both partners. This is a virtue of acceptance semantics based on behaviours, and permits the
description and prescription of varying degrees of fairness. Here we wantC1 |̂|| C2. The
behaviours ofC1 |̂||C2 are those ofC1 ||| C2, except that only behaviours which give priority
to bothC1 and toC2 at some stage in their evolution are admitted. PerhapsC1 is favoured on
〈〉, the acceptance is compliant for all traces of length between 1 and 10, andC2 has priority
for any trace of length 11.

More precise control can be given using the constructionP1

n̂

||| P2 which guarantees that
any segment of any trace of lengthn is “fair”: that is P1 andP2 are given priority at least once

48 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

in such a segment. Clearly this only makes sense whenn > 1: P1

1̂

||| P2 = >. SoC1

2̂

||| C2

would alternate ticks from each clock if they were both always ready.
These clock combinations are primarily of use in proving the correctness of a circuit:

they permit an abstract modelling of the clocks. They would not normally be used in the
compilationof crystal oscillator clocks.

6 Bags

This is a short digression to discussbagsor multisets. A bag is a set which may include
repeated elements. At face value that statement is nonsense: it is inherent in the idea of a set
that it can contain at most one instance of any particular element. A bag is really an integer
valued function on a set: the bag containing two copies of an elementa is identified with the
partial function{a 7→ 2}.

We have to face the fraught topic of notation. One standard notation for the bag above is
[[a, a]], but this overloads the symbols[[and]]. And it carries connotations of lists rather than
sets. There is an alternative notation sometimes used in Z, but it is awkward to write neatly
freehand: typeset symbols which are easily and quickly approximated by hand are preferred.
Here we choose to write{|a, a|} with just the right suggestion of a set.

{|a, a|} is a shorthand for{|a 7→ 2|} where strictly speaking the bag brackets should be
replaced by set brackets in the second case if we wished to be unhelpful. Ifa maps to 3,
and b to 2, that can be written in many ways including{|a, a, a, b, b|}, {|a, b, a, b, a|} and
{|a 7→ 3, b 7→ 2|}.

We write x A β to indicate thatx is a member of the bagβ, although we sometimes
overload∈ and just writex ∈ β where the context warrants. Both meanx ∈ dom β: the
codomain of a bag isN1. Similarly bag intersection and union are written as the similarly
decorated symbolsC and]. We writeβ E β′, β G β′, β D β′ andβ F β′ whenβ properly
containsβ′, containsβ′ or is a proper sub bag ofβ′ or is any sub bag ofβ′. We can write the
empty bag as∅ without ambiguity but we may also write{||}.

7 Merged events

If e1 ande2 are events, we writee1 ¦ e2 to represent the pair of eventse1 ande2 happening
together. An example is:

(a→ Stop) 3 (b→ Stop) = a ¦ b→ Stop

In:
(a→ Stop) ||| (b→ Stop) (4)

a and b can happen together asa ¦ b. As usual, the environment must offera ¦ b if the
simultaneous pair is to occur. A compliant offer of{a, b, a ¦ b}, for example, is an offer to
perform one of three mutually exclusive alternatives: either of the lone eventsa andb, or
both together asa ¦ b. The response to the offer above will be{a ¦ b}.

Thesameevent may happen concurrently in a synchronous circuit where there are mul-
tiple copies of a particular server. If there happens to be a demand for this service from
several independent processes on a particular clock edge, then the servers may all engage in
multiple copies of the same event simultaneously, for examplea ¦ a ¦ a. Yet these events
are not inherently tied together for they can happen independently. Nor do they represent
synchronisation between the various servers: only with the clients using the servers. This is
the natural extension of interleaving in conventional CSP and is modelled with|||. In this
version of the semantics, no distinction is drawn between events coinciding ’accidentally’ in

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 49

such ways, and those intentionally tied together: the aim is simplicity with a minimal set of
primitives.

In this light, we identifycoincident eventslike a ¦ b or a ¦ a with bags of eventswhich
happen, accidentally or inherently, at the same instant.

So for the process in equation (4) whena andb are distinct, acceptances include

b1 | b2 | b3 :: 〈〉 : {a, b, a ¦ b} Ã {a ¦ b}
b1 :: 〈〉 : {a, b} Ã {a}
b2 :: 〈〉 : {a, b} Ã {b}
b3 :: 〈〉 : {a, b} Ã {a, b}
b1 | b2 | b3 :: 〈〉 : {a} Ã {a}
b1 | b2 | b3 :: 〈〉 : {b} Ã {b}
b1 | b2 | b3 :: 〈〉 : {a ¦ b} Ã {a ¦ b}

(5)

and so on. The interpretation of the first line:

b1 | b2 | b3 :: 〈〉 : {a, b, a ¦ b} Ã {a ¦ b}

is that a compliant environment offers to perform either the eventa alone, or the eventb alone,
or botha andb simultaneously. All of the behavioursb1, b2 andb3 respond by accepting the
offer of a ¦ b. Notice that3 can generate environments which offer only joint events, so an
offer of {a ¦ b} in the last line makes sense: the environment may be prepared to do events
jointly which it refuses to allow alone.

This is an easy and minor modification of Acceptance semantics as described in [1].
The acceptances for a behaviour have the typePΣ → PΣX,✗, but nowΣ consists of bags
representing coincident events.

It is not even necessary to modify the concept of traces inHCSP , although they have an
underlying structure of sequences of bags of bare events. As usual, all processes have a trace
〈〉 before they have performed any events. But now a process like

a→ (b→ c→ Stop) ||| (b→ (c→ Stop||| c→ Stop)
)

has〈{|a|}, {|b, b|}, {|c, c, c|}〉which we normally write as〈a, b¦b, c¦c¦c〉 among its traces. We
write singleton bags as the corresponding event in the usual notation. So〈{|a|}〉 is generally
abbreviated as〈a〉.

In HCSP all events are really bags: singleton bags can be identified with the atomic
eventsΣS. Every event is a member ofbag ΣS, the set of all nonempty bags formed from
members ofΣS. If a, b ∈ ΣS are atomic events, thena is identified with{|a|}, b with {|b|} and
a ¦ b with {|a, b|}. So¦ itself is really just bag union,].

It may sometimes be useful ifΣ, the alphabet of events, is finite. If we required thatΣ
be closed under bag formation, that would not be possible. So in general, the alphabetΣ is
a collection of bags including all those that arise in modelling the systems of interest. Then
Σ can often be finite. More formally,Σ ⊆ bag ΣS, wherebag ΣS = ΣS 7→ N1 is the set of
all bags containing atomic events fromΣS. Since acceptance semantics based on behaviours
has no problems with infinite behaviour,Σ = bag ΣS is also acceptable.

And as we have seen,¦ is an alias for the bag union operation]. That is(b1 ¦ b2)(e) =
b′1(e) + b′2(e) for e∈ dom b1 ∪ dom b2 and whereb′i = bi ∪ {e 7→ 0 | e 6∈ dom bi}.

What about the pseudo-eventsX and ✗? Since(a → Skip) # (b → Stop) = a →
b → Stopwe see thatX cannot be tied to a clock. That also follows becauseX can never
appear in a trace. If an implementation does take one or more clock cycles to terminate
a process in hardware, and that process is tied to a clock, then an explicit ‘termination’
event can be added to the model if necessary to reflect the extra clock cycles. But most

50 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

synchronous implementations will not require the extra cycles: in that sense, termination is
free – it requires no additional cycles.

Skip plays a special r̂ole in the termination of parallel processes: it acts as a sort of
rendezvous. All partners must jointly offerX in order for the whole process to finish. The
natural extension of this is to write:

(a→ Skip) 3 (b→ Skip) = a ¦ b→ Skip

So might we expect thatX 3 X = X if ¦ can be applied to such terms. And:

(a→ c→ Skip) 3 (b→ Skip) = a ¦ b→ Stop

because the processes cannot agree after the first action. ThusX cannot be merged with any
other action. We must excludea¦X either by removing such pairs fromdom ¦ or by setting
a ¦ X = ⊥¦. The simplest approach is to exclude bothX and✗ from the domain of¦. A
related example is:

(a→ Skip) ||| (b→ c→ Skip)

If environment offersa¦ b initially, and thenc, it seems clear that the natural meaning is that
the eventc can happen despite the fact that the first process offers no event or has terminated.
Our semantics must permit the trace〈a ¦ b, c〉 in such cases.

For the elementary processes:

Skip3 Skip= Skip , Skip3 Stop= Stop and Skip3 div = div

Notice that:
(a→ Stop) 3 (b→ c→ Stop) = a ¦ b→ Stop

because it is enough for just one of the processes to stop to prevent any further progress for
3.

✗ models a process out of control, primarily one in an infinite internal loop. Consider
P < div. Since the clock never in fact emits any pulses, this is a process which can make
no progress. And indeed, the overall process is itself locked into an internal loop, so clearly
P < div = div. Hence✗ ¦ t makes no sense in this context.div < C = div follows for
much the same reason, although now it is the tied process which does not respond to external
clock pulses. Since the clock might continue, one might argue for a less extreme result:
div <C = div in effect ‘stops’ the clock which may well be driving other good circuits. But
since one part of the overall circuit is broken, it is reasonable to regard the whole circuit as
defective. Another option might be to writediv < C = ⊥ where⊥ is the process which can
do anything at all including diverge.

For simplicity, we treat✗ like X with ¦, and do not include it indom ¦. So¦ only produces
bags of real events fromΣ.

8 Acceptances

An acceptance is a set of alternative actions of a process in a particular environment. Each
‘action’ consists of a bag of events. For example the compliant process:

(a→ Stop)
←→
¤ (b→ Stop)

accepts{a, b} = {{|a|}, {|b|}} when botha andb are possible single events: at least when
the environment is compliantly offering to perform eithera or b but not both simultaneously.
More exactly:

(a→ Stop)
←→
¤ (b→ Stop) ::: 〈〉 : {a, b} Ã {a, b}

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 51

This indicates that the process is also willing to perform eithera or b but not both simultane-
ously. Thereafter:

〈a〉 : X Ã ∅
〈b〉 : X Ã ∅

This matches standard interleavingCSPP semantics. They ensure that there is no possibility
of simultaneous execution. And this is maintained inHCSP with true concurrency:a andb

can only be performed together whena ¦ b is offered and accepted. So(a → Stop)
←→
¤ (b →

Stop) will not performa ¦ b: it is only able to performa or b, even if it delegates that choice
to a partner:

(a→ Stop)
←→
¤ (b→ Stop) ::: 〈〉 : {a, b, a ¦ b} Ã {a, b}

In contrast:
(a→ Stop) ||| (b→ Stop)

will respond with{a ¦ b} when it is available:

(a→ Stop) ||| (b→ Stop) ::: 〈〉 : {a, b, a ¦ b} Ã {a ¦ b}
so it will performa andb simultaneously if the environment is willing to allow this. So one
possible trace is〈a ¦ b〉.

For (a→ Stop) 3 (b→ Stop) we have:

〈〉 : X Ã X ∩ {a ¦ b}
with traces{〈〉, 〈a ¦ b〉}. A more interesting example is:

(a→ Stop) 3 (b→ Skip)

This engages ina¦b, but then the second component attempts to synchronously terminate by
executingSkip. But the first component stops, so the overall effect isStop. Indeed(a→ a→
Skip) 3 (b → Skip) also deadlocks after the first event for the same reason: one component
tries to engage ina but the second wishes to terminate in a common action. Successful
termination requires that both partners jointly engage inX.

9 Behaviours and Traces

Traces are sequences of bags drawn frombag ΣS which is the same as sequences of elements
drawn fromΣ ⊆ bag ΣS. So this is similar toCSPP traces drawn from an alphabetΣ.

The acceptances of a behaviour is a function recording the response to an offer of a set
X ∈ PΣ which is itself a setY ∈ P (

ΣX,✗
)
, writtenX Ã Y.

An individualbehaviour bis a partial function from traces to the acceptances:

b : Σ
∗ 7→ PΣ → P

(
ΣX,✗

)
with traces(b) = dom b .

The behaviour of a processP is a set of behaviours:

BP : P
(
Σ
∗ 7→ PΣ → P

(
ΣX,✗

))
(6)

with:
traces(P) =

⋃
{dom b | b ∈ B (P)} .

52 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

10 Auras and imperative state

As we have noted,HCSP can also treat assignments as events. The target of an assignment
is an imperative variable, so we introduce a set ofNamesand a set ofValues. An aura is a
processwhich keeps a record of the value of variables, that is the state of an aura is given by
a partial functionM : Names 7→ Values.

Consider(x := 6) → Skip. This isnot an aura, but when run in parallel with one as in:
(
(x := 6) → Skip

) ‖ A(M)

then the state of the auraA is {x 7→ 6}�M after(x := 6) → Skiphas terminated.
Thus anaura is a process that is prepared to engage in assignment events, and it keeps

track of imperative state. It runs in parallel with the rest of a system and synchronises on all
assignment events. Such events are communications with an aura.

(x := x + y) → Skipis a little more interesting. A natural implementation would involve
inputting from an aura to discover the values ofx andy, and then outputting the new value of
x. Here we abstract all of that into a single atomic event which involves communication in
both directions. Although that abstraction is a very good approximation to what happens in
many synchronous circuits, that is by no means necessary. The abstraction is still valid even
when implementations may require several communications over an extended period.

If we run (x := x + y) → Skipin parallel with an auraA({x 7→ 4, y 7→ 5}), then after the
assignment, we haveA({x 7→ 9, y 7→ 5}).

If we examine(x := x + y) → Skipmore closely, we realise that(x := x + y) really
represents a compliant external choice, that is compliant prefixing, of events. So one offer
is [x := x + y]6, that is the event involving collection of the values ofx and y, and then
sending the new value of 6. That would berefusedby the aura above which will only accept
[x := x + y]9.

Definition 10.1 [N := e]v represents an assignment event which involves setting all the
names in the set N⊆ Names to the value v∈ Values.

An aura will only engage in such an event if

1. any variables that appear ineare in the domain ofM, the current state of the aura; and

2. the expressioneevaluates tov.

Otherwise it refuses, so errors are signalled by a process stopping in the usual way.
The definition (10.1) uses a setN to permit assignments like{b0, b1, b2, b3} := 3 which

may be useful in hardware when one driver is connected to several loads possibly on a bus.
UsuallyN is a singleton, and then we usually writex := e rather than{x} := e.

Now we can write

(x := x + y) → Skip =
←→
¤

v∈Values

[x := x + y]v → Skip

= e :
←−−−−−−−−−−−−−−−−−−→{[x := x + y]v | v ∈ Values} → Skip

If M : Names 7→ Valuesrepresents an imperative state, then we extend the notation
M(exp) to all valid expressionsexp. So among valid expressions are the names of the vari-
ables indom M. There is no need to be prescriptive about which expressions are to be admit-
ted:HCSP is intended to have a wide range of applicability. When used to modeloccam, the
expressions would be those of that language. Nor do we specify here whether expressions

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 53

like x + x and2x are to be identified. A strict reading of the definitions 10.3 and 10.4 below
however would exclude[x := y− y]0 as a valid event wheny 6∈ dom M.

If an expressionexpin [N := exp]v is not well formed, then the aura will refuse the event,
so the overall effect will beStop. This is a neat way to handle error in the spirit ofoccam,
and it requires no new machinery.

A similar issue arises with mutually contradictory assignments like(x := 1) ¦ (x := 2).
Again, an aura refuses such pathologies which might represent bus contention or worse in a
circuit.

Clearly we require thatNamesandValuesbe large enough to include all names and vari-
ables that appear in the alphabet of atomic events,ΣS. The set of all events which reference
one of the variable names isΣN :

Definition 10.2 ΣN ⊆ Σ is the set of events which which contain at least one atomic assign-
ment:

ΣN = {e∈ Σ | ∃N ⊆ Names• ∃ v⊆ Values• ∃ exp• [N := exp]v A e}

Definition 10.3 The atomic assignment[N := exp]v is valid with respect to state
M : Names 7→ Values when all the free variables which appear in exp are in the domain of
M, and the expression exp evaluates to v.

Definition 10.4 An event e∈ bag ΣS is valid with respect to the state M precisely when every
atomic assignment in e is valid and all the assigned variables are distinct.

Thus[p := 3]3 ¦ [p := 4]4 is invalid.

Definition 10.5 A(M) ⊆ Σ is the set of all valid events which contain at least one atomic
assignment.

With these definitions, it is easy to define an aura:

Definition 10.6 Anaura A is a function A: (Names 7→ Values) → HCSP with

A(M) =
←→
¤

e∈A(M)

e→ A(M′)

where:

M′ =

 ⋃

[X:=e]vAe

{x 7→ v | x ∈ X}

�M

In this section, so far only assignments have been considered. What of the imperative:

(c!42 → Skip) ‖ (c?x→ Skip) ?

This too is run in parallel with an aura. Assume for now that the aura accepts the eventsc?x
andc!42. These are then events that involvethreeparticipants: the two processes above and
an auraA(M). But, of course,c?x andc!42 are just descriptions of thesameevent. That event
updates the variablex with 42. In fact it is precisely[x := 42]42! Thus we see that we have
already captured imperative channel communication. And we can write

((c!42 → Skip) ‖ (c?x→ Skip)) ‖ A(M) = ((x := 42) → Skip) ‖ A(M) (7)

which shows how the occam law identifying channel communication and assignment appears
rigorously inHCSP . We can just identify the channel events with assignment events.

54 A.E. Lawrence /HCSP : Imperative State and True Concurrency.

Thus auras capture all aspects of imperative state in a very simple way without requiring
any new concepts. They are also very flexible allowing multiple auras which might be useful
in modelling distributed systems. And often an aura will have an initial empty state thereby
STOPping an any attempt to read an uninitialised variable.

Auras are run in parallel with imperative processes synchronising on the setΣN : that is
natural and intuitive. But it can be tedious to remember to specify the synchronisation set. An
a-aura is an extension of an aura which synchronises vacuously also on the non-imperative
eventsΣ− ΣN :

Definition 10.7 Ana-auraA is a process of the form

A(M) =
(

e :
←−−→A(M) → A(M′)

)←→
¤

(
e :
←−−−−−→
(Σ− ΣN) → A(M)

)

where:

M′ =

 ⋃

[X:=e]vAe

{x 7→ v | x ∈ X}

�M .

and M : Names 7→ Values.

Example 10.1
((x := y) → Skip) ‖ A(∅) = Stop

where A is an a-aura.

The initial empty state has no value fory, so the assignment is invalid. [10.1]

Example 10.2

(
((y := 1) → Skip) # (x := y) → Skip

)
‖ A(∅) =

([y := 1]1 → [x := y]1 →
(

Skip‖ A({x 7→ 1, y 7→ 1})
)

where A is an a-aura.

[10.2]

AlthoughHCSP avoids the full complexity of a complete concrete language, it is in-
tended both as an aid in the design of such languages as well as capturing a substantial part
of the semantics of existingoccam-like languages. An approach to capturing imperative state
based on auras seems to hold promise for simplifying the semantics presented in [4] and [5].

11 Health Conditions

In order for a functionBP : P
(
Σ
∗ 7→ (

PΣ → PΣX✗
))

to be admissible as a description of a
process, it must conform to some simple constraints. These “health conditions” are the same
as forCSPP applied to an alphabetΣ ⊆ bag ΣS of bags of atomic events.

ThusHCSP inherits the semantics ofCSPP described in [1] in a remarkably simple way.
This is a result of maintaining traces of events, but identifying those events with bags. It
captures the semantics of true concurrency especially as encountered in synchronous circuits
in a very satisfying way, maintaining abstraction from the full details of time.

A.E. Lawrence /HCSP : Imperative State and True Concurrency. 55

12 Summary and conclusions

This paper has given a brief survey of the way in whichHCSP has evolved since its introduc-
tion in [2]. In particular, it shows how acceptance semantics based onbehavioursis simply
adapted to capture true concurrency by little more than extending events to include bags.

The acceptance base allows both priority and infinite behaviour to be properly described.
It has been shown how these arise naturally and inevitably in hardware compilation. A lan-
guage lacking these features will be inadequate for specification and compilation.

A novel and simple way to extend CSP to model imperative state at just the right level of
abstraction has been described. This is needed since bothoccamand most hardware compi-
lation languages are imperative and match a natural intuition about hardware. The treatment
has been very substantially simplified since the original version ofHCSP , and at the same
time made far more flexible and powerful. For the first time it has captured a rigorous model
for theoccamequivalence between communication and distributed assignment.

Several of the constructors ofHCSP have been introduced: full definitions have been
omitted for lack of space.

References

[1] A. E. Lawrence. Acceptances, Behaviours and infinite activity in CSPP. InCommunicating Process Archi-
tectures – 2002, Concurrent Systems Engineering, pages 17–38, Amsterdam, Sept 2002. IOS Press.

[2] A.E. Lawrence. HCSP: Extending CSP for codesign and shared memory. InProceedings of WoTUG 21:
Architectures, Languages and Patterns, pages 133–156. WoTUG, 1998.

[3] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming Languages and Sys-
tems, 16(3):872–923, May 1994.

[4] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational semantics for occam 2, part 1.Transputer
Communications, 1:65–91, 1993.

[5] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational semantics for occam 2, part 2.Transputer
Communications, 2:25–67, 1994.

[6] Peter T. Breuer, Carlos Delgado Kloss, Andrés Maŕın López, and Natividad Martı́nez Madrid. A refinement
calculus for the synthesis of verified hardware descriptions in VHDL.ACM Transactions on Programming
Languages and Systems, 19(4):586–616, July 1997.

[7] A. E. Lawrence. Infinite traces, Acceptances and CSPP. InCommunicating Process Architectures – 2001,
Concurrent Systems Engineering, pages 93–102, Amsterdam, Sept 2001. IOS Press.

[8] A.E. Lawrence. Extending CSP - even further. Communicating Process Architectures–2000, 2000.
WoTUG.

[9] Andrew Butterfield and Jim Woodcock. Semantics of prialt in Handel-C. InCommunicating Process
Architectures – 2002, Concurrent Systems Engineering, pages 1–16, Amsterdam, Sept 2002. IOS Press.

56

