
Communicating Process Architectures 2005 13
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

Groovy Parallel!
A Return to the Spirit of occam?

Jon KERRIDGE, Ken BARCLAY and John SAVAGE
The School of Computing, Napier University, Edinburgh EH10 5DT

{j.kerridge, k.barclay, j.savage} @ napier.ac.uk

Abstract. For some years there has been much activity in developing CSP-like
extensions to a number of common programming languages. In particular, a number
of groups have looked at extensions to Java. Recent developments in the Java
platform have resulted in groups proposing more expressive problem solving
environments. Groovy is one of these developments. Four constructs are proposed
that support the writing of parallel systems using the JCSP package. The use of
these constructs is then demonstrated in a number of examples, both concurrent and
parallel. A mechanism for writing XML descriptions of concurrent systems is
described and it is shown how this is integrated into the Groovy environment.
Finally conclusions are drawn relating to the use of the constructs, particularly in a
teaching and learning environment.

Keywords. Groovy, JCSP, Parallel and Concurrent Systems, Teaching and Learning

Introduction

The occam programming language [1] provided a concise, simple and elegant means of
describing computing systems comprising multiple processes running on one or more
processors. Its theoretical foundations lay in the Communicating Sequential Process
algebra of Hoare [2]. A practical realization of occam was the Inmos Transputer. With the
demise of that technology the utility of occam as a generally available language was lost.

The Communicating Process Architecture community kept the underlying principles of
occam alive by a number of developments such as Welch’s JCSP package [3] and
Hilderink’s CTJ[4]. Both these developments captured the concept of CSP in a Java
environment. The former is supported by an extensive package that also permits the
creation of systems that operate over a TCP/IP network. The problem with the Java
environment is that it requires a great deal of support code to create what is, in essence, a
simple idea.

Groovy [5] is a new scripting language being developed for the Java platform. Groovy
is compatible with Java at the bytecode level. This means that Groovy is Java. It has a Java
friendly syntax that makes the Java APIs easier to use. As a scripting language it offers an
ideal way in which to glue components. Groovy provides native syntactic support for many
constructs such as lists, maps and regular expressions. It provides for dynamic typing which
can immediately reduce the code bulk. The Groovy framework removes the heavy lifting
otherwise found in Java.

Thus the goal of the activity reported in this paper was to create a number of simple
constructs that permitted the construction of parallel systems more easily without the need
for the somewhat heavyweight requirements imposed by Java. This was seen as
particularly important when the concepts are being taught. By reducing the amount that has
to be written, students may be able to grasp more easily the underlying principles.

14 J. Kerridge et al. / Groovy Parallel

1. The Spirit of Groovy

In August 2003 the Groovy project was initiated at codehaus [5], an open-source project
repository focussed on practical Java applications. The main architects of the language are
two consultants, James Strachan and Bob McWhirter. In its short life Groovy has
stimulated a great deal of interest in the Java community. So much so that it is likely to be
accepted as a standard language for the Java platform.

Groovy is a scripting language based on several languages including Java, Ruby,
Python and Smalltalk. Although the Java programming language is a very good systems
programming language, it is rather verbose and clumsy when used for systems integration.
However, Groovy with a friendly Java-based syntax makes it much easier to use the Java
Application Programming Interface. It is ideal for the rapid development of small to
medium sized applications.

Groovy offers native syntax support for various abstractions. These and other language
features make Groovy a viable alternative to Java. For example, the Java programmer
wishing to construct a list of bank accounts would first have to create an object of the class
ArrayList, then send it repeated add messages to populate it with Account objects. In
Groovy, it is much easier:

accounts = [new Account(number : 123, balance : 1200),
 new Account(number : 456, balance : 400)]

Here, the subscript brackets [and] denote a Groovy List. Observe also the
construction of the Account objects. This is an example of a named property map. Each
property of the Account object is named along with its initial value.

Maps (dictionaries) are also directly supported in Groovy. A Map is a collection of
key/value pairs. A Map is presented as a comma-separated list of key : value pairs as in:

divisors = [4 : [2], 6 : [2, 3], 12 : [2, 3, 4, 6]]

This Map is keyed by an integer and the value is a List of integers that are divisors of
the key.

Closures, in Groovy, are a powerful way of representing blocks of executable code.
Since closures are objects they can be passed around as, for example, method parameters.
Because closures are code blocks they can also be executed when required. Like methods,
closures can be defined in terms of one or more parameters. One of the most common uses
for closures is to process a collection. We can iterate across the elements of a collection and
apply the closure to them. A simple parameterized closure is:

greeting = { name -> println "Hello ${name}" }

The code block identified by greeting can be executed with the call message as in:

greeting.call ("Jon") // explicit call
greeting ("Ken") // implicit call

Several List and Map methods accept closures as an actual parameter. This

combination of closures and collections provides Groovy with some very neat solutions to
common problems. The each method, for example, can be used to iterate across the
elements of a collection and apply the closure, as in:

[1, 2, 3, 4].each { element -> print "${element}; " }

 J. Kerridge et al. / Groovy Parallel 15

will print 1; 2; 3; 4;

["Ken" : 21, "John" : 22, "Jon" : 25].each { entry ->
 if(entry.value > 21) print "entry.key, "
}

will print

John, Jon,

2. The Groovy Parallel Constructs

Groovy constructs are required that follow explicit requirements of CSP-based systems.
These are direct support for parallel, alternative and the construction of guards reflecting
that Groovy is a list-based environment whereas JCSP is an array-based system [5].

2.1 The PAR Construct

The PAR construct is simply an extension of the existing JCSP Parallel class that accepts
a list of processes. The class comprises a constructor that takes a list of processes
(processList) and casts them as an array of CSProcess as required by JCSP.

class PAR extends Parallel {
 PAR(processList){
 super(processList.toArray(new CSProcess[0]))
 }
}

2.2 The ALT construct

The ALT construct extends the existing JCSP Alternative class with a list of guards. The
class comprises a constructor that takes a list of guards (guardList) and casts them as an
array of Guard as required by the JCSP. The main advantage of this constructor in use is
that the channels that form the guards of the ALT are passed to a process as a list of channel
inputs and thus it is not necessary to create the Guard structure in the process definition.
The list of guards can also include CSTimer and Skip.

class ALT extends Alternative {
 ALT (guardList) {
 super(guardList.toArray(new Guard[0]))
 }
}

2.3 The CHANNEL_INPUT_LIST Construct

The CHANNEL_INPUT_LIST is used to create a list of channel input ends from an array of
channels. This list can then be passed as a guardList to an ALT. This construct only needs
to be used for channel arrays used between processes on a single processor. Channels that
connect processes running on different processes (NetChannels) can be passed as a list
without the need for this construct.

class CHANNEL_INPUT_LIST extends ArrayList{
 CHANNEL_INPUT_LIST(array) {
 super(Arrays.asList(Channel.getInputArray(array)))
 }
}

16 J. Kerridge et al. / Groovy Parallel

2.4 The CHANNEL_OUTPUT_LIST Construct

The CHANNEL_OUTPUT_LIST is used to construct a list of channel output ends form an array
of such channels and provides the converse capability to a CHANNEL_INPUT_LIST. It should
be noted that all the channel output ends have to be accessed by the same process.

class CHANNEL_OUTPUT_LIST extends ArrayList{
 CHANNEL_OUTPUT_LIST(array) {
 super(Arrays.asList(Channel.getOutputArray(array)))
 }
}

3. Using the Constructs

In this section we demonstrate the use of these constructs, first in a typical student learning
example based upon the use of a number of sender processes having their outputs
multiplexed into a single reading process. The second example is a little more complex and
shows a system that runs over a network of workstations and provides the basic control for
a tournament in which a number of players of different capabilities play the same game
(draughts) against each other and this is then used in an evolutionary system to develop a
better draughts player.

3.1 A Multiplexing System

3.1.1 The Send Process

The specification of the class SendProcess is brief and contains only the information
required. This aids teaching and learning and also understanding the purpose of the
process. The properties of the class are defined as cout and id (lines 2 and 3) without any
type information. The property cout will be passed the channel used to output data from
this process and id is an identifier for this process. The method run is then defined.

01 class SendProcess implements CSProcess {
02 cout // the channel used to output the data stream
03 id // the identifier of this process
04 void run() {
05 i = 0
06 1.upto(10) { // loop 10 times
07 i = i + 1
08 cout.write(i + id) // write the value of id + i to cout
09 }
10 }
11 }

There is no necessity for a constructor for the class or the setter and getter methods as
these are all created automatically by the Groovy system. The run method simply loops 10
times outputting the value of id to which has been added the loop index variable i (lines 4
to 8). Thus the explanation of its operation simply focuses on the communication aspects of
the process.

3.1.2 The Read Process

The ReadProcess is similarly brief and in this version extracts the SendProcess
identification (s) and value (v) from the value that is sent to the ReadProcess. It should
also be noted that types might be explicitly defined, as in the case of s (line 18), in order to

 J. Kerridge et al. / Groovy Parallel 17

achieve the desired effect. It is assumed that identification values are expressed in
thousands.

12 class ReadProcess implements CSProcess {
13 cin // the input channel
14 void run() {
15 while (true) {
16 d = cin.read() // read from cin
17 v = d % 1000 // v the value read
18 int s = d / 1000 // from sender s
19 println "Read: ${v} from sender ${s}" // print v and s
20 }
21 }
22 }

3.1.3 The Plex Process

The Plex process is a classic example of a multiplex process that alternates over its input
channels (cin) and then reads a selected input, which is immediately written to the output
channel (cout) (line 31). The input channels are passed as a list to the process and these
are then passed to the ALT construct (line 27) to create the JCSP Alternative.

23 class Plex implements CSProcess {
24 cin // channel input list
25 cout // output channel onto which inputs are multiplexed
26 void run () {
27 alt = new ALT(cin)
28 running = true
29 while (running) {
30 index = alt.select ()
31 cout.write (cin[index].read())
32 }
33 }
34 }

3.1.4 Running the System on a Single Processor

Figure 1, shows a system comprising any number of SendProcesses together with a Plex
and a ReadProcess.

Figure 1. The Multiplex Process Structure

In a single processor invocation, five channels a, connect the SendProcesses to the
Plex process and are declared using the normal call to the Channel class of JCSP (line
35). Similarly, the channel b, connects the Plex process to the ReadProcess (line 36). A
CHANNEL_INPUT_LIST construct is used to create the list of channel inputs that will be
passed to the Plex process and which will be ALTed over (line 37).

b

a

SendProcess

SendProcess

SendProcess

Plex ReadProcess

18 J. Kerridge et al. / Groovy Parallel

The Groovy map abstraction is used (line 38) to create idMap that relates the instance
number of the SendProcess to the value that will be passed as its id property. A list
(sendList) of SendProcesses is then created (lines 39-41) using the collect method on a
list. The list comprises five instances of the SendProcess with the cout and id properties
set to the values indicated, using a closure applied to each member of the set [0,1,2,3,4]. A
processList is then created (lines 42-45) comprising the sendList plus instances of the
Plex and ReadProcess that have their properties initialized as indicated. The flatten()
method has to be applied because sendList is already a List that has to be removed for the
PAR constructor to work. Finally a PAR construct is created (line 46) and run. In section 4
a formulation that removes the need for flatten() is presented.

35 a = Channel.createOne2One (5)
36 b = Channel.createOne2One ()
37 channelList = new CHANNEL_INPUT_LIST (a)
38 idMap = [0: 1000, 1: 2000, 2:3000, 3:4000, 4:5000]
39 sendList = [0,1,2,3,4].collect
40 {i->return new SendProcess (cout:a[i].out(),
41 id:idMap[i]) }
42 processList = [sendList,
43 new Plex (cin : channelList, cout : b.out()),
44 new ReadProcess (cin : b.in())
45].flatten()
46 new PAR (processList).run()

3.1.5 Running the System in Parallel on a Network

To run the same system shown in Figure 1, on a network, with each process being run on a
separate processor, a Main program for each process is required.

3.1.5.1 SendMain

SendMain is passed the numeric identifier (sendId) for this process (line 47) as the zero’th
command line argument. A network node is then created (line 48) and connected to a
default CNSServer process running on the network. From the sendId, a string is created
that is the name of the channel that this SendProcess will output its data on and a One2Net
channel is accordingly created (line 51). A list containing just one process is created (line
52) that is the invocation of the SendProcess with its properties initialized and this is
passed to a PAR constructor to be run (line 53).

47 sendId = Integer.parseInt(args[0])
48 Node.getInstance().init(new TCPIPNodeFactory ())
49 int sendInstance = sendId / 1000
50 channelInstance = sendInstance - 1
51 outChan = CNS.createOne2Net ("A" + channelInstance)
52 pList = [new SendProcess (id : sendId, cout : outChan)]
53 new PAR(pList).run()

3.1.5.2 PlexMain

PlexMain is passed the number of SendProcesses as a command line argument (line 54),
as there will be this number of input channels to the Plex process. These input channels
are created as a list of Net2One channels (lines 57-59) having the same names as were
created for each of the SendProcesses. As this is already a list there is no need to obtain
the input ends of the channels, as this is implicit in the creation of Net2One channels. The
Plex outChan is created as a One2Net channel with the name B (line 60) and the Plex
process is then run in a similar manner as each of the SendProcesses (lines 61, 62).

 J. Kerridge et al. / Groovy Parallel 19

54 inputs = Integer.parseInt(args[0])
55 Node.getInstance().init(new TCPIPNodeFactory ())
56 inChans = [] // an empty list of net channels
57 for (i in 0 ... inputs) {
58 inChans << CNS.createNet2One ("A" + i) // append the channels
59 }
60 outChan = CNS.createOne2Net ("B")
61 pList = [new Plex (cin : inChans, cout : outChan)]
62 new PAR (pList).run()

3.1.5.3 ReadMain

ReadMain requires no command line arguments. It simply creates a network node (line 63),
followed by a Net2One channel with the same name as was created for PlexMain’s output
channel (line 64) and the ReadProcess is then invoked in the usual manner.

63 Node.getInstance().init(new TCPIPNodeFactory ())
64 inChan = CNS.createNet2One ("B")
65 pList = [new ReadProcess (cin : inChan)]
66 new PAR (pList).run()

3.1.6 Summary

In the single processor case, each process is interleaved on a single processor. In the multi-
processor case each process is run on a separate processor and it is assumed that CNSServer
[6] is executing somewhere on the network.

3.2 A Tournament Manager

The Tournament System, see Figure 2, is organized as a set of Board processes that each
run a game in the tournament on a different processor. The Board processes receive
information about the game they are to play from an Organiser process. The results from
the Board processes are returned via a ResultMux process running on the same processor as
the Organiser process. In order that the system operates in a Client-Server[6] mode each
Board process is considered to be a client process and the combination of the Organiser
and ResultMux processes is considered to be the Server.

Figure 2 The Tournament System

The system requires that data be communicated as a set of GameData and ResultData
objects. The system, as defined, cannot be executed on a single processor system as due
account of the copying of network communicated objects, which have to implement

M2O

O2M
ResultMux Organiser

Board

Board

W

Tournament

R

20 J. Kerridge et al. / Groovy Parallel

Serializable, is taken in the design. More importantly, the use of an internal channel
between two processes has to be considered and a reply channel is utilized to overcome the
fact that an object reference is passed between the ResultMux and Organiser processes.

3.2.1 The Data Objects

Two data objects are used within the system, GameData holds information concerning the
player identities and the playing weights associated with each player. A state (line 72)
property is used to indicate whether the object holds playing data or is being used to
indicate the end of the Tournament.

67 class GameData implements Serializable {
68 p1 // id of player 1
69 p2 // id of player 2
70 w1 // list of weights for player 1
71 w2 // list of weights for player 2
72 state // string containing data or end
73 }

The ResultData object is used to communicate results from the Board processes back
to the Organiser process. The use of each property of the object is identified in the
corresponding comments. The board on which the game is played is required (line 79) so
the Organiser process can send another game to the Board process immediately. The
state property (line 80) is used to indicate one of three states, namely; the board has been
initialized waiting for a game, the object contains the results of a game and the tournament
is finishing.

74 class ResultData implements Serializable {
75 p1 // player 1 identifier
76 p2 // player 2 identifier
77 result1V2 // result of game for p1 V p2
78 result2V1 // result of game for p2 V p1
79 board // board used
80 state // String containing init or result or end
81 }

3.2.2 The Board Process

The Board process is a client process and has been constructed so that an output to the
Organiser in the form of a result.write() (lines 96, 103, 119) communication is
always followed immediately by a work.read() (line 98). The initialization code with its
output is immediately followed, in the main loop, by the required input operation. The
main loop comprises two sections of an if-statement, which finish with either the outputting
of a result or a termination message. The latter does not need to receive an input from the
Organiser process because the Board process will itself have been terminated. In the
normal case, the outputting of a result at the end of the loop is immediately followed by an
input at the start of the loop. These lines (96, 98, 103, 119) have been highlighted in the
code listing. A consequence of using this design approach is that only one ResultData and
one GameData object is required thereby minimizing the use of the very expensive new
operator.

The most interesting aspect of the code is that the access to the properties of the data
classes is simply made using the dot notation. This results from Groovy automatically
generating the setters, getters and class constructors required. This has the immediate
benefit of making the code more accessible so that key points such as the structure of client
and server processes is more obvious.

 J. Kerridge et al. / Groovy Parallel 21

82 class Board implements CSProcess {
83
84 bId // the id for this Board process
85 result // One2One channel connecting the Board to the ResultMux
86 work // One2One channel used to send work to this Board
87
88 void run() {
89 println "Board ${bId} has started"
90 tim = new CSTimer() // used to simulate game time
91 gameData = new GameData() // the weights and player ids
92 resultData = new ResultData() // the result of this game
93 resultData.state = "init"
94 resultData.board = bId
95 running = true
96 result.write(resultData) // send init to Organiser
97 while (running) {
98 gameData = work.read() // always follows a result.write
99 if (gameData.state == "end") { // end of processing
100 println "Board ${bId} has terminated"
101 running = false
102 resultData.state = "end"
103 result.write(resultData) // send termination to ResultMux
104 }
105 else {
106 // run the game twice with P1 v P2 and then P2 v P1
107 // simulated by a timeout
108 tim.after (tim.read() + 100 + gameData.p2)
109 println "Board ${bId} playing games for
110 ${gameData.p1} and ${gameData.p2}"
111 outcome1V2 = bId // return the bId of the board playing game
112 outcome2V1 = -bId // instead of the actual outcomes
113 resultData.state = "result"
114 resultData.p1 = gameData.p1
115 resultData.p2 = gameData.p2
116 resultData.board = bId
117 resultData.result1V2 = outcome1V2
118 resultData.result2V1 = outcome2V1
119 result.write(resultData) // send result to ResultMux
120 }
121 } } }

3.2.3 The ResultMux Process

This process forms part of the tournament system and is used to multiplex results from the
Board processes to the Organiser. The ResultMux process runs on the same processor as
the Organiser and thus access to any data objects by both processes have to be carefully
managed. If this is not done then there is a chance that one process may overwrite data that
has already been communicated to the other process because only an object reference is
passed during such communications. In this case, the resultData object is read into in the
ResultMux process and manipulated within Organiser. Yet again the desire is to reduce
the number of new operations that are undertaken. new is both expensive and also leads to
the repeated invocation of the Java garbage collector. In the version presented here only
one instance of a ResultData object is created outside the main loop of the process. In
addition, no new operation exists within the loop (lines 129-144).

The only other problem to be overcome is that of terminating the ResultMux process.
One of the properties (boards) of the process is the number of parallel Board processes
invoked by the system. When a Board process receives a GameData object that has its
state set to “end” it communicates this to the ResultMux process as well. Once the
ResultMux process has received the required number of such messages it can then
terminate itself (lines 137-140).

22 J. Kerridge et al. / Groovy Parallel

The other aspect of note is that the property resultsIn is a list of network channels
and that these can be used as a parameter to the ALT construct without any modification
because ALT (line 132) is expecting a list of input channel ends, which is precisely the type
of a Net2One channel, see 3.2.6. Any ResultData that is read in on the resultsIn
channels is then immediately written to the resultOut channel (line 143).

The use of the reply property will be explained in the next section.

122 class ResultMux implements CSProcess {
123 boards // number of boards; used for process termination
124 resultOut // output channel from Mux to Organiser
125 reply // channel indicating result processed by Organiser
126 resultsIn // list of result channels from each of the boards
127
128 void run () {
129 resultData = new ResultData() // holds data from boards
130 endCount = 0
131 println "ResultMux has started"
132 alt = new ALT (resultsIn)
133 running = true
134 while (running) {
135 index = alt.select()
136 resultData = resultsIn[index].read()
137 if (resultData.state == "end") {
138 endCount = endCount + 1
139 if (endCount == boards) {
140 running = false
141 }
142 } else {
143 resultOut.write(resultData)
144 b = reply.read()
145 }
146 } } }

3.2.4 The Organiser Process

This is the most complex process but it breaks down into a number of distinct sections that
facilitate its explanation. Yet again the use of the new operation has been limited to those
structures that are required and none are contained within the main loop of the process. The
outcomes structure is a list of lists that will contain the result of each game. The access
mechanism is similar to that of array access but Groovy permits other styles of access that
are more list oriented. Initially, each element of the structure is set to a sentinel value of
100 (lines 159-166). The result of each pair of games, pi plays pj and pj plays pi for all i
<>j, is recorded in the outcomes structure such that pi v pj is stored in the upper triangle of
outcomes and pj v pi in the lower part. Games such as draughts and chess have different
outcomes for the same players depending upon which is white or black and hence is the
starting player.

The main loop has been organized so that the Organiser receives a result from the
ResultMux. Saving the game’s results in the outcomes structure and then sending another
game to the now idle Board process achieves this (lines 171-178). However, before
another game is sent to the Board process a reply (line 178) is sent to the ResultMux
process to indicate the ResultData has been processed. The resultData object is passed
as a value from the ResultMux to the Organiser, which is an object reference. JCSP
requires that once a process has written an object it should not then access that object until
it is safe to do so. Thus once the outcomes structure has been updated the object is not
required and hence the reply can be sent to the ResultMux process immediately. This
happens on two occasions, first when the resultData contains the state “init” (line 180)
and more commonly when a result is returned and the state is “result” (line 178).

 J. Kerridge et al. / Groovy Parallel 23

147 class Organiser implements CSProcess {
148 boards // the number of boards that are being used in parallel
149 players // number of players
150 work // channels on which work is sent to boards
151 result // channel on which results received from ResultMux
152 reply // reply to resultMux from Organiser
153
154 void run () {
155 resultData = new ResultData() // create the data structures
156 gameData = new GameData()
157 println "Organiser has started"
158 // set up the outcomes
159 outcomes = []
160 for (r in 0 ..< players) { // cycle through the rows
161 row = [] // 0 ..< n gives 0 to n - 1
162 for (c in 0 ..< players) { // cycle through the columns
163 row << 100 // 100 acts as sentinel
164 }
165 outcomes << row
166 }
167 // the main loop
168 for (r in 0 ..< players) {
169 c = r + 1
170 for (c in 0 ..< players) {
171 resultData = result.read() // an object reference not a copy
172 b = resultData.board
173 if (resultData.state == "result") {
174 p1 = resultData.p1
175 p2 = resultData.p2
176 outcomes [p1] [p2] = resultData.result1V2
177 outcomes [p2] [p1] = resultData.result2V1
178 reply.write(true) // outcomes processed
179 } else {
180 reply.write(true) // init received
181 }
182 // send the game [r,c] to Board process b
183 gameData.p1 = r
184 gameData.p2 = c
185 gameData.state = "data"
186 // set w1 to the weights for p1
187 // set w2 to the weights for p2
188 work[b].write(gameData)
189 }
190 }
191 // now terminate the Board processes
192 println "Organiser: Started termination process"
193 gameData.state = "end"
194 for (i in 0 ... boards) {
195 resultData = result.read()
196 bd = resultData.board
197 p1 = resultData.p1
198 p2 = resultData.p2
199 outcomes [p1] [p2] = resultData.result1V2
200 outcomes [p2] [p1] = resultData.result2V1
201 reply.write(true)
202 work[bd].write(gameData)
203 }
204 println"Organiser: Outcomes are:"
205 for (r in 0 ... players) {
206 for (c in 0 ... players) {
207 print "[${r},${c}]:${outcomes[r][c]}; "
208 }
209 println " "
210 }
211 println"Organiser: Tournament has finished"
212 }
213 }

24 J. Kerridge et al. / Groovy Parallel

Initially, the loop will receive as many “init” messages as there are Board processes.
Thus once all the games have been sent to the Board processes, each of the Board processes
will still be processing a game. Hence, another loop has to be used to input the last game
result from each of these processes (lines 194-203). In this case the gameData that is output
contains the state “end” and this will cause the Board process that receives it to terminate
but not before it has also sent the message on to the ResultMux process. Finally, the
outcomes can be printed (lines 204-211) or in the real tournament system evaluated to
determine the best players so that they can be mutated in an evolutionary development
scheme.

3.2.5 Invoking a Board Process

Each Board process has to be invoked on its own processor. The network channels are
created using CNS static methods (lines 216, 217). It is vital that the channel names used in
one process invocation are the same as the corresponding channel in another processor.

214 Node.getInstance().init(new TCPIPNodeFactory ());
215 boardId = Integer.parseInt(args[0]) //the number of this Board
216 w = CNS.createNet2One("W" + boardId) // the Net2One work channel
217 r = CNS.createOne2Net("R" + boardId) // the One2Net result channel
218 println " Board ${boardId} has created its Net channels "
219 pList = [new Board (bId:boardId , result:r , work:w)]
220 new PAR (pList).run()

3.2.6 Invoking the Tournament

This code is similar expect that list of network channels are created by appending channels
of the correct type to list structures (lines 224-230). Two internal channels between
ResultMux and Organiser are created, M2O and O2M (lines 231, 232) and these are used to
implement the resultOut and reply connections respectively between these processes.
An advantage of the Groovy approach to constructors is that the constructor identifies each
property by name, rather than the order of arguments to a constructor call specifying the
order of the properties. It also increases the readability of the resulting code.

221 Node.getInstance().init(new TCPIPNodeFactory ());
222 nPlayers = Integer.parseInt(args[0]) // the number of players
223 nBoards = Integer.parseInt(args[1]) // the number of boards
224 w = [] // the list of One2Net work channels
225 r = [] // the list of Net2One result channels
226 for (i in 0 ..< nBoards) {
227 i = i+1
228 w << CNS.createOne2Net("W" + i)
229 r << CNS.createNet2One("R" + i)
230 }
231 M2O = Channel.createOne2One()
232 O2M = Channel.createOne2One()
233 pList = [new Organiser (boards:nBoards , players:nPlayers ,
234 work:w , result: M2O.in(),
235 reply: O2M.out()),
236 new ResultMux (boards:nBoards , resultOut:M2O.out(),
237 resultsIn:r, reply: O2M.in())]
238 new PAR (pList) .run()

 J. Kerridge et al. / Groovy Parallel 25

4. The XML Specification of Systems

Groovy includes tree-based builders that can be sub-classed to produce a variety of tree-
structured object representations. These specialized builders can then be used to represent,
for example, XML markup or GUI user interfaces. Whichever kind of builder object is
used, the Groovy markup syntax is always the same. This gives Groovy native syntactic
support for such constructs.

The following lines, 239 to 248, demonstrate how we might generate some XML [7] to
represent a book with its author, title, etc. The non-existent method call Author("Ken
Barclay") delivers the <Author>Ken Barclay</Author> element, while the method call
ISBN(number : "1234567890") produces the empty XML element <ISBN number=
"1234567890"/>.

239 // Create a builder
240 mB = new MarkupBuilder()
241
242 // Compose the builder
243 bk = mB.Book() { // <Book>
244 Author("Ken Barclay") // <Author>Ken Barclay</Author>
245 Title("Groovy") // <Title>Groovy</Title>
246 Publisher("Elsevier") // <Publisher>Elsevier</Publisher>
247 ISBN(number : "1234567890") // <ISBN number="1234567890"/>
248 // </Book>

It is also important to recognize that since all this is native Groovy syntax being used
to represent any arbitrarily nested markup, then we can also mix in any other Groovy
constructs such as variables, control flow such as looping and branching, or true method
calls.

In keeping with the spirit of Groovy, manipulating XML structures is made
particularly easy. Associated with XML structures is the need to navigate through the
content and extract various items. Having, say, parsed a data file of XML then traversing its
structures is directly supported in Groovy with XPath-like [7] expressions. For example, a
data file comprising a set of Book elements might be structured as:

249 <Library>
250 <Book> … </Book>
251 <Book> … </Book>
252 <Book> … </Book>
253 …
254 </Library>

If the variable doc represents the root for this XML document, then the navigation
expression doc.Book[0].Title[0] obtains the first Title for the first Book. Equally,
doc.Book delivers a List that represents all the Book elements in the Library. With a
suitable iterator we immediately have the code to print the title of every book in the library:

255 parser = new XmlParser()
256 doc = parser.parse("library.xml")
257
258 doc.Book.each { bk ->
259 println "${bk.Title[0].text()}"
260 }

The ease with which Groovy can manipulate XML structures encourages us the

consider representing JCSP networks as XML markup. Groovy can then manipulate that
information, configure the processes and channels, and then execute the model. For

26 J. Kerridge et al. / Groovy Parallel

example, we might arrive at the following markup (lines 261-274) for the classical
producer–consumer system built from the SendProcess and the ReadProcess described in
3.1.1 and 3.1.2. The libraries to be imported are specified on lines 262 and 263.

261 <csp-network>
262 <include name="com.quickstone.jcsp.lang.*"/>
263 <include name="uk.ac.napier.groovy.parallel.*"/>
264 <channel name="chan" class="Channel" type="createOne2One"/>
265 <processlist>
266 <process class="SendProcess">
267 <arg name="cout" value="chan.out()"/>
268 <arg name="id" value="1000"/>
269 </process>
270 <process class="ReadProcess">
271 <arg name="cin" value="chan.in()"/>
272 </process>
273 </processlist>
274 </csp-network>

To ensure the consistency of the information contained in these network configurations
we could define an XML schema [7] for this purpose. A richer schema defines how nested
structures could be described. From the preceding example we also permit a recursive
definition whereby a simple <process> may itself be another <processlist>. Hence we
can define the XML for the plexing system described in 3.1.4 by the following.

275 <csp-network>
276 <include name="com.quickstone.jcsp.lang.*"/>
277 <include name="uk.ac.napier.groovy.parallel.*"/>
278 <channel name="a" class="Channel" type="createOne2One" size="5"/>
279 <channel name="b" class="Channel" type="createOne2One"/>
280 <channelInputList name="channelList" source="a"/>
281 <processlist>
282 <processlist>
283 <process class="SendProcess">
284 <arg name="cout" value="a[0].out()"/>
285 <arg name="id" value="1000"/>
286 </process>
287 <process class="SendProcess">
288 <arg name="cout" value="a[1].out()"/>
289 <arg name="id" value="2000"/>
290 </process>
291 <process class="SendProcess">
292 <arg name="cout" value="a[2].out()"/>
293 <arg name="id" value="3000"/>
294 </process>
295 <process class="SendProcess">
296 <arg name="cout" value="a[3].out()"/>
297 <arg name="id" value="4000"/>
298 </process>
299 <process class="SendProcess">
300 <arg name="cout" value="a[4].out()"/>
301 <arg name="id" value="5000"/>
302 </process>
303 </processlist>
304 <process class="Plex">
305 <arg name="cout" value="b.out()"/>
306 <arg name="cin" value="channelList"/>
307 </process>
308 <process class="ReadProcess">
309 <arg name="cin" value="b.in()"/>
310 </process>
311 </processlist>
312 </csp-network>
313

 J. Kerridge et al. / Groovy Parallel 27

By inspection we can see that the XML presented in lines 275 to 312 capture the
Groovy specification of the system given in lines 35 to 46. The main difference is that the
list of SendProcesses generated in lines 39 to 41 has been explicitly defined as a sequence
of SendProcess definitions. A Groovy program can parse this XML and the system will
then be invoked automatically on a single processor.

The automatically generated output from the above XML script is shown in lines 314
to 330. As can be seen it generates two PAR constructs nested one in the other. The internal
one contains the list of SendProcesses that are included within the one running the Plex
and ReadProcess processes. Lines 314 and 315 show the jar files that have to be imported.
The Groovy Parallel constructs described in section 2 have been placed in a jar file,
emphasizing that Groovy is just Java.

314 import com.quickstone.jcsp.lang.*
315 import uk.ac.napier.groovy.parallel.*
316 a = Channel.createOne2One(5)
317 b = Channel.createOne2One()
318 channelList = new CHANNEL_INPUT_LIST(a)
319 new PAR([
320 new PAR([
321 new SendProcess(cout : a[0].out(), id : 1000),
322 new SendProcess(cout : a[1].out(), id : 2000),
323 new SendProcess(cout : a[2].out(), id : 3000),
324 new SendProcess(cout : a[3].out(), id : 4000),
325 new SendProcess(cout : a[4].out(), id : 5000)
326]),
327 new Plex(cout : b.out(), cin : channelList),
328 new ReadProcess(cin : b.in())
329])
330 .run()

5. Conclusions and Future Work

The paper has shown that it is possible to create problem solutions in a clear and accessible
manner such that the essence of the CSP-style primitives and operations is more easily
understood. A special lecture was given to a set of students who were being taught Groovy
as an optional module in their second year. This lecture covered the concepts of CSP and
their implementation in Groovy. There was consensus that the approach had worked and
that students were able to assimilate the ideas. This does however need to be tested further
in a more formal setting.

Currently, Groovy uses dynamic binding and it can be argued that this is not
appropriate for a proper software engineering language. It would only need for this
checking to be done at compile time, say by a switch, and we could more robustly design,
implement and test systems.

Work is being undertaken to develop a diagramming tool that outputs the XML
required by the system builder. This would mean that the whole system could be
seamlessly incorporated into existing design and development tools such as ROME [8].
This could be extended to develop techniques for distributing a parallel system over a
network of workstations or a Beowulf cluster.

Further consideration could also be given to the XML specifications. An XML
vocabulary might be developed that is richer than that presented. Such a vocabulary might
provide a compact way to express for example, the channels used as inputs to processes
where they become the Guards of an ALT construct.

Can we answer the question posed by the title of this paper in the affirmative? We
suggest that sufficient evidence has been presented and that this provides a real way
forward for promoting the design of systems involving concurrent and parallel components.

28 J. Kerridge et al. / Groovy Parallel

Acknowledgements

A colleague, Ken Chisholm, provided the requirement for the draughts tournament. The
helpful comments of the referees were gratefully accepted.

References

[1] Inmos Ltd, occam2 Programming Reference Manual, Prentice-Hall, 1988.
[2] C.A.R. Hoare, Communicating Sequential Processes. New Jersey: Prentice-Hall, 1985; available

electronically from http://www.usingcsp.com/cspbook.pdf.
[3] P.H. Welch, Process Oriented Design for Java – Concurrency for All,

http://www.cs.kent.ac.uk/projects/ofa/jcsp/jcsp.ppt, web site accessed 4/5/2005.
[4] G. Hilderink, A. Bakkers and J. Broenink, A Distributed Real-Time java System Based on CSP, The Third

IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, ISORC 2000,
Newport Beach, California, pp.400-407, March 15-17, 2000.

[5] Groovy Developer’s Web Site, accessed 4/5/2005, groovy.codehaus.org.
[6] Quickstone Ltd, web site accessed 4/5/2005, www.quickstone.com.
[7] http://www.w3.org/TR/REC-xml/; http://www.w3.org/TR/xpath.
[8] K. Barclay and J. Savage, Object Oriented Design with UML and Java, Elsevier 2004; supporting tool

available from http://www.dcs.napier.ac.uk/~kab/jeRome/jeRome.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

