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Abstract. Circus is a new notation that may be used to specify both data and be-
haviour aspects of a system, and has an associated refinement calculus. Although a
few case studies are already available in the literature, the industrial fire control sys-
tem presented in this paper is, as far as we know, the largest case studyGirctise
refinement strategy. We describe the refinement and present some new laws that were
needed. Our case study makes extensive use of mutual recursion; a simplified notation
for specifying such systems and proving their refinements is proposed here.

1 Introduction

Circus (Concurrent Integrated Refinement CalculUS) [1, 2] characterises systems as pro-
cesses that combine constructs that describe data and control behaviour. The Z notation [3, 4]
is used to define most of the data aspects, and CSP [5] and Dijkstra’s guarded-command lan-
guage are used to define behaviour. The semantiGrofis is based on unifying theories

of programming [6], a framework that unifies the science of programming across many dif-
ferent computational paradigm&ircus, unlike other combinations of data and behavioural
aspects, such as CCS-Z [7, 8], CSP-Z [9], and CSP-0OZ [10], supports refinement in a calcu-
lational style similar to that presented in [11].

A refinement strategy fo€ircus is presented in [2], with the complete development of
a reactive buffer into a distributed implementation as an example. Refinement notions and
many refinement laws are also presented. In the current paper, we provide a more significant
case study on th€ircus refinement calculus: a safety-critical fire protection system. As far
as we know, it is the largest case study on@ueus refinement calculus.

Throughout the development of our case study there were some problems; we present
the solutions for some of them in this paper. First, the set of laws presented in [2] was not
sufficient; we propose new refinement laws. For instance, we require some laws for inserting
and distributing assumptions, and a new process refinement law. In total, more than fifty new
laws have been identified during the development of our case study.

In [2], the refinement of mutual recursive actions is not considered; our case study, how-
ever, includes mutually recursive definitions. We present here a notation used to prove re-
finement of such systems; this results in more concise and modular proofs. The necessary
theorems that justify the notation have been proved in [12].

The main objective of this paper is to illustrate an application of the refinement strategy
in an existing industrial application [13]. We believe that, with the results in this paper, we
provide empirical evidence of the power of expressiofCotus and, principally, that the
strategy presented in [2] is applicable to large industrial systems.

In Section 2, we present an introduction to refineme@incus: we describeCircus and
the refinement notions for processes and their constituent actions. Section 3 presents our case
study. Finally, we present our conclusions and discuss future work in Section 4.
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2 RefinementinCircus

In what follows, we summarise th@ircus notation and its refinement technique. More
details can be found in [1, 2], and an example is presented in Section 3.

2.1 Circus

Circus programs are sequences of paragraphs: channel declarations, channel set definitions,
Z paragraphs, or process definitions. A system is defined as a process that encapsulates some
state and communicates through channels.

A channel declaration declares its name and type; if the channel is used purely for syn-
chronisation, then no type is needed. The generic channel declactigomel [T] ¢ : T
declares a family of channets In this declaration|[T] is a parameter used to determine
the type of the values that are communicated through chamnafe may introduce sets of
channels in @hansetparagraph.

Processes may be defined explicitly or in terms of other processes (compound processes).
An explicit process definition is delimited by the keywolikgin andend: it is formed by a
state definition, a sequence of paragraphs, and a nameless action, which defines its behaviour.
In [2], we have introduced the keywostlate before the state declaration in order to make it
clear which schema represents a process state.

Compound processes are defined using the CSP operators of sequence, @deanal (

ALT) and internal choice, parallelism and interleaving, or their corresponding iterated oper-
ators, event hiding, or indexed operators, which are particul&@irtus specifications. The
parallelism follows the alphabetised approach adopted by [5], instead of that adopted by [14].

An action can be a schema, a guarded command, an invocation of another action, or
a combination of these constructs using CSP operators. Three primitive actions are avail-
able:Skip Stop andChaos The prefixing operator is standard, but a guard construction may
be associated with it. For instance, given a Z predipatkthe conditionp is true, the action
p & ¢?’x — A inputs a value through channeland assigns it to the variable and then
behaves likéA, which has the variablg in scope. If, however, the conditignis false the
same action blocks. Such enabling conditions pkaay be associated with any action.

The CSP operators of sequence, external and internal choice, parallelism, interleaving,
their corresponding iterated operators, and hiding may also be used to compose actions.
Communications and recursive definitions are also available.

To avoid conflicts in the access to the variables in scope, parallelism and interleaving of
actions declare a synchronisation channel set and two sets that partition all the variables. In
the parallelismA; |[ns, | cs| ns, || Ay, the actiongh; andA, synchronise on the channels in
setcs (unlike in occam, where the synchronisation channel set is implicit). BatrandA,
have access to the initial values of all variables in bwthandns,. However,A; andA; may
modify only the values of the variablesg, andns,, respectively. The changes madeAy
in variables inns; are not seen b}, andvice-versa

Finally, an action may also be a variable block. Further operators are availaBie in
cus [1]; only those that are used in this paper are described here.

2.2 Refinement Strategy

A refinement strategy fo€ircus is presented [2]. It is based on laws of simulation, a tech-
nique used to prove data refinementin Z, and action and process refinement; some of them are
presented in Appendix A. We present further simulation and refinement laws in Appendix B.
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Figure 1: An iteration of the refinement strategy
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Table 1: The System States and Corresponding Actions

System State| Abstract FC Action | Concrete FC Action | Concrete Area Action
fireSysStagt | AbstractFireSysStart FireSysStart StartArea

fireSyg AbstractFireSys FireSys AreaCycle

manual AbstractManual Manual ManualArea

auto AbstractAuto Auto AutoArea

reset AbstractReset Reset ResetArea
countdown | AbstractCountdown| Countdown WaitingDischarge
discharge AbstractDischarge | Discharge WaitingDischarge
fireSysR AbstractFireSysD | FireSysD AreaD

disabled AbstractDisabled Disabled DisabledArea

The strategy aims at refining an abstract centralised specification to a distritiuted
program, which involves only executable constructs. The strategy consists of possibly many
iterations involving simulation, actions, and process refinement; in each iteration a process
is split as presented in Figure 1. In this figure, each process is represented as a box. For
instance, before the simulation, we have a process with an internalSdatend actions
ActAl, ---, ActAk its behaviour is determined by the main actibctA First, elements of
the concrete system state are included using simulation; next, the state space and actions
are partitioned in such a way that each partition, represented in the figure by internal boxes,
groups some state components and the actions which access these components; and, finally,
all these partitions become individual processes, which are combined in the same way as
their main actions were in the previous process.

The semantics ofircus is defined using Hoare and He’s unifying theories of program-
ming. In [2], we have a definition for action refinement; process refinement amounts to
refinement of the main action, with the state components taken as local variables. Backwards
and forwards simulation are also defined and proved sound in [2]. Here, we do not use the
definitions in [2], but simulation and refinement laws.

3 Case Study

Our case study consists of a fire control system that covers two separate areas. Each area is
divided into two zones; two different zones cannot be covered by two different areas. Two
extra zones are used for detection only. Fire detection happensin a zone, and, in consequence,
a gas discharge may occur in the area that contains that zone.

The system includes a display panel composed of lamps that indicates whether the system
is on or off, whether there are system faults, or a fire has been detected, whether the alarm
has been silenced or not, the need to replace the actuators of the system, and gas discharges.

The system can be in one of three modes: manual, automatic, or disabled. In manual
mode, an alarm sounds when a fire is detected, and the corresponding detection lamp is lit
on the display. The alarm can be silenced, and, when the reset button is pressed, the system
returns to normal. In manual mode, gas discharge is manually initiated.

In automatic mode, a fire detection is also followed by the alarm being sounded; however,
if a fire is detected in the second zone of the same area, the second stage alarm is sounded,
and a countdown starts. When the countdown finishes, the gas is discharged and the circuit
fault lamp is illuminated in the display; the system mode is switched to disabled.

In disabled mode, the system can only have the actuators replaced, identify relevant faults
within the system, and be reset. The system is back to its normal mode after the actuators are
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Figure 2: System External Channels

replaced and the reset button is pressed.

The system may be in one of the states presented in Table 1. Initially, the system is on
fireSysStattstate. After being switched on, its state is changefiré®ys; in this state, a
fire detection yields to the state being changethtmual or auto, depending on the system
mode. In the stateeset the system is waiting to be reset;éountdows, it is waiting for the
clock to finish the countdown. During gas discharge, the system is otigbkarge state,
after which, the state is changedfi®@SysR. Finally, if a fire is detected ofireSysD, the
system state is changeddsabled.

Some further requirements should also be satisfied: the system must be started with a
switchevent, and, afterwards, the systemlamp should be illuminated; the system mode
can be switched between manual and automatic mode provided no detection happens. Also,
when the system is reset, all fire detection lamps must be switched off; if a gas discharge
occurred, the actuators need to be replaced, and the system mode is switched to automatic.
Following a fire detection, the corresponding lamp must be lit. After a gas discharge, no
subsequent discharge may happen before the actuators are replaced.

The external channels of the fire control system are presented in Figure 2. Fire detection
is indicated through channdét, which inputs the zone where it happened. The system mode
can be manually switched using chanseiitch In manual mode, when the conditions that
lead to a gas discharge are met, gas can be manually discharged using the ekiiisel
Faults are reported to the system through the ch&an#él The channehlarmcan be used to
sound the alarm, which can be silenced throsiggnce Channelesetresets the system. The
channebctuatorsRndicates that the actuators have been replaced. The system indicates that
a lamp must be switched using the generic chatameys; it provides the type of lamp and the
new lamp mode. The buzzer is controlled using chabneker After each state change, the
system reports its current state using charsysSt The fire control system may request a
clock to execute the countdown using charci€Dn the clock indicates that the countdown
is finished using channekOff.

The display is composed of the lamps and the buzzer. The lamps can be of three dif-
ferent types; however, the three types of lamps are instances of the same generic process
GenericLampwhich has a componestatus: OnOff. Initially, all the lamps are switched
off; they can be switchedn using an appropriate instance of chaniaehp.
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Areald:=0]1
Zoneld:=01]1|2[3]4]|5
Mode::= automatic| manual| disabled
SwitchMode== Mode)\ {disabled
OnOff ::= on | off
AlarmStage:= alarmOff | firstStagel secondStage
Lampld::= zoneFaultl earthFaultL| sounderLineFaultll powerFaultL| sysOnL
| remoteSignalll actuatorLineFaultl] circuitFaultL | alarmSilencedL
Faultld ::= ZoneF| earthF | sounderLineH powerF| remoteSignal actuatorLineF
SystemState= fireSysStatt| fireSys | fireSysQ | auta,
| countdowg | discharge | reset | manual | disabled

Figure 3: System Types

3.1 Abstract Fire Control System

The basic types used within the system are presented in Figure 3. The areas and zones are
identified by the type#\reald and Zoneld the system modes are represented by the type
Mode the typeSwitchModeis a subset of typ&ode All the lamps and the buzzer of the
display can be either on or off, which are represented by the@ypaff. The alarm states are
represented by the typarmStage The typeLampldcontains identifiers for all the lamps
in the system’s display. Faults are represented by theRgipkld. Finally, the system can be
in one of the states of the ty[8ystemState

ProcessAbstractFCformalises the requirements previously described. Throughout this
paper we omit some formal definitions for the sake of conciseness; they can be found in [12].
The abstract state is defined by the Z schema naAiesiractFCStpresented below. Z
schemas can either be represented as boxe&pstsactFCSt or in a horizontal notation
as we shall see later in this pap@bstractFCSis composed of five components, which are
declared in the declaration part of the schemadeindicates the mode in which the fire
control is running;controlZnsis a total function that maps the areas to a set that contains
their controlled zonesactZnsmaps the areas to the zones in which a fire detection has oc-
curred;dischargeindicates in which areas a gas discharged happened,; fiaellyecontains
the active areas identifications.

processAbstractFC= begin

state __ AbstractFCSt
mode: Mode
controlZnsactZns: Areald — P Zoneld
dischargeactive: P Areald

Va:Arealde
(mode= manua) = a € active< #actZnsa> 1
A (mode= automatig = a € active< #actZnsa> 2
A actZns aC controlZns aA controlZns a= getZones a

The state invariant is declared in the predicate part of the schema; it determines that, if the
system is running imanualmode (predicatenode= manua), an area isctiveif, and only

if, some zone controlled by it is active. On the other hand, if the modetsmatic an area

is active if, and only if, there is more than one active zone controlled by it. Finally, for each
area, its controlled zones are defined by the funageizoneswhose definition we omit.
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Initially, the system is irmutomaticmode, there is no active zone, and no discharge oc-
curred in any area. The state invariant guarantees that there is no active area.

__InitAbstractFC
AbstractFCSt

modé = automaticA dischargé= () A actZns= {a: Arealde a — (}}

Undashed variables represent the variable values before the execution of an operation; on
the other hand, dashed variables represent the variable values after the execution of an op-
eration. The decoration of a scheifBahema= [x; : Ty... X, : T, | p], is defined as

the decoration of all the components of the schema, and the modification of the predicate
part of the schema to reflect the new names of these components. For instance, we have
thatSchema= [x| : Ty... X, : To | p[X|/X1,... ,X,/%]|]. Finally, the inclusion of the
schemaAbstractFCStin the declaration part dhitAbstractFG merges the declarations of

both schemas, and conjoins their predicates.

Three operations are used to switch the system mode; they leave the other components
unchanged. The first operation receives the new mode as argument. For any Stiwethat
describes the state of a systetnStateis a schema that includes bdiithemandSchema
Furthermore, the name of input components must end with a qujeapnd the name of output
components must end with a shriek (

__SwitchAbstractFCMode
AAbstractFCSt nm? : Mode

modé = nm? A actZn$ = actZnsA dischargé = discharge

SwitchAbstractFE€Auto and SwitchAbstractFEDis do not receive arguments; they switch
the mode tautomaticanddisabled respectively.

The schema\bstractActivateZoneeceives a zonaz! and changeactZnsby including
nZ: in the set of active zones of the area that controladtive may also be changed to
maintain the state invariant. All other state components are left unchanged.

__AbstractActivateZone
AAbstractFCSt nz? : Zoneld

modé = modeA dischargé = discharge
actZn$ = actZns @ {a: Areald| nZ’ € controlZns ae
a— actZnsaJ {nz’}}

The schem@bstractAutomaticDischargactivates the discharge in the active areas, only
discharges changed. FinallyAbstractManualDischargeeceives the areas in which the user
wants to discharge the gas, but discharges only in those thattive

All the other actions are defined using CSP operators. Basically, we have one action for
each possible state within the system as described in Table 1.

The actionAbstractFireSysStadtarts by communicating the current system state. Then,
it waits for the system to be switched on through charsveltch switches on the lamp
SysOnl.initialises the system state and, finally, behaves like aciwstractFireSys

AbstractFireSysStart sysSfiireSysStagt— switch—
lampLampld.sysOnllon — InitAbstractFG AbstractFireSys

In actionAbstractFireSysafter communicating the system state, the mode can be manu-
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Figure 4: Refinement Strategy for the Fire Control System

ally switched betweeautomaticandmanual Furthermore, if any detection occurs, the zone

in which the detection occurred is activated, the corresponding lamp is lit, the alarm sounds
in firstStage and then, the system behaves lKastractManuabr AbstractAuto depending

on the current system mode. If the actuators are replacedirttk@ultL is switched off, the
system is set tautomaticmode, and waits to beeset Finally, if anyfault is identified, the
correspondindgampis lit, and the buzzer is switchemh.

AbstractFireSys
sysStireSyg —
switchM?’nm — SwitchAbstractFCModeAbstractFireSys
O det’nz — AbstractActivateZoridampZoneld.nZon —
alarmifirstStage—
(mode= manua) & AbstractManual
O (mode= automatig & AbstractAuto
O actuatorsR— lampLampld.circFaultL!off —
SwitchAbstractFCAuto, AbstractReset
O fault?’faultld — lampLampld.(getLampld faultid!on —
buzzelon — AbstractFireSys

The functiongetLampldmaps fault identifications to their corresponding lamp in the display.
Throughout this paper, we illustrate the refinement of the fire control system using these
two actions only. For this reason, we omit the definitions of the remaining actions.
The main action of procegsbstractFireSyss defined below.

e AbstractFireSysStaend

In the next section, we refinkbstractFCto a concrete distributed system.

3.2 Refinement

The motivation for the fire control system refinement is the distribution of the areas, in or-
der to increase efficienct. Section 3.2.1 presents the target of our refinement, the concrete
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Figure 5: Concrete Fire Control

fire control system. In the following sections, we present the refinement steps summarised
graphically in Figure 4.

In the first iteration, we splibstractFCinto two proces#reasandinternalFC. The first
models the areas of the system, and is split into two interleAvegiprocesses in interleaving
in the last iteration. The second is the core of the system, which is split into a display
controllerDisplayCand the system controll€C in the second iteration.

3.2.1 Concrete Fire Control System

The concrete fire control system has three components: the controller, the display, and the
detection system. They communicate through the channels below.

channeldisplay, manDis: P Areald
channelswitchedautoDis anyDis noDis, countdowncounting
channelgasDischargedgasNotDischarged Areald

The controller indicates discharges to the display thradigplay. The display acknowledges
this communication through chanr@kitched The controller request gas discharges to the
detection process throughanDisandautoDis The detection process may reply to these
requests indicating if the gas has been dischargegi§is or not (oDis); it may request

a countdown if it is automaticmode and the conditions for a gas discharge are met. The
controller indicates that it started counting throwglunting In Figure 5, we summarise the
internal communications of the concrete fire control system.

Controller The proces$-C is similar to the abstract specification. However, all the state
components and events related to the detection areas and to the display are removed. For
conciseness, some schemas, as the system state presented below, are presented in their hori-
zontal formname= [declaration| predicate.

processFC = begin stateFCSt= [mode : Mode]
InitFC = [FCSt | modg = automatig

The state of the concrete fire control is composed of only one compomealg, which
indicates the mode in which the system is running. This mode is initialisadttonatic
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Three operations can be used to switch the system mode. The first one receives the new
mode as argument.

SwitchFCMode= | AFCSt nm? : Mode| modg = nm’ |

The second and third operations do not receive any argument; they simply switch the system
mode toautomaticor disabled

The fire control system is responsible for communicating the current system state. After
being switched on, the fire control initialises its state and behaves like &stefys Where
a lamp was switchedn in the abstract specification, an acknowledgment esesitchedis
received from the the display controller.

FireSysStare sysSifireSysStagt— switch— switched— InitFC; FireSys

Similar to the abstract system, all the other actions corresponds to a possible state within the
system as described in Table 1.

In actionFireSys after communicating the system state, the mode can be switched. Fur-
thermore, if any detection occurs, the controller waits feméchedsignal, sets the alarm to
firstStage and behaves lik&lanual or Auto, depending on the current system mode. Since
the areas are the processes which have the area-zone information, folladabgpanmuni-
cation, the zone activation is not part of the controller behaviour. If the actuators are replaced,
the system is set tautomaticmode, and waits to beeset Finally, all the faults are ignored
by this process, except that it waits foswitchedsignal from the display.

switchM’nm — SwitchFCModgFireSys
O det’nz — switched— alarm!firstStage—
(modg = manua) & Manual
O (modeg = automatig & Auto
O actuatorsR— switched— SwitchFQAuto, Reset
O fault?’faultld — switched— FireSys

FireSys= sysStfireSyg —

e FireSysStarend

As for the abstract system, we omit the definition of the remaining actions. The main action
of procesd=C is FireSysStarpresented above.

Display Controller This process models the display controller requests for the lamps to be
switchedon or off after the occurrence of the relevant events. It waits for the system to be
switched on, switches the lamgysOnL onand indicates this t&C throughswitched A

gas discharge is indicated IBC to this process througtiisplay If the system igeset the
display switche®ff the buzzer and all the lamps, except the lagipsFaultL andsysOnL

Areas The proces#reais parametrised by the area identifier.
processArea= (id : Areald e begin

The state of an area is composed of the mode in which it is running, its controlled zones,
the active zones in which a fire detection occurred, a boalesnmargethat records whether
a gas discharge has occurred or not, and a boaletive that records whether the area is
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willing to discharge gas or not.

state __ AreaState
mode: Mode
controlZnsactZns: P Zoneld
dischargeactive: Bool

controlZns= getZonesid\ actZnsC controlZns
(mode= automatig = active= true < #actzZns> 2
(mode= manua) = active= true < #actZns> 1

The invariant establishes that the comporaatZnsis a subset of the controlled zones of this
area, which is defined byetZonesBesides, if running irautomaticmode, an area is active
if, and only if, all controlled zone aractive On the other hand, if running imanualmode,
an area isctiveif, and only if, any controlled zone is active.

Each area is initialised as follows: there is no active zone; no discharge occurred; and it
Is in automaticmode. The state invariant guarantees that it isaotitve

InitArea= [ AreaStaté| actZn$ = () A dischargé = false A modé = automatig

The schem&witchAreaModeeceives the new mode and sets the area mode. Schemas
SwitchAre@Auto and SwitchArea@Dis set the aremodeto automaticand disabled All
other state components are left unchanged. A zone can be activated using the operation
ActivateZonelf the given zone is controlled by the area, it is included indb&ns

Initially, an area synchronises in taiitchevent, initialises its state, and starts its cycle.

StartArea= switch— InitArea; AreaCycle

During its cycle, if theactuatorsRevent occurs, the mode is switchedatastomaticand the

area waits to beeset If the system mode is switched, so is the area mode. Finally, any
detection may activate a zone, if it is controlled by this area; after this, the area behaves like
eitherAutoAreaor ManualArea depending on its current mode.

AreaCycle= actuatorsR— SwitchAredAuto,ResetArea
O switchM’nm — SwitchAreaModgAreaCycle
O det’nz— ActivateZong(mode= automatig & AutoArea
O (mode= manua) & ManualArea
e StartAreaend)

The main action of the procegseais the actiorStartArea
The proces£oncreteAreasepresents all the areas within the system. Basically, it is a
parallel composition of all areas. They synchronise on the channglggt

chansety eas == {| switch reset switchM det silence actuatorsR
autoDis manDis anyDis noDis counting|}
processConcreteAreas= || id : Areald | Saeas|| © Area(id)

The internal system is defined as the parallel composition of the fire cér@aind the
display controlleDisplayC All the communications between them are hidden.

chansetDisplaySync== {| display, switched|[}
chanset¥; == {| switch reset det display, silence actuatorsRfault [}
processConcretelnternalFC= FC || X, || DisplayC\ DisplaySync

The concrete fire control is the parallel combinationCaincretelnternalFCand Areas
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Internal communications are again hidden.

chansetGSync== { manDis autoDis countdowncounting
gasDischargedgasNotDischargedanyDis noDis [}

chanset¥, == {| switch reset det switchM silence actuatorsR} U GSync

processConcreteFC= (ConcretelnternalFQ| >, || Areas \ GSync

In the following sections, we prove thAbstractFCis refined byConcreteFC or rather,
AbstractFCLC ConcreteFC

3.2.2 First Iteration: splitting thAbstractFCinto InternalFC andAreas

Data refinement In this step we make a data refinement in order to introduce a state com-
ponent that is used by the areas. The mesde component indicates the mode in which the
areas are running. The processstractFCis refined to the proce$3C, presented below.

processFC; = begin
state

_ FCSst
mode, mode : Mode

controlZns, actZns : Areald — P Zoneld
discharge, active : P Areald

Va:Arealde
(modg = automatig = a € activg < #actZnga > 2
A (mode = manua) = a € activg < #actZnsa > 1
A actZns a C controlZng a A controlZns a = getZones a

The statd=CSf is the same as that éfbstractFC except that it includes an extra compo-
nentmode. In order to prove that thEC, is a refinement of thAbstractFC we have to prove
that there exists a forwards simulation between the main actide€,0dndAbstractFC The
retrieve relatiorRetrFCrelates each component in tAéstractFCSto one inFCSY.

_ RetrFC
AbstractFCSt FCSY

mode = modeA mode = modeA controlZns = controlZns
actZns = actZnsA discharge = discharge/ activg = active

The laws ofCircus establish that simulation distributes through the structure of an action.
The laws used here are in Appendices A and B; we refine each schema using Law A.1. In the
concrete initialisation, the new state compon@aotda is initialised inautomaticmode.

- |n|tFC1
FCSt

modé = automaticA modg = automaticA dischargé = ()
actzng = {a: Arealde a— 0}

The following lemma states that this is actually a simulation of the abstract initialisation. The



M. Oliveira et al. / Refining Industrial Scale Systems in Circus 293

symbol = represents the simulation relation.
Lemma 3.1 InitAbstractFC= InitFC,

Proof. The application of Law A.1 raises two proof obligations. The first one concerns the
preconditions of both schemas.

V AbstractFCSt FCSt e RetrFC A pre InitAbstractFC=- pre InitFC,

It is easily proved because the preconditions of both schemasusre The second proof
obligation concerns the postcondition of both operations.

V AbstractFCSt FCSt; FCS{ e RetrFCA pre InitAbstractFCA InitFC, =
3 AbstractFCSte RetrFC A InitAbstractFC

This proof obligation can also be easily discarded using the one-point rule. When this rule
is applied, we remove the universal quantifier, and then, we are left with an implication in
which the consequent is present in the antecedent. O

There is no special rule to handle initialisation operations. This is because the behaviour
of a process is defined by its main action; there is no implicit initialisation. An initialisation
schema is just a simplified way of specifying an operation like any other.

All other schema expressions are refined in pretty much the same way. Their definitions
are very similar to the corresponding abstract operations except that the value assigned to
modae is also assigned to the new state compomeodia,.

For the remaining actions, we rely on distribution of simulation. The new actions have
the same structure as the original ones, but use the new schemas. By way of illustration, we
present the actioRireSysStast that simulate#\bstractFireSysStart

FireSysStart = sysSifireSysStagt— switch— lampLampld.sysOnllon —
InitFC,; FireSys

To establish the simulation, we need Laws A.2 and A.3. Since all the output and input
values, and guards are not changed, only their second proviso must be proved. They follow
from Lemma 3.1 an@FireSys= FireSys.

FireSysStart is the main action ofFC;, and we have just proved that it simulates the
main action ofAbstractFC

e FireSysStartend

This concludes this data refinement step.

Action Refinement In this step we changEC,; so that its state is composed of two parti-
tions: one that models the internal system and another that models the areas. We also change
the actions so that the state partitions are handled separately.

processConcreteFC= begin
The internal system state is composed only by its mode.
InternalFCSt= [mode : Mode]

The remaining components are declared as components of the areas partition of the state.
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__AreasSt
mode : Mode
controlZns, actZns : Areald — P Zoneld
discharge, active : P Areald

Va:Arealde
(mode = automatig = a € activeg < #actZnga > 2
A (modg = manua) = a € activg < #actZnga > 1
A actZng a C controlZns a A controlZnsg a = getZonesa

The state oFCSf is declared as the conjunction of the two previously defined schemas.
state FCSt = InternalFCStA AreasSt
The first group of paragraphs access anlydeg. It is initialised toautomatic
InitinternalFC = [InternalFCSt, AreasSt| modé = automatig

Another convention is used in the definitions that follow: for any sch8cta=Schrep-
resents the schema that includes bStthand Sch and leaves the components values un-
changed. The notatic#Schdenotes the bindings of components fr&ch

__=Schema
Sch
ScH
#Sch= §ScH

The schem&witchinternalFCModeeceives the new mode as argument, and switches
theInternalFC mode.

SwitchinternalFCMode= [ AlnternalFCSt =AreasSt nmi? : Mode | modé = nnmi’ |

Similarly, SwitchinternalFQAuto and SwitchinternalF@Dis set thelnternalFC mode to
automaticanddisabled respectively.

The behaviour of this internal system is very similar to that of the abstract one (Table 1);
however, after being switched on, it initialises onfypde and behaves like actidfireSys.
All the operations related to the areas are no longer controlled by the internal system actions,
but by the areas actions. For instance, consider the detieSysStart below.

FireSysStart = sysSifireSysStagt— switch— lampLampld.sysOnllon —
InitinternalFC; FireSys

When a synchronisation aswitchM happens, only thinternalFC mode is switched by
actionFireSys. Furthermore, since the information about the areas are no longer part of
this partition, following adetcommunication, this action does not activate the area in which
the detection occurred. If the actuators are replaced, this action switches the corresponding
lampon, switches onlymodeg to automati¢ and waits to beeset The behaviour, if anjault



M. Oliveira et al. / Refining Industrial Scale Systems in Circus 295

happens, is not changed.

FireSys = sysSifireSyg —

switchM’nm — SwitchinternalFCModgFireSys

O det’nz — lampZoneld.nZon — alarmifirstStage—
(modg = manua) & Manual,
O (modg = automatig & Auto,

O actuatorsR— lamplLampld.circFaultL!off —
SwitchinternalFQAuto, Reset

O fault?’faultld — lampLampld.(getLampld faultld!on —
buzzeton — FireSys

The second group of paragraphs is concerned with the areas. They are initialised in
automaticmode; furthermore, there are no active zonesdisohargehas occurred, and no
area isactive

__InitAreas
AreasSt InternalFCSt

modé = automaticA dischargé = ()
actZng = {a: Arealde a+— 0}

The areas mode can be switched to a given mode with sclsewitahAreasModeThe ar-
eas mode can also be switchedattomaticor disabledmode with the schema operations
SwitchAreagAutoandSwitchAreagDis, respectively.

__SwitchAreasMode
AAreasSt ZInternalFCSt nm? : Mode

modé = nm! A actZng = actZns A dischargg = discharge

The schemactivateZoneA$cludes a given zonez! in the set of active zones of the
area that controlez’.

__ActivateZoneAS
AAreasSt ZInternalFCSt nz? : Zoneld

modé = mode, A dischargé = discharge
actZng = actZzns @ {a: Areald| nZ? € controlZng a e
a— actZzngsau {nz’}}

Initially, the areas synchronise @switch initialise the state, and start their cycle.
StartAreas= switch— InitAreas AreasCycle

In AreasCyclethe actuators can be replaced, setting the modatimmatic and the areas
wait to bereset If the system mode is switched, so is the areas mode. Any detection in a
zonenzleads to the activation afz the behaviour afterwards depends onAneasmode.

AreasCycle= actuatorsR— SwitchAreagAuto,ResetAreas
O switchM’nm — SwitchAreasModéreasCycle
O det’nz— ActivateZoneASmode = automatig & AutoAreas
O (mode = manua) & ManualAreas

As for the paragraphs of the internal system, the areas have an action corresponding to
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each action in the abstract system (Table 1); the remaining actions are omitted here.

The main action ofConcreteFCis the parallel composition of the actioRrgeSysStagt
and StartAreas These actions actually represent the initial actions of each partition within
the process. They synchronise on the channelgefll the synchronisation events between
the internal system and the areas are hidden in the main action.

o (FireSysStat [ a(InternalFCS} | £, | «(AreasSt|| StartAreas \ GSyncend

Action FireSysStart may modify only the components biternalFCSt andStartAreaamay
modify only the components @&reasSt

Despite the fact that this is a significant refinement step, it involves no change of data
representation. In order to prove that this is a valid refinement, we must prove that the main
action of proces€oncreteFCrefines the main action of proceB€,; however, they are
defined using mutual recursion, and for this reason, we use the result below in the proof. The
symbolC 4 represents the action refinement relation.

Theorem 3.1 (Refinement on Mutual Recursive Actions)~or a given vector of actionssS
defined in the form&= [Ny, ..., Np], where N= Fi(Ny, ..., N,), we have that:

Fo[Yo, .-, Yn/No,...,Nn] E4 Yo,
SSEA[Yo,...,Yn}<: ey
Fn[YO,...,Yn/NO,...,Nn] EAYn

In order to prove that a vector of actioB8sas defined above is refined by a vector of actions
Yo, - .-, Yy, itis enough to show that, for each actinin Ss, we can prove that its definition
Fi, ifwereplaceN, ..., Nywith Yy, ..., Y,in Fj, isrefined byy;. Thisresultis proved in[12].

We want to prove thaFireSysStart C 4 (FireSysStast || StartArea$ \ GSyn¢ where
|| stands for[o(InternalFCS} | X5 | a(AreasS)|. As FireSysStartis defined using mutual
recursion, we use the Theorem 3.1, wias the vector including all actions involved in the
definition of FireSysStart, Ss = [FireSysStant FireSys, . . .|, to prove this refinement. The
vector|[Y, ..., Yq| includes(FireSysStatt || StartAreas \ GSyncand all the refinements of
each action irss as a parallel composition of the same form: with the same partition, the
same synchronisation set, and the same hiding.

To prove this refinement, however, using Theorem 3.1, we need a mogifiedwhich
some actions are preceded by an assumption. We introduce these assumptions using Law B.8.

[FireSysStart, FireSys, . . .|
Ca[BS]
[FireSysStart {mode = moda}; FireSys, .. ]

Although long, the proof obligation raised by this law application is trivial; we omit it here,
for the sake of conciseness. Using Theorem 3.1 we get the following result.

FireSysStart, — | (FireSysStast || StartAreas \ GSync

{mode = moda}; FireSys,... | =* | (FireSys || AreasCycl¢\ GSyng. ..
<~

FireSysStaxt{subst C 4 (FireSysStagt || StartArea$ \ GSync (1)

FireSys|[subst C 4 (FireSys || AreasCycl¢ \ GSync. .. (2)

Here,substcorresponds to the following substitution.

subst— ( (FireSysStart || StartAreas \ GSync ) / ( FireSysStart, )

(FireSys || AreasCyclg\ GSync. . . FireSys, . ..
Below,A; C 4 [law, ..., law,]{op } ... {op,} A; denotes thad, may be refined té, using
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laws law,, . . ., law,, if opy,...,op, holds. Lemmas 3.2 and 3.3 prove refinements (1) and
(2), respectively.

Lemma 3.2 (1) FireSysStartisubst C 4 (FireSysStast | StartAreas \ GSync
Proof. We start the refinement using the definitiond=0€SysStart and substitution.

FireSysStartisubst

= [Definition of FireSysStant Definition of Substitutioh

sysSifireSysStagt— switch— lamgLampld.sysOnlon —
InitFC;; (FireSys || AreasCycle \ GSync

First, we may expand the hiding since the chantaeiyp, switch andsysStare not inGSync

= [A.15] {{lamp, switch sysS} N GSync= (}}
sysSifireSysStagt— switch— lamplLampld.sysOnllon — \ GSyne
InitFC,; (FireSys || AreasCyclé y

The schemadnitFC,; can be written as the sequential composition of two other schemas as
follows. In [2], a refinement law is provided to introduce a schema sequence; however, in our
case, we have a initialisation schema that has no reference to the initial state. For this reason,
we use a new law that is similar to the one in [2]. Some trivial proof obligations are omitted.

— B3] sysSifireSysStagt— switch— lampLampld.sysOnllon — \ GSync
e InitinternalFC; InitAreas (FireSys || AreasCycle y

Each one of the new inserted schema operations writes in a different partition of the par-
allelism that follows them. For this reason, we may distribute them over the parallelism.
Again, two new laws are used: the first moves a (guarded) schema expression to one side of
the parallelism; commutativity of parallelism is also provided as a new law.

= [B.13,B.14]
sysSifireSysStagt— switch— lamplLampld.sysOnllon — \ GSyne
((InitinternalFC; FireSys) || (InitAreas AreasCyclg) y

Next, we move théampevent to the internal system side of the parallelism. This step is valid
because all the initial channels AfeasCyclere inX,, andlampis not.

= [A.11] {initials(AreasCycle¢ C ¥} {lamp ¢ >}
( sysStfireSysStagt— switch—

lampLampld.sysOnllon — _ \ GSync
( ( InitinternalFC; FireSys | || (INitAreas AreasCyclg

Now, switchmay be distributed over the parallelism because it iS4n

= [A.14] {switche X5}
sysSifireSysStatt—

switch— switch— InitAreas
lamplLampld.sysOnllon — | || ( AreasCycIe)
InitinternalFC; FireSys

\ GSync

Since it is not inx,, sysSimay be moved to the internal system side of the parallelism.
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= [B.1,A.11] {sysSt %,}
sysSifireSysStagt— switch—
lampLampld.sysOnllon — | || (

InitinternalFC; FireSys

switch— InitAreas
AreasCycIe) ) \ GSync

Finally, using the definitions dfireSysStart andStartAreaswve conclude this proof.

= [Definition of FireSysStast and StartAreals
(FireSysSta#t || StartAreas$ \ GSync O

The next lemma we present is the refinement of the a¢li@dys.
Lemma 3.3 (2) {mode = moda }; FireSys[subst C 4 (FireSys || AreasCyclé\ GSync
Proof. We start the proof using the definitionskifeSys and substitution.

{mode = moda}; FireSys[subst
= [Definition of FireSys, Definition of Substitutioh
{mode = moda};
sysSifireSyg —
switchM’nm — SwitchFCModeg, (FireSys || AreasCycle \ GSync
O det’nz — ActivateZong, lampZoneld.nZon — alarmifirstStage—
(modg = manua) & (Manual, || ManualAreas \ GSync
O (modg = automatig & (Auto, || AutoAreas \ GSync
O actuatorsR— lampgLampld.circFaultL!off —
SwitchFQAuto,; (Reset || ResetAreas\ GSync
O fault?faultld — lampLampld.(getLampld faultidlon —
buzzelon — (FireSys || AreasCycle \ GSync

Next, we expand the hiding to the whole action. This is valid because all the events involved
in the expansion are not in the hidden set of channels.

= [A.15] {GSyncn {sysStswitchM det lamp alarm, fault, buzzerresef = 0}
{mode = moda},
sysStfireSyg —
switchM’nm — SwitchFCModeg, (FireSys || AreasCyclg (3)
O det’nz— ActivateZong, lampZoneld.nZon — alarmlfirstStage— (4)
(modg = manua) & (Manual, || ManualAreas
O (modeg = automatig & (Auto, || AutoAreas

O actuatorsR— lampLampld.circFaultL!off — (5)
SwitchFQAuto,; (Reset || ResetAreas
O fault?faultld — lampLampld.(getLampld faultldlon — (6)

buzzeton — (FireSys || AreasCycle
\ GSync

Next, we aim at the refinement of each branch to a parallelism in order to be able to apply
the exchange Law A.12. First, we refi(i@) as follows: the schem8witchFCMode can be
written as the sequential composition@#witchinternalFCModandSwitchAreasMode

(3) = [A.17] switchM’nm — SwitchInternalFCModgSwitchAreasMode
(FireSys || AreasCycle

Both schemas can be moved to different sides of the parallelism.

— [B.14,B.13]
switchM’nm —
((SwitchInternalFCModgFireSys) || (SwitchAreasModeAreasCyclé)

Finally, asswitchMis in X5, we may distribute this event over the parallelism. Here, a new
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law (distribution of input channels over parallelism) is used.

= [B.2] {switchM € %,}

switchM’nm — || switchM’nm —
SwitchinternalFCModgFireSys SwitchAreasModeAreasCycle

For (4), we first use the assumption laws in order to move the assumption into the action.

(4)C4 [B.9,A7,A10,A.16,B.10, B.12]
det’'nz — ActivateZong; lampZoneld.nZon — alarm/firstStage—
{mode = mode}; (mode = manua) & (Manual, || ManualArea$
O {mode = modea}; (modg = automatig & (Auto, || AutoAreas

Next, we use the assumption to change the guards.

= [Ag]
det’nz— ActivateZong, lampZoneld.nZon — alarmlfirstStage—
{modg = modea};
(mode = manualA mode = manua) & (Manual, || ManualAreas
O {modg = moda},
(mode = automaticA modg = automatig & (Auto, | AutoAreas

The assumptions can then be absorbed by the guards.

= [A4,A5,A10,A16]
det’nz— ActivateZong, lampZoneld.nZon — alarmlfirstStage—
(mode = mode A mode = manualA modg = manua) &
(Manual, || ManualArea$
O (mode = mode A mode = automaticA mode = automatig &
(Auto, || AutoAreas

Now, using a new law, we distribute the guards over the parallelism, slightly changing them.

= [B.5]
det’nz — ActivateZong; lampZoneld.nZon — alarmfirstStage—

mode = modea A & mode = modeg A &
mode = manual I mode = manual

Manual, ManualAreas
((modqmoda/\ >&> ((modqmoda/\ >&)
O mode = automatic I mode = automatic
Auto, AutoAreas

Now, since the guards invalidate each other, we may apply an exchange law. Furthermore,
we simplify the guards.

= [A12,A6]

det’nz — ActivateZong, lampZoneld.nZon — alarmlfirstStage—
(modeg = manua) & Manual, (mode = manua) & ManualAreas
O (modg = automatig & Auto; I o (mode, = automatig & AutoAreas

Next, we move the outputs channels to the left-hand side of the parallelism. This follows
from the fact that the initial channels of bolflanualAreasand AutoAreasare inX,, and
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alarmandlampare not.

— [B.1,A11]
{initials(ManualAreas U initials(AutoArea$ C X} {3, N {alarm, lamp} = 0}
det’nz — ActivateZong

lampZoneld.nZon —

alarmifirstStage— (mode = manua) &
(mode = manua) & ManualAreas
Manuab | O (modg = automatiq &
O (modg = automatig & AutoAreas
Auto,

The schemaictivateZone can easily be transformed fctivateZoneAS$ising the schema
calculus. The resulting schema can also be distributed over the parallelism. Finally, channel
detcan be distributed over the parallelism, since it iZin

= [Schema Calculu.14,B.13,B.2] {dete ¥,}

det’nz — ActivateZoneAS

det’nz— lampZoneld.nZon — (mode, = manua) &

alarmlfirstStage—

I ManualAreas
(mode = manua) & Manuak O (mode = automatig &
O (mode = automatig & Auto, AutoAreas

Using similar strategies, we refijg) and(6) to the following external choice.

(5,6)=1...]
actuatorsR— actuatorsR—
lampLampld.circFaultL!off — I SwitchArea3Autg,
SwitchinternalFQAuto, Reset ResetAreas

. ( fault’faultld — lampLampld.(getLampld faultiglon —

buzzeton — FireSys ) | AreasCycle

We are left with the external choice of parallel actions. Since the initial channels of the first
three parallel actions are in the s&t, we may apply the exchange law as follows.

= [A.12]
sysSifireSyg —
switchM’nm — SwitchinternalFCModgFireSys
O det’nz — lampZoneld.nZon — alarmifirstStage—
(mode = manua) & Manual
O (modg = automatig & Auto;
O actuatorsR— lamplLampld.circFaultL!off —
SwitchInternalFQAuto, Reset
I
switchM’nm — SwitchAreasModeAreasCycle
O det’nz — ActivateZoneAS
(modg = manua) & ManualAreas
O (mode, = automatig & AutoAreas
O actuatorsR— SwitchArea8Auto, ResetArea
( fault’faultld — lampLampld.(getLampld faultlg!on —
O :
buzzeton — FireSys

> || AreasCycle

With small rearrangements, we have that the right-hand side of the first parallelism corre-
sponds to the definition of the actigkreasCycle So, we have that both branches of the
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external choice have this action as the right-hand side of the parallelism. Since all the initials
of AreasCyclare inX;, we may apply the distribution of parallelism over external choice.

= [A.13] {initials(AreasCycl¢ C >}

sysSifireSyg —

switchM’nm — SwitchinternalFCModgFireSys

O det’nz— lampZoneld.nZon — alarmifirstStage—
(modg = manua) & Manual,
O (modg = automatig & Auto,

O actuatorsR— lampgLampld.circFaultL!off —
SwitchinternalFQAuto, Reset

O fault?faultld — lampLampld.(getLampld faultid!lon —
buzzeton — FireSys

Finally, we can distributesysStand use the definition dfireSys to conclude our proof.
Again, this is valid because all the initials AfeasCycleare inX,, andsysSis not.

= [B.1,A11] {initials(AreasCyclg C >} {3, N {sysS} = 0}
sysStireSyg —
switchM?’nm — SwitchinternalFCModgFireSys
O det’nz — lampZoneld.nZon — alarmifirstStage—
(mode = manua) & Manual,
O (mode = automatig & Auto; | AreasCycle
O actuatorsR— lampgLampld.circFaultL!off —
SwitchinternalFQAuto, Reset
O fault?faultld — lampLampld.(getLampld faultldlon —
buzzelon — FireSys
= [Definition of FireSys]
(FireSys || AreasCycl¢ \ GSync O

Using these lemmas, and those related to the remaining actions, which are omitted here,
we prove thaFC, is refined byConcreteFC

|| AreasCycle

Process RefinementWe partitioned the state of the procds€; into InternalFCStand
AreasSt Each partition has its own set of paragraphs, which are disjoint, since, no action
in one changes a state component in the other. Furthermore, the main action of the refined
process is defined in terms of these two partitions. Therefore, we may apply Law A.18 in
order to split proces€oncreteFGnto two independent processes as follows.

processConcreteFC= (InternalFC| X, || Areas \ GSync

The ConcreteFCis redefined as the parallel compositioninternalFC and Areas Their
definitions can be deduced from the definitiorGafncrete FC

3.2.3 Second Iteration: splittingternalFC into two controllers

In this iteration, we splitnternalFC into two separated partitions: the first one corresponds
to theFC controller, and the other tHeisplayControler (see Figure 4).

Action Refinement We rewrite the actions so that tl paragraphs no longer deal with
the display events, which are dealt bBysplayC The fire control state is left unchanged.

processConcretelnternalFC= begin
FCSt= [mode : Mode]

Furthermore, the display controller has no state at all. The new state is defined as follows.
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stateInternalFCSt = FCSt

The operations over thiaternalFCStare slightly changed: they are renamed and affect
the FCSt which is the same as theternalFCSt Their definitions, and those of all actions
over FCSthave the same definition and description as thode®fThe display paragraphs
are those oDisplayC which can be found in Section 3.2.1.

The main action of th€oncretelnternalFGs as follows.

o (FireSysStarf o(FCSY | X, | «(DisplayCStatg]| StartDisplay \ DisplaySynend

We have the parallelism of actidfreSysStartand StartDisplay with the channels used
exclusively for their communication hidden. Again, sirfeieeSysStas, FireSysStartand
StartDisplayare defined using mutual recursion, we use Theorem 3.1 to prove that the process
InternalFCis refined byConcretelnternalFC

Process RefinementEach partition inConcretelnternalFChas its own set of paragraphs,
which are disjoint. Furthermore, we define the main action of the refined process in terms of
these two partitions. Applying Law A.18, we get the following result.

processConcretelnternalFC= (FC || X, || DisplayC) \ DisplaySync

The processeBC and theDisplayCwere already described in the specification of the con-
crete system in Section 3.2.1.

3.2.4 Third Iteration: splitting thAreasinto individualAreas

This last iteration aims at splittingreasin individual processeAreafor each area.

Data Refinement First, we must apply a data refinement to the original proéesas
processAreas = begin

We introduce a local statéreaStateof an individualArea Its definition is very similar to
that of the concrete system, but includes an identifierAreald The global staté&reasSis
rewritten with a total function fronrealdto local states. The invariant is slightly changed
to handle the new data structure.

state _ AreasSt

areas: Areald — AreaState

Va: Arealde (areasd.id = a
A ((areas g.mode= automatig =
(areas g.active= true < #(areas g.actZns> 2
A ((areas 8.mode= manua) =
(areas g.active= true < #(areas g.actZns> 1
A (areas g.actZnsC (areas g.controlZns
A (areas g.controlZns= getZones a

The retrieve relation is very simple and is defined below.
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__RetrieveAreas
AreasSt AreasSt

Va: Arealde (areas g.mode= mode
A (areas g.controlZns= controlZns a
A (areas g.actZns= actZns a
A (areas g.discharge= true < a € discharge
A (areas g.active= true < a € activg

The mode in each of the local areas is thaodas the controlled and active zones of an
area is defined as the corresponding image in the global state; a discharge has occurred in an
area, if it is indischarge; and finally, the area is active if it is iactive .
We introduce the paragraphs related to the local staéaState Basically, we have
a corresponding local action for each global action. They are identical to those presented
within the proces#reain the concrete system, and are omitted at this point for conciseness.
Next, we redefine each of the global operations. Basically, all global operations have an
effect in each of the individual local states. For instatcgAreasis refined below.

__InitAreas
AreasSt

Va: Arealde (areada).actZns= () A\ (areada).discharge= false
A (areada).mode= automatic

The proof of the simulations are simple, but long. As before, for the main action, we rely
on the fact that forwards simulation distributes through action constructors. The new actions
have the same structure as the original ones, but use new schema actions.

StartAreas = switch— InitAreas ; AreasCycle
AreasCycle = actuatorsR— SwitchArea3Auto, ;ResetAreas
O switchM’nm — SwitchAreasModg AreasCycle
O det’nz — ActivateZoneAS
(Va: Areald e (areas 3. mode= automatig & AutoAreas
O (Va: Areald e (areas g.mode= manua) & ManualAreas

Since all the output and input values are not changed, in the application of Law A.2 we only
rely on distribution. On the other hand, all the guards are changed. Both provisos raised by
Law A.3 need to be proved. For instance, to prove the refinemefteafsCycle we need

the following lemma.

Lemma 3.4 For any Mode m,

V AreasSt AreasSt e RetrieveAreass-
mode = M < Va: Arealde (areas g.mode= M

Proof. The proof of this lemma follows from predicate calculus, usingRle¢rieveAreaso
relatemode with each individual area’'siode O
The main action of the arealreas, is the simulation of the original action.

e StartAreas end

This concludes this data refinement step.
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Action Refinement In order to apply a process refinement that splitsAheasprocess into
individual areas, we redefine each of the paragraphs within the processes areas as a promotion
of the corresponding original one.

The local paragraphs and the global state remain unchanged. However, a promotion
schema is introduced; it relates the local state to the global one.

__Promotion
AAreasSt; AAreaState id? : Areald

fAreaState= areasid’ A areas = areas® {id? — HAreaStatg

The global operations are refined to a definition in terms of the corresponding local oper-
ations. For instance, the initialisation is refined as follows.

InitAreas = Vid? : Areald e InitArea A Promotion

This can be proved using the action refinement laws presented in [12]. The redefinition of
the remaining operations are trivially similar and omitted here.

The functionpromote, promotes a giveircus action. The promotion of schemas is as
in Z, and the promotion dBkipg Stop Chaos and channels do not change them.

promote,(c.e — A) = c.promote,(e) — promote,(A)

References to the local components have to become references to the corresponding compo-
nent in the global state; all other references remain unchanged. An implicit parameter is a
functionf that maps indexes to instances of the local state. Another implicit parameter is the
indexi that identifies an instance of the local state in the global state.

promote,(x) = (fi).x providedx is a component df.st
promote,(X) = x providedx is not a component df st

This function is very similar to the functiopromote presented in [2]; however, it does not
promote channels as the original one does.

Each action is defined as an iterated parallelism of the promotion of the corresponding
local operation, but substituting the anelaby the indexing variablé. Each branch of the
parallelism may change its corresponding local sta#as | the remaining branchgssuch
thatj # i, may change the remaining local staé#sas j For instance, the actioiartAreas
andAreasCycle can be rewritten as follows.

StartAreas = ||i: Areald | 0 (areas) | Sareas| Ujarcaidji 0 (areas)] o
(promote, StartAreg [id, id? := i, i]

The remaining actions are rewritten in a very similar way. Finally, we replace the main action.
e StartAreas end

SinceStartAreas andStartAreas use mutual recursion, we use Theorem 3.1 again.

Process RefinementThis last process split needs a new process refinement law. Law 3.1
presented below applies to processes containing a local and a glob&lStiatieandG State

local paragraphs that do not affect the global state, a promotion schema, and global para-
graphs expressed in terms of the promotion of local paragraphs to the global state using
iterated parallelism. The operatidnpps T GStateconjoins each schema expression in the
paragraph&.ppswith =GState this means that they do not change the componer@Sedte

The results of this application are two processes: a local pracpasametrised by an iden-

tifier id and a global process defined as an iterated parallelism of local processes.
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Law 3.1

processG = begin
LState= [id : Range comps| pred |
state GState= [f : Range— LState| V] : domf e (f]).id = j A pred;]
L.schema? GState
L.action, T GState
L.act T GState

__Promotion
AlLState AGState id? : Range

fLState=f id? A f' =f & {id? — OLStaté}

G.schemp= Vid? : Rangee L.schemaA Promotion

G.actiony = ||i:Rangef 6 (fi)|cs| Uirangsizi 0 (F1)]]
(promote; L.actiory) [id, id? := i, ]
G.act= ||i:Range[ 6 (fi)|cs] Uiranggizi 0 (F)]|
(promote;, L.act) [id, id? := i, i]
e G.actend

= processL = (id : Rangee begin stateLState= [ comps| pred |
L.schemal.action, e L.actend)
processG = || id : Rangef cg| e L(id)

We can apply this law té\reas in order to express thAreasprocess as the following
parallelism of individuaAreaprocesses.

processConcreteAreas= ||id : Areald || Sareas| ® Ared(id)

The Areadefinition corresponds to that in the concrete system.

4 Conclusions

In this work, we present a development of a case study oiCtleis refinement calculus.

Using the refinement strategy presented in [2], we derive a distributed fire protection system
from an abstract centralised specification. The result of the refinement presented here does
not involve only executable constructs; additional simple schema refinements using [15] were
omitted here. Our case study has motivated the proposal of new refinement laws; some of
them can be found in Appendix B. There are more than fifty new laws, including process
refinement laws. Their definitions can be found in [12]. Furthermore, some laws presented
in [2] were found to be incorrect and corrected here. For instance, Law B.15 did not have any
proviso in its original version in [2].

Refinement has been studied for combinations of Object-Z and CSP [16]; however, as far
as we know, nothing has been proposed in a calculational style like ours. In [17], Olderog
presents a stepwise refinement for action systems, in which most refinement steps involve
sequential refinements; the decomposition of atomic actions introduces parallelism. The main
difference of action systems formalism a@dcus is that, using CSP operatoGircus has
a much richer control flow than the flat structure of action systems, where auxiliary variables
simulating program counters guarantee the proper sequencing of actions.
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The development of programs is supported by a design calculugctam-like [18]
communicating programs in [19]; semantics of programs and specifications are presented in a
uniform predicative style, which is close to that used in the unifying theories of programming.
This work is another source of inspiration fGircus refinement laws.

In this paper, we show that, usir@rcus, we were able to specify elegantly both be-
havioural and data aspects of an industrial scale application. The refinement strategy pre-
sented in [2] was also proved to be applicable to large systems. In our case study, the de-
velopment consists of three iterations: the first one splits the system into a system controller
and the sensors. In the second iteration, the control is subdivided into two different con-
trollers: one for the system and one for the display. Finally, the third iteration splits the
sensors into individual processes, one for each area.

All the laws presented in [2] and [12] are currently being proved using the theorem prover
ProofPower-Z. These proofs make the basis for a tool that supports our refinement strategy
and the application of a considerable subset of the existing refinement |la@iscak. By
providing this tool, we intend to transform tk@rcus refinement calculus into a largely used
development method in industry.
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A Existing Refinement Laws
Simulation Laws

Law A.1 ASExp= CSEXxp
provided

e VP,.st Py.st L e RA pre ASExp=- pre CSExp
e VP;.st Py.st Py.st; L e RA pre ASExpA CSExp= (IP;.st; L’ e R A ASEXp

Law A.2 clae— A, <clce— A,
provided VP;.st P,.st Le R=ae=ceand A < A,.

Law A.3 ag& A <cg& Ay
provided VP;.st Py.st Le R= (ag< cg)and A < A,.

Action Refinement Laws

LawA.4 {g}; A={g}; g& A

Law A5 g & (G & A) = (01 AND) &A

Law A.6 g, & AC 4 03 & A provided g; = g3

Law A.7 {p}; (A1 B Ay) = ({p}; A1) O ({p}; A)

LawA.8 {gi}; (2 & A) ={ai}; (g & A) provided g, = (92 < )

In the following law we refer to a predicatess. In general, for any predicate the predicate

p’ is formed by dashing all its free undecorated variables. We consider an arbitrary schema
that specifies an action i@ircus: it acts on a stat&tand, optionally, has input variables

of typeT;, and output variableg! of type T,.

Law A9 [ASt i?7:Tj; ol : To|pAass =[ASt i7:T; o : Ty | p A asg]; {ass
Law A.10 {p} C 4 Skip

Law A.11 (A;; Ag) |[ns | cs|ns || As = Ay; (Ax|[ns | cs| ns || As)
provided

e initials(A;) C cs;

e csnusedQA;) = 0;

e WrtV(A;) Nused\As) = ()

Law A.12 (A, |[cs]|Az) O (B; [[cs]|Bs) = (Ay O By) |[cs] (Ax O By)
provided A, |[cs| B, = A, |[cs| B; = Stop

Law A.13 A, [[cs]| (A O Ag) = (A |[cs]| As) O (A |[cs] As)
provided initials(A;) C cs and A is deterministic
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Law A.14 ¢ — (A, [[cs]|As) = (c — Ay) [ns | csU {c[} | ns; ]| (c — Ag)
syntactic restriction ¢ ¢ usedQA,) U usedCA,) or c € cs

Law A.15 F(A\ cs) = F(A) \ csprovided csnusedGF(_)) =0
Law A.16 Skip A= A= A; Skip
Law A.17
[AS;; ASy; i?7:T | pre§ ApreS ACS ACS)
[AS;; ES,; 17 : T | pre§ A CS]; [ES,; AS,; i7:T | preS A CS)
syntactic restrictions

a(S)Na(s) =10

FV(preS) C a(S)) U{i?} and FV(preS) C a(S) U {i?}
DFV(CS) C a(S)) and DFV(CS,) C «(S))

UDFV(CS) NDFV(CS) = 0.

) C
) C

Process Refinement Laws

Law A.18 Let qd and rd stand for the declarations of the processes Q and R, determined by
Q.st, Qpps, and Qact, and Rst, Rpps, and Ract, respectively, and pd stand for the process
declaration above. Then pé (qd rd processP = F(Q, R) ) providedQ.pps and Rpps are
disjoint with respect to Rt and Qst.

B New Refinement Laws.
Action Refinement Laws.
LawB.1 ¢ — A= (c — Skip; A

Law B.2 ¢?x — (A, [ns | cs| ns ]| A2) = (€?x — A;) |[ns. | cs| ns || (€7X — Ag)
provided c ¢ usedCGA,) U usedGA) or c € cs

LawB.3 [S; S, |preS A preS ACS ACS | =[S |preS ACS]; [S,| preS A CS |
provided

e a(S)Na($) =10

e FV(preS) C «(S)) and FV(preS) C «(S,)

o DFV(CS) € a(S)) and DFV(CS) C a(S))

e UDFV(CS)NDFV(CS) =10

Law B.4 0,g & (A [[ns: | cs| ns, )| A) = (0,0 & A) [ns: | cs| ns, )| A
provided initials(A) C cs
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Law B.5 (91 A &) & (Ar|[nsy | cs| NS ]| Ay) = (01 & Ay) [[ns; [ es|ns | (9: & Ay)
provided g; < g or initials(A;) U initials(Az) C cs

In the following law we refer to a predicatssump

Law B.6 [Staté | p A assumf] = [Staté | p A assumf}; {assump

Law B.7 {g:} C4 {92} provided g, = @

LawB.8 1P e V(P)C 4 1P e V(P)[{g}; Fi(P)/Fi(P)]

provided {g}; (F(P) before X) C 4 (F(P) before X); {g} for all F(P) in V(P)
where P= X;,..., X, V(P) = Fi(X1,..., %), .., Fn(X1, ..., Xs), and P)[exp/Fi(P)]
express the substitution of the i-th element of the vect®) Wy the expression exp.
Law B.9 {g}; c!x — A=clx— {g}; A

Law B.10 {g}; c’x — A= c?x — {g}; A provided x ¢ FV(g)

LawB.11 {g}; c—A=c— {g}; A

Law B.12 {g}; [d | p] = [d | p|; {9} provided gAp=-¢

Law B.13

(0,9 & SExp); (AL [[ns [ cs| ns ]| Ay) Eu (0, 6 & SEXp); A1) [[ns; [ es|ns, || Ay
provided

o U, wrtV(SExp) C ns Uns
o U WrtV(SExp) Nused\A;) = ()

Law B.14 A |[ns |cs|ns || A, = Ay |[ns | cs|ns || A

Law B.15 A/ cs| Stop= Stop|[ cs| A = Stop provided initials(A) C cs



