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Abstract. The paper focuses on the synthesis of a highly parallel reconfigurable hard-
ware implementation for the International Data Encryption Algorithm (IDEA). Cur-
rently, IDEA is well known to be a strong encryption algorithm. The use of such an
algorithm within critical applications, such as military, requires efficient, highly re-
liable and correct hardware implementation. We will stress the affordability of such
requirements by adopting a methodology that develops reconfigurable hardware cir-
cuits by following a transformational programming paradigm. The development starts
from a formal functional specification stage. Then, by using function decomposition
and provably correct data refinement techniques, powerful high-order functions are
refined into parallel implementations described in Hoare’s communicating sequen-
tial processes notation(CSP). The CSP descriptions are very closely associated with
Handle-C hardware description language (HDL) program fragments. This descrip-
tion language is employed to target reconfigurable hardware as the final stage in the
development. The targeted system in this case is the RC-1000 reconfigurable com-
puter. In this paper different designs for the IDEA corresponding to different levels
of parallelism are presented. Moreover, implementation, realization, and performance
analysis and evaluation are included.

1 Introduction

In the last few years, there has been dramatic advances in manufacturing Field Programmable
Gate Arrays (FPGAs). It is now possible to make use of multi-million gates FPGAs. FP-
GAs offer much flexibility for the design of integrated circuits (ICs) chips for parallelism.
Generally, parallelism and implementation in hardware provide us with two alternatives that
can often deliver very dramatic improvements in efficiency. With the emergence of such re-
configurable hardware chips, the presence of a development environment for these scalable
hardware circuits is very useful. Moreover, it would constitute the cornerstone solution for
the ever-increasing need for more: efficiency, scalability and flexibility in realizing massively
parallel algorithms for a wide area of applications.

The proposed rapid development model (RDM) adopts the transformational programming
approach for deriving massively parallel algorithms from functional specifications [1, 2, 3].
The functional notation is used for specifying algorithms and for the reasoning about them.
This is usually done by carefully combining small number of high order functions (like map,
zip and fold) to serve as the basic building blocks for writing high-level programs. The
systematic methods for massive parallelization of algorithms work by carefully composing
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”off the shelf” massively parallel implementation of each of the building blocks involved in
the algorithm.

To describe parallelism we follow a step-wise provably correct refinement that maps the
functional specification to a network of communicating processes. Hoare’s CSP is used to
describe the refined specification. This development step allows issues of immense practical
importance (such as data distribution, network topology, and locality of communications) to
be carefully reasoned about. Relating the Functional Programming and CSP fields gives the
ability to exploit a well-established functional programming paradigms and transformation
techniques in order to develop efficient CSP processes.

The final development stage follows the skeleton built by the previous stage, i.e. the
refinement to CSP stage, to realize a corresponding reconfigurable hardware circuit. The
reconfigurable hardware realization step is done using Handel-C an automated compilation
development model [4]. Handel-C uses much of the syntax of conventional C with the ad-
dition of explicit parallelism. Handel-C relies on the parallel constructs in CSP to model
concurrent hardware resources. Accordingly, algorithms described with CSP could be im-
plemented with Handle-C. An overview of the transformational derivation and the hardware
realization are shown in Figure 1.
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Processes
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Figure 1: An overview of the transformational derivation and the hardware realization processes.

2 Background and Previous Work

Abdallah and Hawkins defined in [2] some constructs used in the development model. This
looked in some depth at data refinement; the means of expressing structures in the specifica-
tion as communication behavior in the implementation.

Firstly, streams are defined as a sequence of messages on a single channel, and corre-
spond to a sequential method for communicating a list. Streams facilitate the communication
of finite sequences and require some means of signalling the end of transmission (EOT). Sec-
ondly, vectors of items are a means of communicating a list on more than one channel. The
assumption is that there are as many channels in the vector as there are items in the list, such
that each item is communicated on its own channel. Thirdly, vectors of streams are the paral-
lel composition of n streams, each communicating a sublist independently as a stream. Each
stream has its own end-of-transmission signal (EOT), and they can finish transmitting at dif-
ferent times. Lastly, streams of vectors is defined where a complete sublist is communicated
in a single step.
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3 Data Refinement

In the following subsections, we present some data types used for refinement.

3.1 Stream of Values

The stream is a purely sequential method of communicating a group of values. It comprises
a sequence of messages on a channel, with each message representing a value. Values are
communicated one after the other. Assuming the stream is finite, after the last value has been
communicated, the end of transmission (EOT) on a different channel will be signaled. Given
some type A, a stream containing values of type A is denoted as 〈A〉.

3.2 Vector of n Values

Each item to be communicated by the vector will be dealt with independently in parallel. A
vector refinement of a simple list of items will communicate the entire structure in a single.
Given some type A, a vector of length n, containing values of type A, is denoted as �A�n.

3.3 Refinement of a List of Lists

Whenever dealing with multi-dimensional data structures, for example, lists of lists, im-
plementation options arise from differing compositions of our primitive data refinements -
streams and vectors. Examples of the combined forms are the Stream of Streams, Streams of
Vectors, Vectors of Streams, and Vectors of Vectors. These forms are denoted by:

〈S1, S2, ..., Sn〉
〈V1, V2, ..., Vn〉
�S1, S2, ..., Sn�
�V1, V2, ..., Vn�

4 High-Order Functions

Functional programming environments facilitate reusability through high-order-functions.
Many algorithms can be built from components which are instances of some more general
scheme. In this section we introduce the refinement of some high-order-functions detailed in
[2].

Map applies a function to a list of items. Thus, in the functional setting, we have:

map f [x1, x2, ..., xn] = [f (x1), f (x2), ..., f (xn)]

Refining to CSP we have:

VMAPn(F) = ‖i=n
i=1F[ini/in, outi/out]

where, F is the refinement of f . A data parallel processes visualization of map VMAPn(F) is
shown in Figure 2.

The fold family of functions is used to reduce a list by inserting a binary operator between
each neighboring pair of elements. The basic fold operator (/) has no concept of direction
and as such requires an associative binary operator to be well defined.

f / [x1, x2, ..., xn] = x1fx2...fxn
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Figure 2: The Process VMAPn(F).
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Figure 3: The Process VFOLDn(F).

Refining to CSP we have:

VFOLDn(F) = ‖i=n
i=1F[ci/out, c2i/in1, c2i+1/in2]

where, F is the refinement of the operator f . An instance of VFOLD is shown in Figure 3.
The high-order-function zipWith is used to zip two lists (taking one element from each

list) with a certain operation.

zipWith f [x1, x2, ..., xn][y1, y2, ..., yn] = [x1fy1, x2fy2, ..., xnfyn]

Refining to CSP we have:

VZIPn(F) = ‖i=n
i=1F[ci/out, a/in1, b/in2]

5 The IDEA Algorithm

Cryptographic algorithms are an essential part in security. A well known cryptographic algo-
rithm is the Data Encryption Standard (DES) [5, 6], widely adopted in security products. An-
other cryptographic algorithm is the International Data Encryption Algorithm, IDEA [7, 6].
Due to its high immunity to attacks [8, 6], IDEA is considered as one of the most important
post-DES cryptographic algorithms.

F F F...

b1 b2 bn

c1
c2 cn

a1 a2 a n

Figure 4: The Process VZIP(F).
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The IDEA algorithm is the evolution of an initial algorithm (the Proposed Encryption
Standard, or PES) devised by Xuejia Lai and James Massey [7]. Some authors [6, 8] consider
IDEA as one of the most secure cryptographic algorithms available at this time. In fact, there
is no linear cryptanalytic attacks on IDEA, and there are no known algebraic weaknesses
in IDEA other than the one discovered by Daemen [9]. Daemen discovered a weakness by
using a class of 251 weak keys during encryption results in easy detection and recovery
of the key. However, since there are a large number of possible keys this result has no
impact on the practical security of the cipher for encryption provided, the encryption keys
are chosen at random. IDEA is generally considered to be a very secure cipher; both the
cipher development and its theoretical basis have been openly and widely discussed.

IDEA is a method to encrypt and decrypt data. A randomly secret key number is used
to encrypt and decrypt the data. IDEA is a 64-bit iterative block cipher with a 128-bit key.
The encryption process requires eight complex rounds. Decryption is carried out in the same
manner as encryption once the decryption subkeys have been calculated from the encryption
subkeys. The cipher structure was designed to be easily implemented in both software and
hardware [10].

Hardware implementation of this cryptographic algorithm has been an active area of re-
search. Davor and Mario presented an FPGA core implementation for the IDEA, which was
addressed in [11]. They used a system with single core module to implement the IDEA. This
module was implemented using a Xilinx FPGA. Cheung et al in [12] investigated a high-
performance implementation of the IDEA using both bit-parallel and bit-serial architectures.
They used a Xilinx Virtex XCV300-6 and XCV1000-6 FPGAs to evaluate and analyse the
performance of the implementations. Beuchat et al in [13] presented a high-speed FPGA
implementation of the IDEA. In [14] IDEA was addressed presenting hardware software tri-
design of encryption for mobile communication units. A comparison was given between a
DSP processor from Texas Instruments and the Xilinx XC4000 series FPGAs. In [14] VLSI
Implementation of the IDEA is presented. Allen et al in [15] presented an implementation
comparison for the IDEA between the SRC-6E and HC-36 general reconfigurable computers.

6 IDEA Formal Functional Specification

We view the IDEA algorithm as of three main blocks. A global view of these blocks would
show the encryption (or decryption) as a block with 2 inputs, the private key and the plaintext
(or ciphertext) and outputting the ciphertext (or plaintext). The two remaining blocks are for
encryption and decryption subkeys generation. In the case of encryption subkeys generation,
the block will take the private key as an input and outputs the desired subkeys. The decryption
subkeys generator will input the generated encryption subkeys and output the decryption
subkeys. As a first step, we define some types to be used in the following specification:

type Private = [Bool] type SubKey = Int
type Plaintext = [Int] type Ciphertext = [Int]
modVal = 65536

6.1 Basic Building Blocks

Three different key primitive building blocks are used within the IDEA:

• Bit-wise exclusive OR.

• Addition of 16-bit integers modulo 216(modulo 65536).
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• Multiplication of 16-bit integers modulo 216 + 1(modulo 65537), where an all zeros
input block is considered as 216.

6.2 Encryption Subkeys Generation

As shown in Figure 5, 52 16-bit subkeys are generated from the 128-bit encryption key. The
algorithm for generation is as follows:

Subkeys Generator

16

.  .  .

K
1 K52

128-Bit Key

16

Figure 5: Subkeys Generator.

• The first eight subkeys are selected directly from the key by partitioning the key (128-
bit list) into eight segments of equal length (16-bit).

• A circular shift of 25-bit positions is applied to the key of the previous step, and the
eight subkeys are then extracted.

• This procedure is repeated until all 52 subkeys are generated i.e. 8-times and 4 subkeys
are extracted in the final step.

In the following specification the subkeys generation is specified as the function genera-
teEncSubKeys, this function takes the encryption key as input and outputs a list correspond-
ing to the 52 16-bit subkeys. Tracing the steps of the function, it firstly takes the first eight
rotations of the input key using the function keyRotation and generates accordingly the cor-
responding subkeys for each rotation through the function generateSubKeys. The generated
subkeys are then concatenated in one list. The 52 subkeys are then extracted from the list and
converted to integers equivalent to the 16-element list of bool representing each subkey. The
conversion is done using the function btoi.

generateEncSubKeys :: Private -> [SubKey]
generateEncSubKeys key = map (btoi) (take 52

(foldr1 (++) (map generateSubKeys (take 8 (keyRotation key)))))

All the rotated keys are determined by the function keyRotation which repeatedly generates
the rotated keys. This function uses the polymorphic function repeated which takes a function
f and a list xs and repeatedly applies the function f to xs. In this case, it repeatedly rotates
the key in 25-bits steps. The rotation values would be 0, 25, 50, 75, 100, 125, 22, 47 from the
original key position.
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keyRotation :: Private -> [[Bool]]
keyRotation key = take 8 (repeated (shift 25) key)

repeated :: (a -> a) -> a -> [a]
repeated f x = x: repeated f (f x)

shift :: Int -> [a] -> [a]
shift n key = (drop n key) ++ (take n key)

To generate the 16-bit subkeys from the rotated keys, the high-order function map is applied
in the function generateEncSubKeys to the function generateSubKeys over the list of rotated
keys. The function generateSubKeys employs segs, which selects n sublists from a list xs:

generateSubKeys :: Private -> [SubKey]
generateSubKeys key = segs 16 key

segs :: Int -> [a] -> [[a]]
segs n [] = []
segs n xs = (take n xs) : segs n (drop n xs)

We have the following assertion holding for all lists xs:

++/(segs n xs) = xs

Finally, the desired subkeys are packed in lists of 6 elements in one list of lists using the
function pack.

pack :: [a] -> [[a]]
pack = segs 6

6.3 Decryption Subkeys Generation

After specifying the encryption subkeys generation, now we can introduce the decryption
subkeys generation, where, every decryption subkey is a function of one of the encryption
subkeys. The relation between the encryption and the decryption subkeys is as specified in
the function generateDecSubKeys. This function is done by mapping a function perform to
a prepared list of indices. The preparation of the indices list indices is done as shown in
Figure 6. Furthermore, the function perform employs addInv and mulInv, which correspond
to the additive and multiplicative inverse respectively. This function also uses the high-order
function mapWith that takes a list of functions and a list of values and applies (using the
function apply) each function in the first list to the corresponding value in the second list
(using the high-order-function zipWith).

generateDecSubKeys :: [SubKey] -> [SubKey]
generateDecSubKeys eKeys = take 52 (foldr1 (++) (map perform indices))

where
indices = mapWith fs (map reverse (pack (reverse [l | l<-[0..51]])))
f1(xs) = shift 2 xs
f2(xs) = zipWith (+) (copy (xs!!2) 6) [0, 2, 1, 3, -2, -1]
f3 = id
fs = [f1, f2, f2, f2, f2, f2, f2, f2, f3]
perform(as) = mapWith [mulInv , addInv, addInv, mulInv, id, id]

(zipWith (!!) (copy eKeys 6) as)
copy :: a -> Int -> [a]
copy x n = [x | i <- [1..n]]
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reverse

[0, 1, 2, …, 51]

[51, 50, 49, …, 0]

pack

[[51, ..., 46], …, [3, …, 0]]

map reverse

[[46, ..., 51], …, [0, …, 3]]

mapWith fs

indices

Figure 6: Indices permutation.

mapWith :: [(a -> b)] -> [a] -> [b]
mapWith fs = zipWith (apply) fs

apply :: (a -> b) -> a -> b
apply f = f

Moving to the formal specification of modular arithmetic operations employed in the IDEA
decryption. The additive inverse (modulo 216) and the multiplicative inverse (modulo 216+1).
We specify these operations as the functions addInv and mulInv. The function addInv is
simply the input number subtracted from the modulus value:

addInv :: Int -> Int
addInv a = modVal - a

To calculate the multiplicative inverse, the Extended Euclidean algorithm [16] is used, The
steps to calculate the multiplicative inverse are clarified in Figure 7. Accordingly, the func-
tional specification is as follows:

mulInv :: Int -> Int
mulInv 0 = 0
mulInv b = if (y < 0) then ((modVal +1) + y) else (y)
where
y = (extendedEucA (modVal +1) b)!!2

extendedEucA :: Int -> Int -> [Int]
extendedEucA a b
| b == 0 = [a, 1, 0]
| otherwise = iterateSteps [a, b, 0, 1, 1, 0]

iterateSteps ls = if ((ls[1]) > 0)
then (iterateSteps s2)
else ([(ls[0]), (ls[3]), (ls[5])])

where
s1 = (step1 ls)
s2 = (step2 [(ls[1]), (s1[1]), (ls[2]), (s1[2]), (ls[4]), (s1[3])])
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Figure 7: Extended Euclidean algorithm steps flow chart.

step1 :: [Int] -> [Int]
step1 ls1 = [q ,

(ls1[0]) - (q * (ls1[1])),
(ls1[3]) - (q * (ls1[2])),
(ls1[5]) - (q * (ls1[4]))]

where
q = div (ls1[0]) (ls1[1])

step2 :: [Int] -> [Int]
step2 ls1 = [(ls1[0]), (ls1[1]), (ls1[3]), (ls1[2]), (ls1[5]), (ls1[4])]

6.4 IDEA Encryption and Decryption

The encryption (decryption) subkeys are made ready for the encryption (decryption) using
the specified functions generateEncSubKeys and generateDecSubKeys. The encryption (de-
cryption) works by taking a list of elements representing the plaintext (ciphertext) and the
private key. Then, the list of plaintext (ciphertext) is segmented as segments of 4-elements
each element representing a 16-bit word. These packed lists are then passed to encryption or
decryption along with the input private key. A functional specification of IDEA encryption
is formulated as a function encryption. The encryption function works by firstly segmenting
the input list using the function segs. Secondly, it maps the function responsible for a single
block encryption with the input private key to all segmented input list elements. The function
responsible for encrypting a single 4-element list is called encryptSegs.

encryption :: Private -> Plaintext -> Ciphertext
encryption key ls = concat (map (encryptSegs key) (segs 4 ls))



396 A.E. Abdallah and I.W. Damaj / Reconfigurable Hardware Synthesis of the IDEA

A different specification that considers the input plaintext as an already segmented list ls:

encryption :: Private -> [Plaintext] -> [Ciphertext]
encryption key ls = map (encryptSegs key) ls

The decryption has a similar specification. Figure 8 shows the structure and the block dia-
gram for the IDEA. A single 64-bit block from the plaintext segmented as a list of 4 elements
each of 16-bit inputs to this structure. The output has a similar type, but it represents a block
from the ciphertext.

We specify the encryption of one block as the function encryptSegs. This function firstly
packs the encryption subkeys. Then, it folds (using the high-order-function foldl) with an
initial list xs the function singleRound distributing the packed subkeys to each round. Note
that the function singleRound is the formal specification of a round. The folded output is
then passed to the function outputTransformation along with the last pack of subkeys, giving
the final output. The function outputTransformation specifies the output transformation stage
found as the final stage in IDEA encryption (decryption).

encryptSegs :: Private -> [Int] -> [Int]
encryptSegs key xs = [e, g, h, f]
where
kss = pack (generateEncSubKeys key)
[a, b, c, d] = foldl singleRound xs (init kss)
([e, f], [g, h]) = outputTransformation [a, c, b, d] (last kss)

The decryption could be specified in a similar manner.

6.4.1 Single Round Specification

The main part of the IDEA algorithm consists of the application of 8 similar rounds to the
input plaintext and the key as shown in Figure 8. In this section we introduce the round
construct by introducing each of its building blocks.

A round is specified as a function singleRound with two input lists, one representing
the input block from the plaintext and the other a pack of subkeys. A singleRound works
by composing three different functions firstSubRound, secondSubRound, and thirdSubRound
(See Figure 9).

singleRound :: [Int] -> [Int] -> [Int]
singleRound xs ks = thirdSubRound (secondSubRound (firstSubRound ks xs))

The function firstSubRound employs modular multiplication and addition to the first 4 el-
ements of both input lists. This function also forwards the last two subkeys from input to
output list.

firstSubRound :: [Int] -> [Int] -> [Int]
firstSubRound [k1, k2, k3, k4, k5, k6] [x1,x2,x3,x4] =

[(mulMod x1 k1), (addMod x2 k2),
(addMod x3 k3), (mulMod x4 k4), k5, k6]

In IDEA, each plaintext bit influence every ciphertext bit. The spreading out of a single
plaintext bit over many ciphertext bits hides the statistical nature of the plaintext [10]. This
diffusion is provided by the basic building block of the algorithm known as the multiplica-
tion/addition (MA) structure shown in Figure 9. The function that specifies this structure is
called mA, and the multiplication/addition is done using the functions mulMod/addMod.
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398 A.E. Abdallah and I.W. Damaj / Reconfigurable Hardware Synthesis of the IDEA

MA-BOX

1f 2f

First Sub-Round

Second Sub-Round

Third Sub-Round

Multiplication mod 65537 Addition mod 65536 Bit-wise XOR

k1
x1 x2 k2 k5 k6 k3 k4

x3 x4

temp1 temp2 temp3 temp4

Figure 9: IDEA round.



A.E. Abdallah and I.W. Damaj / Reconfigurable Hardware Synthesis of the IDEA 399

mA :: [Int] -> (Int, Int)
mA [u, w, k5, k6] = (addMod a b, b)

where
a = mulMod u k5
b = mulMod (addMod w a) k6

Thereby, the function secondSubRound employs the function mA over two subkeys and the
result of XORing 4 elements from its own input.

secondSubRound :: [Int] -> [Int]
secondSubRound [v1, v2, v3, v4, k5, k6] = [v1, v2, v3, v4, q1, q2]

where
(p1, p2) = ((fullexor v1 v3), (fullexor v2 v4))
(q1, q2) = mA [p1, p2, k5, k6]

A third subround is specified to complete the scene of a whole round. This function, namely
thirdSubRound, is responsible for XORing its inputs. For this sake the high-order-function
zipWith is used.

thirdSubRound :: [Int] -> [Int]
thirdSubRound [y1, y2, y3, y4, p1, p2] =

zipWith fullexor [y1, y3, y2, y4] [p2, p2, p1, p1]

As employed in specifying a single round’s constructs, the modular addition (modulo 65536)
is specified as a function addMod with two inputs and one output of type Int. The specifica-
tion can use the modulo operation mod to calculate the modular addition as follows:

addMod :: Int -> Int -> Int
addMod i1 i2 = mod (i1 + i2) modVal

Escaping the cost of the parallel implementation of the operation mod as to be implemented
by hardware the functional specification is done as follows:

addMod :: Int -> Int -> Int
addMod i1 i2 = fullAND (i1 + i2) (modVal - 1)

Where, the function fullAND is the bit-wise logic AND. It is worth to note at this step that
an iterative addition/subtraction dependant version of the operation mod could be done as
follows:

mymod :: Int -> Int -> Int
mymod a b

| a < b = a
| otherwise = mymod (a - b) b

However, The significance of different versions of these operations is to be more transparent
at the realization step. The modular multiplication (modulo 65537) is considered one of the
most expensive operations used in the IDEA from hardware usage and/or throughput points
of evaluation.

Considerable research has been done trying to afford different economical and/or efficient
implementations. In [16] different designs where addressed discussing the mathematical
foundation of each and giving their reconfigurable hardware implementations. An efficient
implementation is suggested in [17]. We specify this algorithm as follows:
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mulMod :: Int -> Int ->Int mulMod x y =
if ((mulModEfficient x y) == modVal)
then (0)
else (mulModEfficient x y)

mulModEfficient :: Int -> Int -> Int mulModEfficient x y
| (x == 0) && (y == 0) = 1
| (x == 0) && (y /= 0) = ((modVal+1) - y)
| (x /= 0) && (y == 0) = ((modVal+1) - x)
| otherwise = if (cL < cH)

then (cL - cH + (modVal+1))
else (cL - cH)

where
cL= b2i (take 16 (i2b (x * y)))
cH= b2i (drop 16 (padWithFalse32BitR (i2b (x * y))))

6.4.2 Output Transformation Specification

This stage is designed to allow the decryption to have the same structure as encryption. The
specification is the same as that for the function firstSubRound.

7 Refinement of the IDEA Formal Specification

Narrowing the distance from a specific hardware implementation, we apply the step-wise
refinement suggested by the development methodology. Data and process refinements are
executed with a main concern of demonstrating the design flexibility granted by the proposed
methodology. Designs varying from data-parallel to pipelined are shown giving the CSP
implementation of each.

7.1 Encryption Subkeys Generation

The following design is the refinement of the subkeys generating functions. Datatype refine-
ment considers the input as a 128-bit integer (Int128) item to correspond to the 128-bit list
of bool. An alternative implementation as a 128-element vector of bool items could be fol-
lowed. The first implementation is chosen since, an integer as viewed in hardware is an array
of individually manipulatable bits. This is nearly identical to the latter implementation, with
a difference that the 128-bit integer item will be communicated on a single channel instead
of a vector of channels. The output is refined to a vector of items thereat the 52 subkeys are
to be taken. Generally, this design will fork a parallel computation aiming for an expectedly
fast subkeys generation. This is done by executing 8 parallel instances of a subkey generator
leading to a parallel production of all subkeys. The first step is done by refining the function
generateEncSubKeys as the process GENCSKEYS, where:

generateEncSubKeys :: Int128 → �Int16�52

generateEncSubKeys � GENCSKEYS

The CSP implementation that corresponds to generateEncSubKeys is as follows:

GENCSKEYS =

(in?key → SKIP); KEYROTATION(key) >>8 VMAP8(GSUBKEYS) >>8 CONCAT
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While, the following holds:

keyRotation � KEYROTATION

generateSubKeys � GSUBKEYS

concat � CONCAT

Figure 10 is a visualization of the process GENCSKEYS.

KEYROTATION

GSUBKEYS

kss

GSUBKEYS GSUBKEYS. . .

CONCAT

key

Figure 10: The process GENCSKEYS.

Moving to the sub-blocks of this generator, the functional specification for the function
keyRotation is:

keyRotation :: Private -> [[Bool]]
keyRotation key = take 8 (repeated (shift 25) key)

Where, take 8 (repeated (shift 25) key) could be rewritten, depending on the specification of
repeated, as:

take 8 (repeated (shift 25) key)=
map (flip shift key) [0, 25, 50, 75, 100, 125, 22, 47]

The final specification would be:

keyRotation :: Private -> [[Bool]]
keyRotation key = map (btoi) (map (flip shift key) ls)

where
ls = [0, 25, 50, 75, 100, 125, 22, 47]

In this design we considered the refinement of the input key type to be an item, while the list
ls and the output rotated keys as vectors of items.

keyRotation :: Int128 → �Int128�8

The CSP implementation of the functional specification refines keyRotation to a process
KEYROTATION.

The key could be passed as an argument to each of the processes SHIFT(key), while dis-
tributing the list ls elements to the parallel processes as shown in Figure 11. The is described
as follows:

KEYROTATION(key) = VMAP8(PRD(key) � SHIFT)

The key could be explicitly passed to the process SHIFT. The effect of applying this step
to the previous design can be visualized as in Figure 12. In the above version the key is
locally produced and fed to each process SHIFT. The effect of having 8 parallel copies of
PRD(key) communicating with 8 instances of SHIFT can be eliminated by factorizing the
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SHIFT(key)

rotatedKey 1

SHIFT(key) SHIFT(key)...

ls
1

ls2 ls
8

in1
in2 inn

out1
out2 outn

rotatedKey 2 rotatedKey 8

Figure 11: The process KEYROTATION.

process PRD(key) and broadcasting its output to the relevant processing elements in the net-
work. Applying this rule will result in a semantically equivalent version of KEYROTATION
which has a different layout. This is shown in Figure 13. The formal rule that justifies the
above transformation is:

KEYROTATION(key) = BROADCAST8(key)[d/out] �8 VMAP8(SHIFT)

where,
shift � SHIFT

The refinement of the input n and the output rotated key realises them as items.

shift :: Int128 → Int → Int128

The CSP implementation of shift is the process SHIFT:

SHIFT = (in1?key → SKIP ||| in2?n → SKIP); out!(key[n..127]++key[0..n])

where, key[n..127]++key[0..n] is the integer equivalent of the concatenation of the upper
127 − n bits of the 128-bit key, and lower n bits. Figure 14 gives a general visualization
of the process GENCSKEYS. The next step is presenting the refinement of generateSubKeys.
The corresponding CSP process is GSUBKEYS.

SHIFT

rotatedKey 1

SHIFT SHIFT...

ls
1

ls2 ls
8

in1
in2 inn

out1
out2 outn

rotatedKey 2 rotatedKey 8

key key key

Figure 12: The process KEYROTATION, an alternative.

The CSP refinement realises the input as an item, and the output as a vector of items
where each item is a list.

generateSubKeys :: Int128 → �Int16�8

GSUBKEYS = (in?key → SKIP); SEGS(key)

The recursion in segs is unrolled for n equals 16 in a similar way to that done for keyRo-
tation.
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SHIFT

rotatedKey 1

SHIFT SHIFT...

ls
1

ls2 ls
8

in1
in2 inn

out1
out2 outn

rotatedKey 2 rotatedKey 8

key

Figure 13: The process KEYROTATION, optimised implementation.

SHIFT
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GSUBKEYS. . .
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key

Figure 14: The Process GENCSKEYS.

segs 16 key =
[(take 16 key), (take 16 (drop 16 key)),
(take 16 (drop 32 key))), ..., (take 16
(drop 112 key)))]

Then, the refinement to CSP is as follows:

SEGS =(in1?n → SKIP ||| in2?key → SKIP);

|||i=
length(key)

n −1

i=0 out[i]!(key[i ∗ n..((i + 1) ∗ n) − 1])

where key[0..15], key[16..31], ... are the integers equivalent to each 16-bit word. The refine-
ment of the function pack is the process PACK.

7.2 Decryption Subkeys Generation

The decryption subkeys generation is refined in two ways controlling the number of used
processes. The first design replicates the use of the processes MULINV and ADDINV (the
refinement of addInv and mulInv), where all subkeys are produced in parallel as a vector of
vector of items. Each item is communicating on a different channel. The second design
implements 4 parallel processes that are inputting the encryption subkeys as a stream of
vectors and outputting the desired decryption subkeys as a stream of vectors. In the second
design the replication of MULINV and ADDINV is restricted to 2 of each, thus an economical
use of hardware resources is expected in the realization step.

7.2.1 Decryption Subkeys Generation - First Design

We firstly recall the part of the specification responsible for creating the permutation indices.
The list indices is created as follows:
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indices = mapWith fs (map reverse (pack (reverse [l |l<-[0..51]])))
f1(xs) = shift 2 xs
f2(xs) = zipWith (+) (copy (xs!!2) 6) [0, 2, 1, 3, -2, -1]
f3 = id
fs = [f1, f2, f2, f2, f2, f2, f2, f2, f3]

The generated list indices has the following values:

indices = [[48,49,50,51,46,47],
[42,44,43,45,40,41],
[36,38,37,39,34,35],
[30,32,31,33,28,29],
[24,26,25,27,22,23],
[18,20,19,21,16,17],
[12,14,13,15,10,11],
[6, 8, 7, 9, 4, 5 ],
[0, 1, 2, 3]]

For simplicity in implementation we replace the computational constructs with a table of
values containing the required indices. Accordingly, this permutation is applied to the input
encryption subkeys. The modified specification is as follows:

generateDecSubKeys :: [SubKey] -> [[SubKey]]
generateDecSubKeys eKeys = map perform eKeysPerm
where
indices = [[48,49,50,51,46,47],

[42,44,43,45,40,41],
[36,38,37,39,34,35],
[30,32,31,33,28,29],
[24,26,25,27,22,23],
[18,20,19,21,16,17],
[12,14,13,15,10,11],
[6, 8, 7, 9, 4, 5 ],
[0, 1, 2, 3]]

eKeysPerm = map (zipWith (!!) (copy eKeys 6)) indices
perform(as) = mapWith [mulInv , addInv, addInv, mulInv, id,id] as

The input and output to and from the process GDSKEYS, the refinement of generateDecSub-
Keys, are communicated as a vector and a vector of vectors:

generateDecSubKeys :: �Int16�52 → ��Int16�6�9

The input encryption subkeys are firstly permutated according to the given indices, and
then produced to parallel instances of the process PERFORM the refinement of perform.

GDSKEYS = |||i=51
i=0 (in.elements[i]?skeys[i] → SKIP);

(PRDp(skeys) ✄ VMAP9(PERFORM))

PERFORM = |||j=1
j=0 (ADDINV[in/inj, out/outj]

||| MULINV[in/inj, out/outj]

||| (Forward[in/inj, out/outj]))

PRDp(ls) =(|||j=53
i∈P,j=0 out.elements[j]!ls[i]) → SKIP
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P = {48, 49, 50, 51, 46, 47, 42, 44, 43, 45, 40, 41,

36, 38, 37, 39, 34, 35, 30, 32, 31, 33, 28, 29, 24, 26,

25, 27, 22, 23, 18, 20, 19, 21, 16, 17, 12, 14, 13, 15,

10, 11, 6, 8, 7, 9, 4, 5, 0, 1, 2, 3, 0, 0}

PERFORMPERFORMPERFORM ...

skeys[0] skeys[1] skeys[8]

uss[0] uss[1] uss[8]

Figure 15: Decryption subkeys generation, first design.

7.2.2 Decryption Subkeys Generation - Second Design

In this design, the input and output are communicated as streams of vectors of 6 items. The
input vector is ordered in the way needed for the process, where the first and the fourth
elements are passed to the MULINV processes, the second and the third inputs are passed to
the ADDINV processes. The last two input elements are forwarded to the output channels in
their order. This process is visualized in Figure 16.

generateDecSubKeys ::�Int16�52 → 〈�Int16�6〉

GDSKEYS = |||i=51
i=0 in.elements[i]?skeys[i] → SKIP);

(SPRDp(skeys) ✄ SMAP(PERFORM)

SPRDp(ls) =((; )i=8
i=0(|||k=5

j∈P′[i],k=0 out.elements[k]!ls[j])) →
out.eotChannel!eot → SKIP

P′ ={{48, 49, 50, 51, 46, 47}, {42, 44, 43, 45, 40, 41},
{36, 38, 37, 39, 34, 35}, {30, 32, 31, 33, 28, 29},
{24, 26, 25, 27, 22, 23}, {18, 20, 19, 21, 16, 17},
{12, 14, 13, 15, 10, 11}, {6, 8, 7, 9, 4, 5}, {0, 1, 2, 3, 0, 0}}

7.3 IDEA Encryption and Decryption

A parallel program for a block encryption (or decryption) could be viewed with different lev-
els of parallelism. The first design is suggested to view the input subkeys as vector of vectors
passed in parallel to the parallel rounds. This design replicates the process SINGLEROUND
(which corresponds to the function singleRound) an 8-stage pipeline. The replication is done
using a vector implementation off-the-shelf refined high-order-function foldl.

Another design considers input subkeys as stream of vectors using one instance of the
process SINGLEROUND, thus a later minimal use of resources needed by SINGLEROUND
processes. This is done using a sequential implementation of foldl.

A compromised design affording flexibility in controlling replication of the process SIN-
GLEROUND is done by taking a part of the subkeys as vector of vectors while the remaining
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Figure 16: Decryption subkeys generation, second design.

subkeys as stream of vectors. This is a tradeoff between use of hardware resources and
throughput of processing. These designs are elaborated in the following subsections.

The encryption for a whole set of plaintext also could be viewed in two levels of parallel
execution. A first design could pass sequentially the plaintext blocks as a stream of vector
of items. A second design could pass the blocks as streams of vector of vectors of items,
replicating the whole IDEA block leading to a multi-way encryption. These two versions
are presented for the encryption taking into consideration that the decryption is implemented
similarly. Refining the input plaintext segmented blocks to a stream of vector of items, while
the key is input once as an item, we get:

encryption :: 〈�Int16�4〉 → 〈�Int16�4〉

where:
ENCRYPTION(key) = SMAP(ENCRYPTSEGS(key))

The second version is implemented as follows, where n is limited to the available resources.

encryption :: 〈�〈�Int16�4〉�n〉 → 〈�〈�Int16�4〉�n〉
ENCRYPTION(key) = SMAP(VMAPn(SMAP(ENCRYPTSEGS(key))))

7.3.1 IDEA First Design

The main point of the first design is to have a version of IDEA with all of its rounds working
in parallel. This is apparent from the refinement of the input subkeys. The subkeys are refined
as a vector of vectors of items and distributed to the parallel rounds. The refinement realises
this function as the process ENCRYPTSEGS (See Figure 17), where the input and output
segments are streams of vectors of items and the key is passed as an item. The key will be
used to generate a vector of vectors of subkeys through GENCSKEYS.

encryptSegs :: Int128 → 〈�Int16�4〉 → 〈�Int16�4〉
encryptSegs � ENCRYPTSEGS

ENCRYPTSEGS = GENCSKEYS �52 PACK �9

(VVFOLDL(SINGLEROUND)‖OTPTTRANS)

The process VVFOLDL(SINGLEROUND) is an off-the-shelf refinement for the high-
order-function foldl over a vector of vectors of items.
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SINGLEROUND SINGLEROUND SINGLEROUND OTPTTRANS

PACK

...

… xs … ys

[kss[0]..kss[6]] [kss[7]..kss[12]] [kss[43]..kss[48]] [kss[49]..kss[52]]

GENCSKEYS

key

...

Figure 17: IDEA encryption block diagram, a fully-pipelined first design.

The refinement of a single round is a process SINGLEROUND. The data refinement realises
the inputs and output of this function as vectors of items.

singleRound :: �Int16�4 → �Int16�6 → �Int16�4

singleRound � SINGLEROUND

SINGLEROUND = FIRSTSUBROUND �6 SECONDSUBROUND

�6 THIRDSUBROUND

where:

firstSubRound � FIRSTSUBROUND

secondSubRound � SECONDSUBROUND

thirdSubRound � THIRDSUBROUND

SINGLEROUND is depicted in Figure 18.

SECONDSUBROUND

FIRSTSUBROUND

THIRDSUBROUND

xs ks

ws

Figure 18: The process SINGLEROUND as the piping of the three subrounds.

The refinement of the function firstSubRound realises the inputs and output as vectors of
items. The refinement of the functions addMod and mulMod (modular addition and multipli-
cation) are the processes AddMod and MulMod respectively.

firstSubRound :: �Int16�4 → �Int16�6 → �Int16�6

FIRSTSUBROUND =|||j=1
j=0 (ADDINV[in/inj, out/outj] ||| MULINV[in/inj, out/outj]

||| (Forward[in/inj, out/outj]))
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xs[1] ks[1] xs[2] ks[2] xs[3] ks[3] ks[4] ks[5]

os[0] os[1] os[2] os[3] os[4] os[5]

Figure 19: The process FIRSTSUBROUND.

Visualization of the process FIRSTSUBROUND is shown in Figure 19. The refinement of
the function secondSubRound is SECONDSUBROUND. The CSP implementation consider
the input and output as vectors of items:

secondSubRound :: �Int16�6 → �Int16�6

SECONDSUBROUND = (VZIPWITH2(EXOR))‖MA

EXOR = (in1?l1 → SKIP ||| in2?l2 → SKIP); out!(l1 ⊕ l2)

fullexor � EXOR

where, ⊕ is the bit-wise execlusive-OR. This process is visualized in Figure 20.

EXOR

MA

EXOR

v1 v2 v3 v4

k5 k6

v1 v2 v3 v4

p5 p6

Figure 20: The processes SECONDSUBROUND.

The refined process MA satisfies the function mA. Accordingly, the CSP implementation
is as follows:

mA :: �Int16�4 → (Int16, Int16)

MA = (|||i=4
i=1 in1?list.Elements[i] → SKIP);

MULMOD ‖ IBROADCAST2[d/out] ‖
(ADDMOD � MULMOD) ‖ IBROADCAST2[d/out] ‖ ADDMOD

The process IBROADCASTn broadcasts a single input to an n independent channels. The
Process MA is visualized in Figure 21.

Data refinement considers the input and output of the function thirdSubRound as vectors
of vectors:

thirdSubRound :: �Int16�6 → �Int16�4

THIRDSUBROUND = (|||i=5
i=0 in.elements[i]?[y1, y2, y3, y4, p1, p2] → SKIP);

(PRD([y1, y3, y2, y4] ‖ PRD([p2, p2, p1, p1] ‖ VZIPWITH4(EXOR))
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MULMOD
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IBROADCAST
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Figure 21: The process MA.

Visualization of the process THIRDSUBROUND is shown in Figure 22.
The refinement for the outputTransformation is done in a similar way to FIRSTSUB-

ROUND.

7.3.2 IDEA Second Design

As indicated earlier, in this design the generated subkeys communicate with encryption (or
decryption) process as a stream of vectors of items as depicted in Figure 23. The refinement
for this design is as follows:

ENCRYPTSEGS =

GENCSKEYS �52 PACK �9 (SVFOLDL(SINGLEROUND)‖OTPTTRANS)

The process SVFOLDL(SINGLEROUND) uses an off-the-shelf refinement for the high-
order-function foldl over a stream of vectors of items.

7.3.3 IDEA Third Design

This design is a compromised solution between the first and the second design. The CSP
implementation of this design allows the passing of the subkeys in two ways. Some of the
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Figure 22: The process THIRDSUBROUND.
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Figure 23: IDEA encryption block diagram in its second design with streamed input and output.

subkeys elements are passed as a vector of vectors, while the remaining subkeys are commu-
nicated as a stream of vectors. This design is shown in Figure 24.

ENCRYPTSEGS(n) =GENCSKEYS �52 PACK �9(
(n � VVFOLDL(SINGLEROUND))

‖SVFOLDL(SINGLEROUND)

‖OTPTTRANS
)

The processes VVFOLDL(SINGLEROUND) and SVFOLDL(SINGLEROUND) are run-
ning in parallel synchronising on the output of VVFOLDL(SINGLEROUND) to be the input
to SVFOLDL(SINGLEROUND). The number of folded processes is produced for each where
n is the number of folded processes having subkeys as vector of vectors.

SVFOLDL(SINGLEROUND) OTPTTRANS

.

.

.

… ys

[kss[7]..kss[12]]

[kss[43]..kss[48]]

[kss[49]..kss[52]]

SINGLEROUND SINGLEROUND SINGLEROUND

...
… xs

[kss[0]..kss[6]]

Figure 24: IDEA encryption block diagram, partially pipelined third design.

8 Reconfigurable Hardware Realization

In this section we discuss only some pieces of the code implementing the presented designs.
The whole implementations were tested and the practical evaluation and analysis is presented
in the next section. Coding with Handel-C, the structure of the implementation is based
on the network of communicating processes given by the refinement. A part of the code
implementing the macro GenerateEncSubKeys is as follows:
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par {
KeyRotation (Key1, Vlst, VoVOut1);
VMap (VoVOut1, VoVOut2, Size, GenerateSubKeys);
// The output is concatenated in one vector of vectors VoVOut2

}

The used datatypes were declared as:

Item (key1, Int128); // The Key
VectorOfVectorsOfItems (voVOut1, 8, 8, Int16); // Intermediate
VectorOfVectorsOfItems (voVOut2, 8, 8,Int16); // Result

Another example is the hardware implementation of the second design for decryption sub-
keys generation. In this code the encryption subkeys are loaded from the memory bank
produced as a stream of vectors of 6 elements to a macro Perform that performs the required
computation based on the CSP refinement.

The macro that performs the computation and the main program that uses it are as shown
in the following listing.

StreamOfVectorsOfItems (sKssIn, 6, Int16);
StreamOfVectorsOfItems (sUssOut, 6, Int16);
.
.
.
par{

ProduceStreamOfVectorsOfItems (sKssIn, 9, 6, P’);
Map (sKssIn, sUssOut, Perform);
StoreStreamOfVectorsOfItems (sUssOut, 6, decSubKeyss);

}

macro proc Perform (sKIn, sUOut) {
par {

MulInv (sKIn.elements[0], sUOut.elements[0]);
AddInv (sKIn.elements[1], sUOut.elements[1]);
AddInv (sKIn.elements[2], sUOut.elements[2]);
MulInv (sKIn.elements[3], sUOut.elements[3]);
ForwardItem (sKIn.elements[4], sUOut.elements[4]);
ForwardItem (sKIn.elements[5], sUOut.elements[5]);

}
}

The implementation for a single round is done by implementing each sub-round as a macro.
The macro that corresponds for the process FIRSTSUBROUND is:

macro proc FirstSubRound (xs, ks, ts) {
par {

AddMod (xs.elements[1], ks.elements[1], ts.elements[1]);
MulMod (xs.elements[0], ks.elements[0], ts.elements[0]);
AddMod (xs.elements[2], ks.elements[2], ts.elements[2]);
MulMod (xs.elements[3], ks.elements[3], ts.elements[3]);
ForwardItem (ks.elements[4], ts.elements[4]);
ForwardItem (ks.elements[5], ts.elements[5]);

}
}
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Thus for a single round:

macro proc Round (xsIn, ksIn, wsOut) {
.
.
.
par {

FirstSubRound (xsIn, ksIn, one);
SecondSubRound (one, two);
ThirdSubRound (two, wsOut);

}
}

Turning our attention to another example, we choose the implementation of the encryption
third design. Whereby, a combination of parallel and sequential fold are employed. Com-
ments on the functionality are included near each statement.

void main (void) {
.
.
.
par {

// Get plaintext.
ProduceStreamOfVectorsOfItemsFromBank0 (xsSOV, 4);

// Produce subkeys for VVFoldL
ProduceVectorOfVectorsOfItems (vVSubKeys, pRnds, 6, subKeyss);
VVFoldL (vVSubKeys, 6, xsSoVector, 4, pRnds, Round, xsSOV);

// Produce the remaining subkeys for SVFoldL
ProduceStreamOfVectorsOfItems (sVSubKeys, sRnds, 6, subKeyss1);
SVFoldL (sVSubKeys, 6, sWs, Round, xsSoVector, 4, sRnds);

// Produce subkeys for the output transformation
ProduceVectorOfItems (ks9, 4, subKeys9);
OutputTransformation (sWs, ks9, xsSoVector1);

// Store the ciphertext
StoreStreamOfVectorsOfItemsInBank1 (xsSoVector1, 4);

}
}

9 Performance Analysis and Evaluation

Generally, the suggested algorithms inherit all the advantages from the development method
applied. Key issues are granted, like the production of reusable, scalable, and correct so-
lutions by construction as opposed to trial and testing. Correctness, which is an important
aspect in security algorithms, is ensured by construction through the functional specification
step. Recall that according to this specification, the implementation under HUGs98 Haskell
compiler is tested at the unit, component and integration levels.

Table 1 shows the results for the encryption and decryption subkeys generation. Note that
the test key used for the generation is the key whose 16-bit segments are: {1 , 2 , 3 , 4 , 5 , 6
, 7 , 8}. We also recall that the execution time of doing only the handshaking between the
host and the RC-1000 system with no computations costs approximately 132 µ Sec. Some of
decryption first design’s results are marked as not available as the design was too large for
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the compiled device. The encryption keys are expanded with a throughput of 4.089 Gbps
occupying an area of 5846 Slices, i.e. 12% of the area of the available FPGA. The speed
dramatically goes down with the decryption subkeys expansion using the second stream-
based design (6.68 Mbps and an area of 9032 Slices).

Table 1: Results for encryption and decryption subkeys generation.

Metrics                                             Designs
Encryption Subkeys

Generation

Number of Gates 64906 NANDs

Measured Throughput 23.77 Mbps

Measured Execution Time 167 Micro sec.

Number of Cycles 14 Cycles

Maximum Frequency of Design 68.81MHz
Throughput 4.089 Gbps

Number of Occupied Slices 5846 Slices (12%)

Total equivalent gate count 80784 Gates

Decryption Subkeys

Generation
First Design

4094334 NANDs

92091 Slices

(321% Overmapped )
1012481 Gates

88 Cycles

NA
NA

NA
NA

Decryption Subkeys

Generation
Second Design

162923 NANDs

9032 Slices (47%)

132128  Gates

588 Cycles

4.72 MHz
6.68 Mbps

299 Micro sec.
4.98 Mbps

Table 2 presents the results for the different designs of encryption (decryption). The
findings reflect the change of performance with respect to the change of design. The first
design, as intended, is the fastest with a max throughput of 21.33 Gbps (average throughput
of 21.5 Mbps) noted from testing random input test vectors with a key = {1 , 2 , 3 , 4 , 5 , 6
, 7 , 8}. The second design, which correspond to a sequential execution of the rounds has
an expected slowest throughput (maximum throughput of 5.82 Gbps and average throughput
of 19.53 Mbps), but the minimum circuit area 5650 Slices (29% of the area of the used
FPGA). The third design trades the throughput for the used area, thus it has a compromised
performance as compared to the first and second designs. Many tests are run using random
test vectors and keys to measure the average throughput shown in Table 2. Table 3 shows
different ratios relative to a suggested design. For instance, This table shows the Gates Saving
Ratio with respect to the second design. This ratio is an indicator for how many times more
(or less) a design would use gates taking the second design result as a reference value.

Table 2: Results for encryption (or decryption) for different test vectors.

Metrics                                             Designs
2 nd Stream-Based

Design

Number of Gates 88651 NANDs

Best Measured Throughput 1.430 Gbps

Best Measured Execution Time 0.04475 Micro Sec.

3 rd Partially-Pipelined

(2 Parallel and 6
Sequential)

176583 NANDs

0.0425 Micro Sec.

1.505 Gbps

Number of Cycles / Key ={1,2,3,4,5,6,7,8} 415 Cycles 382 Cycles
Maximum Frequency of Design 44.72 MHz 36.42 MHz
Throughput 6.89 Mbps 6.1 Mbps

Number of Occupied Slices    5650 Slices (29%) 10147 Slices (52%)
Total equivalent gate count 93659  Gates 172719  Gates

Average Measured Execution Time  3.276 Micro sec. 3.086 Micro sec.

Average Measured Throughput 19.53 Mbps 20.73 Mbps

1st Fully-Pipelined
Design

394526 NANDs
   19198 Slices (99%)

363682  Gates
88 Cycles

34.975 MHz
25.4 Mbps

0.036 Micro Sec.
 2.98 Micro sec.

1.777 Gbps
21.5 Mbps

Different implementations of modular arithmetic operations dramatically affect the per-
formance of the IDEA. Three implementations for the modular multiplication are being in-
vestigated. The first implementation uses a fast and expensive version of the modulo operator
mod. A second implementation corresponds to an iterative version of the operation mod. The
third implementation is for the efficient implementation shown in the specification section,
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Table 3: Comparisons among suggested designs.

Gates Saving Ration wrt Second Design 3.88 (288% more gates)

Number of Cycles Ratio wrt First Design
C1 = No. Cycles

C2 = No cycles of 1st  Design
C1/C2 (C

1
 - C

2
) / C

2
 %)

Best Time Ratio wrt First Design

Best Measured Speedup Ratio wrt First Design

Occupied Area (Slices) Ratio wrt Second Design 3.39 (239% larger area)

Metrics                                                         Designs First Design Second Design

N
1
 = T E No. Gates (No Comm.)

N2 = T E No Gates (No Comm.) of 2nd Design
N1/N2 ((N

1
 - N

2
) / N

2
 %)

4.7159  (371.59% more cycles)

1.24  (24% more time)

1.24   (24% faster)

A
1
 = Area (No Comm.)

A2 = Area (No Comm.) of 2nd Design
A1/A2 (A

1
 - A

2
) / A

2
 %)

Third Design
(2 parallel and 6 sequential)

1.84  (84% more gates)

4.3409 (340.9% more cycles)

1.18  (18% more time)

1.18   (18% faster)

1.77 (77% larger area)

Average Time Ratio wrt First Design 1.099  (9.9% more time) 1.035  (3.5% more time)

Average Measured Speedup Ratio wrt First Design 1.1  (10% faster) 1.037  (3.7% more time)

E1 = Exec. Time
E2 = Exec. Time of 1st  Design

E1/E2 (E
1
 - E

2
) / E

2
 %)

S1 = Speed of 1st  Design
S2 = Speed

S1/S2 (S
1
 - S

2
) / S

2
 %)

which eliminates the use of the operation mod. Table 4 shows comparisons among the sug-
gested implementations of the modular multiplication as used in the second design. This
table shows that the efficient implementation of the modular multiplication has affected the
performance of the IDEA positively. This is shown in the reduced cycle count taken by this
implementation as compared to the two other implementations. It also reduced the used area
to 5650 Slices after being 6263 and 10739 Slices in the other implementations.

Table 4: Results for encryption second design for different versions of ’mod’, for different test vectors.

Number of Gates 172164 NAND Gates
Number of Cycles 988 Cycles

Best Measured Execution Time 0.04475 Micro Sec.
Best Measured Speed 1.430 Gbps

Number of Occupied Slices 10739 (55%)
Total equivalent gate count 168889

Second Design
Modular Multiplication

Implemented using:
(Key Used = {1,2,3,4,5,6,7,8})

‘mod’ Operator Iterative ‘mod’

95226 NAND Gates
106060 Cycles

0.15075 Micro Sec.
424.54 Mbps
6263 (32%)

103057

Efficient Implementation

Eliminating ‘mod’

93659 NAND Gates
415 Cycles

  0.011 Micro sec.
5.82 Gbps

5650 (29%)

93659

To present some results from the literature for hardware implementations of the IDEA
algorithm, A summary of findings is shown in Table 5. In [12, 13, 11, 18], the authors
present different ad hoc hardware implementations of the IDEA algorithm. The IDEA block
cipher has been implemented at throughput ranging from 8.5 Gbps [13] to 177 Mbps [18] on
FPGAs. Note that while a 528 Mbps throughput was achieved [14], with a fully pipelined
architecture, the implementation required four Xilinx XC4020 FPGAs.

Table 5: Comparison among different hardware implementations of the IDEA.

PCI Pamette - 4 Xilinx XC4020 FPGAs
(Zimmermann et al)

528

System                                                 Metrics
Speed

(Mbps)

 Clock Frequency

(MHz)

33

Area

3200 CLBs

UNICORN Architecture; Xilinx FPGA
(Runje et al) 2.8 NA NA

XCV1000-6 Xilinx FPGA (2 Cores)
(Cheung et al) 5250 82 11602 Slices

XCV2000e-6 Xilinx FPGA
(Beuchat et al)

8500 NA 18164 Slices

XC2V4000-6 Xilinx FPGA
(Beuchat et al)

7900 NA 18537 Slices

XCV1000-6 Xilinx FPGA

(Beuchat et al)
8000 NA 4845 Slices
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10 Conclusion

We investigated in this paper the synthesis of highly parallel reconfigurable hardware imple-
mentation for the IDEA. Important aspects for hardware implementations of cryptographic
algorithms like correctness, reliability along with efficiency are stressed through the applica-
tion of the proposed development model. The development for the IDEA started by formally
specifying the algorithm in a functional setting. At that point, provably correct refinement
rules are applied transforming the specification to different proposed designs. Thereby, im-
plementations with different levels of parallelism are studied. The refined designs include
the blocks from IDEA responsible for encryption and decryption in addition to their subkeys
generators. The reconfigurable circuits’ realization using Handel-C is done based on the
refined CSP networks. The first design requires 88 computing cycles yielding an average
throughput of 25.4 Mbps. The maximum throughput achieved with random test vectors was
21.33 Gbps. The second design occupied the minimum area among the different designs with
5650 slices. Currently, our research is concentrating on widening the area of application of
the development model, besides, automating the development process.
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