
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

361

Design of a Transputer Core and
its Implementation in an FPGA
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Abstract. We have made an IP (Intellectual Property) core for the T425 transputer.
The same machine instructions as the transputer are executable in this IP core (which
we call the TPCORE). To create an IP core for the transputer has two aspects. On
one hand, if we could succeed in building our own one and putting it in an FPGA
(or VLSI chip), we could apply it as a core processor in a distributed system. On
the other hand, if we can extend our transputer development from a very conventional
one to more sophisticated ones, as Inmos proceeded to the T9000, we hope to find
technological breakthroughs for the bottlenecks that the original transputer had – such
as the restriction of the number of communication channels. It is important to have
an IP core for the transputer. Although the TPCORE uses the same register set with
the same functionality as the transputer and follows the same mechanisms for the link
communication between two processes and interrupt handling, the implementation
must be very different from original transputer. We have extensively used micro-code
ROM to describe any states that the TPCORE must take. Using this micro-code ROM
for the state transition description, we could implement the TPCORE economically
on FPGA space and achieve efficient performance.

1 Introduction

The transputer was once widely used as a core processor in parallel or distributed systems
extensively all over the world in the 1980s. However as Inmos Ltd. of the day could not
supply a new generation transputer in the early 1990s in timely manner, many users gave up
using the transputer as a core processor of their parallel systems or were forced to look for
architectures other than a parallel one for their applications.

There may be still many people like the authors themselves who hope to run occam
codes developed for transputers or to design a parallel system with occam. Although the
occam compiler has been evolved and facilitated to execute on a Linux machine (KRoC , the
Kent Retargettable occam Compiler project [1]), we could not find easily a hardware object,
which is optimized for occam execution like the transputer – even though the technology of
hardware implementation on silicon has significantly developed.

We have two motivations to have an IP core of transputer: one is an intention still to
apply the transputer in our home-made distributed systems; and the other one is an intention
to make a start point to find a solution for new transputer architecture rather than T9000. If
we have the IP core, we may be able to try to find our way to overcome, for example, the case
of an excess of the number of communication channels over the number of physical links
between processes running in different transputers; we may propose new schemes for load
distribution and scheduling algorithms; and we may find an idea for a fast cross-bar switching
algorithm by implementing multiple cores into one chip.

In order to develop such a processor like an occam machine, we have firstly analyzed the
instruction set of transputer T425 and tried to resolve every instruction in detail, which has
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been not described explicitly in the data sheet [2]. We then made an IP core (TPCORE), using
Verilog/VHDL, to be able to process all the instruction set of T425. We have aimed to con-
struct an IP core which can run an occam program compiled, linked, loaded and downloaded
with the transputer toolset developed by Inmos [3]. We then made a realization of TPCORE
using FPGA, and carried out some performance tests. We report in this article TPCORE de-
velopment, logical structures we have chosen, hardware implementation for the CPU, link,
interrupt and process control blocks. Finally, we present some results of performance for the
execution of occam programs, which were compiled with occ.

2 Fundamental Architecture of TPCORE

The overall block diagram of TPCORE is shown in Figure 1. TPCORE comprises a CPU, a
Link block, Memory Controller and Memory. The memory consists of four 4Kbyte blocks.
The Link block has four interfaces (link) to communicate (exchange data) with other TP-
COREs.

Figure 1: TPCORE block diagram

2.1 Memory Controller

The memory controller accepts either the memory access requests from the CPU or from
the link interfaces, and adjusts the requests according to the specification of the the memory
(device) actually embedded in an FPGA. In this way we can simply modify the verilog code
for the memory controller and keep the CPU and link block untouched even if we implement
TPCORE in another FPGA which has a different memory device of the size or data transfer
technology.

The memory controller manages one address and one data bus. Although the address
space can be extended over about 4GB, which is expressed with 32 bits, presently we use
only 15 bits for the address specification (32kB space). In the original transputer, there was
a special address space, which we could access it with faster cycle than the other address
space. TPCORE handles, however, all the address space uniformly.
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We have not made a dedicated communication bus between the CPU and the link. The
data exchange between them is performed using the common data bus managed by the mem-
ory controller. If the link block occupies the memory block for communication with external
modules, execution in the CPU is blocked.

2.2 CPU

The block diagram of the CPU is shown in Figure 2. The address and data buses shown in the
figure are controlled by the memory block. In order to follow the instruction set of the trans-
puter as much as possible, we implement six almost identical registers in TPCORE. These
registers are the instruction pointer (Iptr), the operand (Oreg), the work space pointer (Wptr),
and three stack registers (Areg, Breg and Creg). We have given these registers identical roles
to the ones of transputer. The value stored in Wptr is recognized as Process ID for a process.
The CPU block uses this value to make a local address for the process. The local address
for the process is set using Oreg and the lower 4bit of Iptr in addition to Wptr. The least
significant bit is used to distinguish the process priority.

Figure 2: CPU block diagram

Beside these six registers, we have prepared (private) registers for the error handling
(Error), loop counting (Cnt), and temporal data storage (Temp). Although the existence
of these registers has not been described explicitly in various transputer data books, it is
naturally required to be installed in a CPU object. We have implemented them in order not
to influence other logic structures reconstructed though the references. Especially we have
carefully designed the arithmetic logical unit (ALU) concerning these private registers. ALU
has two input and two output streams. As shown in Figure 2, the register Cnt will be an input,
and Temp will be an output while Error will be either input or output source of ALU.
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Table 1: Micro-code ROM 64bit specification

bit number Contents
63–61 Not used

60,55,36-33 Condition branch for the micro-code ROM
59–57 memory access privilege
56,54 Behavior of the Link interfaces
53-50 Output destination for the data bus

49-37,23 Behavior of various registers
32-24 Input source selection for ALU
22,21 Input selection for the address bus
20-17 Input selection for the data bus
16-14 Process priority
13-9 Instruction code for ALU
8-0 Next address of the micro-code ROM

2.3 State Transition Table in Micro-code ROM

All possible states described with items listed in Table 1 in all the components of TPCORE
(the memory controller, the link block, and the CPU) are stored in the micro-code ROM. The
micro-code ROM has the depth of 512 and the width of 64bit.

We have found two advantages to use the micro-code ROM for description of states and
their transitions; one is that we can modify and adjust performance of an instruction by chang-
ing appropriate bits of the appropriate address of the micro-code ROM without modifying the
verilog code of TPCORE, and the another one is that we can reduce the FPGA space since
we pack all the state transitions into an internally embedded memory, and we do not need to
install state transition machines into the FPGA wired-space.

Several examples of the contents of the micro-code ROM are given below.

Instruction Fetch State
In order to fetch the instruction to be executed next:

1. Iptr must be selected to Input for the address bus in which Iptr contains the address for
the next instruction,

2. memory must be selected to the source for the data bus since the address to be executed
next which is kept in Iptr must loaded on the address bus,

3. Ireg must be set to the output destination for the data bus, and

4. the next address of the micro-code ROM must be set to 0x001 to go to the instruction
decode state.

The specification is given in this state and is described in the micro-code ROM at address
0x000..

Instruction Decode State
The contents of four higher bits of Ireg or Oreg 32bit are used to specify the next instruction
to be done. The next address of the micro-code ROM is then determined conditionally ac-
cording to the instruction decoded.
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Instruction Execution State
If the instruction to be executed is finished in one state transition, then the next state will be
back to the Instruction Fetch. Instead if the instruction needs other states to complete, then
the next address for the micro-code ROM is an appropriate one for the next state.

3 Hardware for Parallel Processing

3.1 Process Control

The mechanism of the process control in TPCORE follows basically the one used for trans-
puter as faithfully as possible. The value in Wptr is regarded as the process ID. The first
address to be executed in the process is stored in Wptr-4, and the ID of the next process to be
executed is stored in Wptr-8. Thus the process itself has the information for the next process.
This chain structure for the process queue is prepared separately for the high and low prior-
ities, and the structures are retained in the registers of fptr0, fptr1, bptr0 and bptr1. Since a
change of one of these registers in the process scheduling is regarded as the state transition,
the process control is also managed by the micro-code ROM.

3.2 Interrupt Process

The mechanism for the interrupt handling is also derived from the one used in transputer. The
save or reload of the relevant registers at the beginning and end of an interrupt is described
in state changes. The handling of the interrupt is described with the micro-code ROM. Once
an interrupt is occurred, the address for the next micro-code ROM is changed to point the
addresses to initiate or terminate the interrupt handling (18 and 22 states for the interrupt and
return from interrupt respectively). Afterwards normal state transition cycle is resumed.

3.3 Link Communication

The communication between two processes in TPCORE is done through channels as is done
in the transputer. The communication is one to one and synchronous. The channel facilitates
no buffer for data to be transferred. A 32bit word in the memory is used for a channel between
two processes running in the same TPCORE while one of a total of four link interfaces (also
implemented in a special address space in memory) is used for a channel to communicate with
a process running in a different TPCORE. The assembly instructions for communication like
in and out distinguish internal and external communication from the address used for the
channel. The stack register Creg is used for a pointer to specify the address of the data, Breg
is the channel address, and Areg is used to specify the number of bytes to be transferred.

If, for example, out is executed with Breg=0x80000000, the link interface0 will be used
to output the message externally, and the CPU asks to the link block to do the external com-
munication by giving contents of the stack registers and the current process ID. Suspending
the execution of the process currently executed, the CPU starts the next process taken from
the scheduling queue. Once the link communication is over, then the CPU restores the stack
registers and the process ID, and resumes the suspended process. The link protocol for the
external communication is the same one as defined as Inmos protocol. The TPCORE has
a link interface to accept the data over RS232C line. The protocol for data transfer over
RS232C is the same one as the Inmos link protocol.
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3.4 ALT Procedure

TPCORE implements ALT construction in the following way.

1. Address (Wptr-12) is prepared for ALT processing to keep the status of the ALT pro-
cess. There are three statuses; Enabling, Waiting and Ready.

2. The status becomes Enabling when alt instruction is executed at the beginning of
ALT construction.

3. Then enbc is executed to check whether a guard channel already received data. If
so, then the status is set Ready, and altwt is over. If not, altwt sets the status to
Waiting, and yields other process to proceed.

4. An out instruction of an another process, which is linked with an input guard channel
of the ALT recognizes that altwt is being executed, and set remotely Ready to the
status, and altwt is terminated.

5. If a guard channel receives data, an interrupt is generated to resume the ALT process,
disc instruction is executed to sweep out altwt remnant, and it determines an ap-
propriate address for execute of instructions for the established guard, then altend is
executed to jump the address that disc specified.

4 Implementation and Verification

The design of the TPCORE Hardware has been done with the following steps,

1. Analysis of the transputer instruction set
In order to investigate what changes are occurred in the internal registers or memory
for execution of an instruction, we have extensively used a program ”isim”, which is an
application involved in Inmos transputer toolset [3]. As we could observe changes of
the registers and relevant memories with transputer instructions one by one, isim was
very useful tool to look into the internal state transitions caused by some complicated
instructions such as ones associated with PAR or ALT constructions.

2. Description of the micro-code ROM
Once the changes in the registers or memories by the instructions were understood,
we have summarized it in the framework of the state transition model. The model is
implemented into the micro-code ROM. We also include state transitions caused by the
interrupt, external link communication etc. into the micro-code ROM.

3. Hardware design
Once the format of the micro-code ROM has been established and the contents of it
have been filled, we have begun to design the hardware parts (the CPU block, memory
controller, and the link block) using verilog. The verilog code was verified with the
simulation. The verification of the hardware design also contains the validity check
of the description in the micro-code ROM. An example of the simulation is shown in
Figure 3. We have used ModelSimXEII5.6e [4] for the verilog simulation of both the
register transfer and gate levels, and used ISE6.1i [5] for the logic synthesis.

Figure 3 shows following steps of the simulation:
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Figure 3: An example of simulation output: generation of an interrupt.

1. the lowest bit of Wptr is set to one as TPCORE executes a lower priority process in the
beginning,

2. a higher priority process is generated, and its Wptr (0x80000711) is put in hi fptr at
about 1235.5us,

3. the address of the micro-code ROM (mcraddr) must be changed simply from 0x16e
to 0x000 unless an interrupt is generated, but is changed to 0x000 through 0x1d3,
0x1d4,. . . ,0x1e4, these 18 extra addresses of the micro-code ROM contains the states
during the interrupt handling, and

4. after the state transition by the interrupt is over at around 1238.5us, a higher priority
process is going to be executed.

Table 2: Implementation detail

Working frequency 24MHz (max. estimated 31.5MHz)
Number of gates 1371928 (1.4M) gates (64% used)

Memory size 32kByte
Memory access rate 24MByte/s

Number of instructions 96

We have implemented TPCORE developed in this way on an FPGA of Xilinx Virtex
II. The result of this implementation is summarized in Table 2. Note that TPCORE has
implemented only 96 instructions while the T425 has 103. We have implemented no timer
instructions as yet.

TPCORE must do the following steps (some routes are indicated in Figure 2) within one
cycle of the clock in order to do (a part of) an instruction;

1. input sources for ALU are assigned to ALU buses by micro-code ROM controller (Mc-
ctrl) according to the micro-code ROM description,

2. ALU put an output as a result on the ALU output bus and sets various condition codes,
and
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3. Mcctrl decodes the data on the ALU output bus and calculates the next micro-code
ROM address to refer.

TPCORE will do one 64bit subtraction, one 32bit addition and three steps of 32 to 64bit
multiplexing operations for the above process in one clock. This complication limits the
working frequency to 24MHz in the FPGA implementation.

Figure 4 shows a signal sequence actually observed in TPCORE implemented in Virtex
II. This sequence expresses an interrupt generation. In Figure 4 HIQEMP and LOQEMP

Figure 4: A signal sequence observed in TPCORE implemented in Xilinx Virtex II for interrupt generation.

mean empty flags of high and low priority queues respectively, PRIOR indicates the priority
of the process currently being executed. The WPTR0 to WPTR4 are the four least significant
bits of Wptr. The sequence of the signals in the figure is interpreted as follows,

1. a low priority process is being executed since Wptr0 is set to high at the beginning,

2. HIQEMP is transited to low at some time, namely a high priority process is entered in
a waiting queue, and

3. after some clocks, the lowest significant bit of Wptr is changed from high to low, this
indicates the high priority process was entered in an execution state from the waiting
queue.

In Table 3 we listed comparison of TPCORE with T425 for the number of cycles needed
for typical instructions. PS and B used in Table 3 denote the number of cycles needed to
change processes and the highest bit number in which 1 is set in Areg, respectively. In
TPCORE the number of cycles needed to change an active process depends on the conditions
(priorities and number of queues). An interrupt is occurred when a process is put in a high
priority queue during execution of a low priority process. In this case we need 18 cycles
to exchange processes. It takes only four cycles to exchange two low priority processes.
The column for the number of cycles for altwt (alt wait) in T425 in this table has been left
blank. Accroding to [6], number of cycles for this instruction in T425 can not be explicitly
defined since timer instructions will be used for the guard. Timer instructions have not been
implemented in TPCORE, the number for TPCORE for altwt is one in case of not using timer
instructions.

Finally we demonstrate two examples of the occam program execution; one is a prime
number search with the algorithm of the so-called ‘Sieve of Eratosthenes’ (Figure 5), and
the other one is ‘Knight’s Tour’ on a chess board (Figure 7). The programs were loaded
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Table 3: Comparison of the number of cycles needed for typical instructions for TPCORE with T425.

Instruction Description T425 TPCORE
j jump 3 1

ldc load constant 1 1
ldl load local 2 2
ldnl load non local 2 2
eqc equal constant 2 1
pfix prefix 1 1
call call 7 7

wcnt word count 5 6
in (internal) input mssg 16 16+7B+PS

out (internal) output mssg 16 16+7B+PS
altwt alt wait 7+PS
enbc Enable Channel 7 8
add add 1 1
rem remainder 37 45

by iserver into TPCORE and the output messages were printed on the host PC screen with
various subroutines in hostio.lib of the occam2 toolset library.

Figure 6(a) shows the elapsed time of the prime number search program (the Sieve of
Eratosthenes) versus the integer upper limit for the search range. Since we have not installed
any instructions related to timer, we have measured the time with a logic analyzer. An occam
code fragment for testing the primeness of an integer (denoted as max in the code below) is
shown below.

SEQ
j, check, going := 2, TRUE, TRUE
WHILE going

SEQ
pcheck := max REM j
IF
max = j

check, going := TRUE, FALSE
pcheck = 0

check, going := FALSE, FALSE
TRUE

j := j+1

The elapsed time is not linear with the search region. If we count, however, the number of
repeat times for this loop in a search and plot the execution time versus this count, we could
find a linear relation between two quantities as shown in Figure 6(b). One can calculate 4.8
microseconds/loop from the slope of the line in this figure. The number of cycles needed
to execute this loop once is expected as 74 after we analyze the assembler code for this
part. We find, therefore, that one cycle needs about 66ns, which corresponds to 16MHz
working frequency. We are still analyzing reasons that this frequency is far below 24MHz;
the norminal working frequency of TPCORE.
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Figure 5: ‘Sieve of Eratosthenes’ executed in TPCORE for prime number search.
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Figure 6: Performance of prime number search with ‘Sieve of Eratosthenes’ method executed in TPCORE.
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Figure 7: ‘Knight’s Tour’ on a 8 by 8 chess board.

5 Summary and Outlook

We have made an IP core of the transputer T425, called TPCORE. TPCORE can execute
a program written in occam, which is compiled with occ and linked with ilink. We
can use iserver to download the executable program from a host PC to TPCORE. We
expressed all the state transitions caused by execution of the CPU instructions, link and in-
terrupt processing as well as process scheduling, and put them into the micro-code ROM.
This implementation allows easier modification and extension of TPCORE performance and
saves resource in an FPGA.

Almost all the instructions prepared for transputer T425 have been successfully imple-
mented into TPCORE. Instructions concerning time sharing have not yet been implemented
in TPCORE. These instructions are inserted by the occam compiler automatically, for ex-
ample, when a long loop instruction is used in an occam program. The detailed behaviour of
these instructions are neither given in [6] or obtained through isim running. To implement
these time sharing instructions, we must execute them in an actual transputer and debug the
relevant registers. This is an issue to be done in the next step.

Although the occam programs demonstrated in the previous section use the constructors
PAR or ALT, the parallelization or multiplexing of processes are done within a single TP-
CORE. We have not yet checked the validity of the link block logic particularly carefully
and, hence, communications with a process running in another TPCORE. By upgrading the
FPGA or increasing the number of FPGAs, we will soon start the validity check of external
link communications with this block.
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