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Abstract. The architecture and performance of a Java implementation of a structured
distributed shared memory system, PastSet, is described. The PastSet abstraction al-
lows programmers to write applications that run efficiently on different architectures,
from clusters to widely distributed systems. PastSet is a tuple-based three-dimensional
structured distributed shared memory system, which provides the programmer with
operations to perform causally ordered reads and writes of tuples to a virtual struc-
tured memory space called the PastSet. It has been shown that the original, native
code, PastSet was able to outperform MPI and P\VM when running real applications
and we show that the design translates into Java so that Java PastSet is a qualified
competitor to other cluster application programming interfaces for Java.

1 Introduction

Structured distributed shared memory, structured DSM, was first introduced in Linda [1], but
the interest into structured DSM has since been low. The general consensus is that it is not
possible to achieve performance comparable to that of simpler systems. We started the work
on PastSet with the idea that bad performance is not inherent to the concept of structured
DSM, and that good performance can be achieved by paying close attention to design and
implementation.

The increasing popularity of Java have also spawned an interest in ’easy-to-use’ applica-
tion programming interfaces, APIs, for parallel and distributed applications, which in turn has
sparked a renewed interest in tuple space based DSM since this model is truly simple to use.
The result of various ventures into tuple space has resulted in a variety of Linda-like systems
and two major, widespread, systems; JavaSpaces[2] and TSpaces[3]. JavaSpaces is the result
of a collaboration between the original Linda team and SUN, while TSpaces is a product
from IBM that seeks to address some of the semantic shortcomings found in JavaSpaces.

The Java PastSet, JPS, project seems like an obvious experiment based on the high per-
formance we achieved with the original, native code, PastSet, and one of the primary goals of
the JPS system were to test if the performance of PastSet were due to correct design or simply
a result of very good programming. A secondary goal were naturally to provide yet-another
tuple space DSM system for Java, hopefully far more efficient than the existing ones.

The remainder of this paper is organized as follows; in section 2 we describe the PastSet
model in some detail, and section 3 explains the design of JPS. In section 4 we report on
the basic performance of the JPS operations and in section 5 we show the application level
performance of JPS. Finally we draw our conclusions in section 6.
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2 PastSet

PastSet was first introduced as an interprocess communication paradigm in [4]. The paradigm
resembles that of Linda[1], but with some significant differences. Tuples are generated dy-
namically based on tuple templates that may also be generated dynamically. A tuple template
is an ordered set of types. Tuples based on a particular template has an ordered set of vari-
ables matching the types in the template. Each type in a tuple template has an associated
value-space, or dimension, describing the set of all possible values for that type in this tem-
plate. Taken together, the types in a template spawns a space encompassing all conceivable
type-value combinations for tuples based on that template. A tuple with all singular values
represents a singular point in this space.

As with Linda, PastSet supports writing (called move) tuples into tuple-space and reading
(called observe) tuples that reside in tuple space. Contrary to Linda’s in operation, PastSet
observe does not remove tuples from tuple space, the tuple that is observed is marked as
observed but remains in the PastSet so that it can be read again if specified so directly. No
mechanism is provided to remove individual tuples from PastSet. All PastSet operations
return only when the operation has completed, or an error has been detected, no asynchronous
calls exist.

In PastSet, each set of tuples based on identical templates is denoted an element of Past-
Set. An element may be seen as representing a trace of interprocess communications in the
multidimensional space spawned by the tuple template. PastSet preserves the causal order
among all operations on tuples based on the same or identical templates. There is no order-
ing between tuples of different elements. Tuples that match the same type, but which the
programmer does not wish to place in the same element can be differentiated by an initial
flag.

In effect, PastSet keeps a causally ordered log of all tuples of the same or identical tem-
plates that has existed in the system. This also allows the processes to re-read previously read
tuples.

It is the intention that the added semantics of PastSet will allow programmers to more
easily create parallel programs that are not of the traditional "bag of tasks’ type.

Two pointers First and Last are associated with each element in PastSet. First refers
to the elements oldest unobserved tuple. Last refers to the tuple most recently moved into
the element. A parameter, DeltaValue, associated with each element in PastSet defines the
maximum number of tuples allowed between First and Last for that element. A process may
change DeltaValue at any time. The move and observe operators update First and Last, and
obey the restrictions imposed by DeltaValue for each element in PastSet.

Functionality is provided to truncate PastSet on a per element basis, permanently remov-
ing all tuples that are older than a given tuple.

To address some of the performance problems for DSM systems, we have introduced the
concept of "User Redefinable Memory Semantics”, URMS[5], into PastSet. The principle
behind URMS is to offer users the opportunity to redefine the semantics of any or all memory
operations for memory areas that are specified by the user. The redefined semantics are
specified by providing code that should be executed instead of the memory operation. The
specification of the redefinition may also include initialization code that is applied once to
initialize the specified memory area. In effect, the redefined memory operation semantics
will be applied for memory operations on the specified areas only.

For example, a memory location may be redefined to accumulate a global sum of partial
sums that are produced by independent processes. For that location, the Move operation
would be redefined accordingly to code that stores the aggregate sum, and keeps track of a
completion criterion that may be realized as an access count, process list, or by other means.
The Observe operation is redefined to return the aggregate sum only after the reduction has
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Figure 1: Layout of a node that supports PastSet

completed, in effect blocking until the termination criterion used for the Move operation is
satisfied. This approach makes it very simple for programmers to overlap communication
and calculation if there is any work that may be done between the partial sum is ready and
the global sum is needed.

3 JavaPastSet
3.1 Architecture

The Java version of PastSet is focused on achieving high performance, while preserving as
much of the original PastSet semantics in an OO-environment. To minimize overhead the
architecture comprises two parallel paths, one that executes PastSet operations that may be
completed locally and one for operations that requires remote operations. Since the nature of
PastSet focus on the elements of PastSet, the distribution also focus on the elements. Each
element exists on one node only and is not replicated. An operation on elements that are
located on the same node as the process that performs an operation is called a local operation.
Operations on elements that are located on other nodes are called remote operations. Thus
PastSet supports remote observes and remote moves, similar to remote read and remote write
on other DSM systems. Remote operations are wrapped and communicated to a JPS Server
on the remote node using TCP/IP.

3.2 Data Location

To achieve low overhead on operations it is imperative that applications can easily determine,
at run time, whether an operation should execute locally or remotely, and in the latter case,
which node should perform the remote operation. To this end each element descriptor object
includes the identity of the server that holds the element. In the case of a local element the
JPS Client calls the PastSet operation directly. For a remote element, the call performs a
procedure, which sends the operation to the respective server and then reads and returns the
answer.

3.3 The JPS Server

Each node in the cluster that holds parts of PastSet runs a JPS Server that services remotely
issued PastSet operations on local elements. As the PastSet operations move and observe are
potentially blocking, the server must be able to serve several blocking operations simulta-
neously. It is easily seen why simply performing one operation at a time and queuing other
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operations would allow false deadlocks to occur. This problem is solved by making the JPS
Server multi-threaded, so that once a thread blocks, another thread is activated.

The JPS Server starts a thread for each remote client who needs access to elements on
the local kernel. Each thread is dedicated exclusively to one client and runs until the client is
shutdown by the user application.

3.4 User Redefinable Memory Semantics

The URMS functionality in JPS is implemented as an URMS interface which in turn may
be implemented as a class that is loaded at run time. This approach is far more elegant than
the native-code URMS where any URMS function must be available to the PastSet system at
compile-time, and since the native version runs at kernel level it does not allow user-defined
URMS functions. In JPS a programmer can easily provide his/her own URMS code.

3.5 Distribution

A central part of the distributed PastSet is the distribution of elements. Elements are placed
on a server the first time a process enters the dimensions that specify the element. To this end
every application that use JPS is connected to a central name-server that keeps track of all
existing elements. When an application issues an EnterDimension operation, the JPS Client
first contacts the name-server to find out where the element is or should be located, and then
it sends the EnterDimension operation to the corresponding server. This way different data-
distribution models can easily be implemented by changes in the name-server only. Currently
we have implemented three distribution models: Central-Server, Round-Robin Server and
First-Touch.

The Central-Server model does not distribute data at all, but centralizes PastSet on one
machine. This model does not scale well, but serves as a reference for the other models. The
Round-Robin Server tries to balance the load of the elements by letting each node hold every
n’th element. This way the load on the servers is equally distributed, assuming the elements
are used in a uniform way. In the First-Touch model an element is created on the node that
runs the process that first enters the element. Under the assumption that not all elements are
accessed uniformly by all processes, the programmer can take advantage of the First-Touch
policy by having an element placed at the node where the most activity of the element will
be initiated, thereby improving both local and global performance by reducing unnecessary
network traffic.

An in-depth coverage of the distribution models and their impact on application perfor-
mance may be found in [6].

4 Basic Performance

Good performance is vital to all programming paradigms, and cluster programming APIs
even more so. To measure the performance of JPS we have chosen to compare to the best
known tuple-space system in Java, TSpaces.

All experiments are run on a cluster of 16 nodes, each having two 450MHz Pentium-I11
CPUs and 256MB main-memory. The nodes in the cluster are connected via a 100Mb/sec
Fast Ethernet connected to a switch.



K. Pedersen and B. Vinter / Java PastSet 101

4.1 Latency

In DSM systems it turns out that the latency of communication, i.e. the time it takes from a
package is sent until it is received, is of significance to the task grain size that can be sup-
ported efficiently by the system. The higher the communication latency is the coarser the
grain size must be for good performance. A lower latency allows finer grained parallelism to
perform efficiently. For instance, the Internet project of solving the original RSA cryptogra-
phy challenge communicated via an e-mail system over a global network. In this case latency
was extremely high, but the parallelism was trivial, e.g. no communication required during
execution. On a system like a SMP machine where the communication latency is lower than
access to main memory, i.e. cache to cache, parallelism can be very fine grained.

observe(); //Observe the initial token

get start time(); //Get timestamp

for (i=0; i<1000; i++){
move () ; //Send token to right neighbor
observe (); //Get token form left neighbor

}

get stop time() ;

Figure 2: Pseudo-code for the ring latency test

To determine the latency of PastSet operations we look at two basic cases, one where two
processes passes a token of varying size back and forth, and one where an increasing number
of nodes form a ring that passes a token around. The first experiment will be executed in three
scenarios. Firstly where the elements used for the communication and the two processes are
placed on the same node. Secondly, where one of the processes is on a remote node. Thirdly,
where the elements and the processes are all placed at different nodes. Pseudo code for the
ring experiment core is shown in figure 2.
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Figure 3: Round trip latency for two process synchronization.

Figure 3 shows the two way latency for process synchronization using JPS and TSpaces.
The most noticeable difference between the two models is the inability of TSpaces to effi-
ciently utilize access to a local tuplespace when synchronizing two processes on the same
node. In addition TSpaces is more than an order of magnitude slower than JPS, and only
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when the data size grows above 4KB is this difference narrowed from the impact of the
network propagation delay. At 32K data size JPS is still a factor 5 faster than TSpaces.
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Figure 4: Latency of passing a package in a process ring.

Repeating the experiment for more than two processes, as shown in figure 4, passing the
tuple in a ring amongst the processes, the same picture presents itself. Two points are worth
while observing in this experiment; first of all that the latency in TSpaces grows far more
rapidly on growing number of processes than JPS. And secondly that TSpaces seems to be
more sensitive to the size of the tuples that are passed around than JPS is.
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Figure 5: Latency of passing a package in a process ring, JPS only.

In figure 5 we have removed the TSpaces performance to investigate the performance of
JPS in further depth. The most important conclusions one may draw from this graph is that
the passing of tuples between processes on the same node is very efficient. While the tuples
are small the overhead almost hides the effect of the underlying hardware architecture, but
once we use 32KB tuples we clearly see the staircase that tells us that we have a cluster of

dual-processors.
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4.2 Bandwidth

The purpose of testing the communication bandwidth of the PastSet system is to define the
limits for writing applications that communicate large amounts of data. Applications that
require high bandwidth are frequently found in scientific processing and data-mining. The
bandwidth experiments are similar to the latency setup, although somewhat simpler. A pro-
cess first writes, and then reads varying block sizes. To eliminate noise, and partly to test the
behavior when the element grows, each packet size is written and read 1000 times (figure 6).

get start time();
for(i=0; 1<1000; i++)
move (); //Write data-block to PastSet
get stop time() ;
get start time();
for(i=0; 1i<1000; 1i++)
observe(); //Read a data-block from PastSet
get stop_ time();

Figure 6: Pseudo code for the bandwidth test.
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Figure 7: Bandwidth of PastSet local and remote operations.

From the latency-figures (figure 7), we would expect to see a significantly better band-
width with JPS than with TSpaces and we see just that. At tuple-size 1 byte the bandwidth of
JPS is 3.4 times better than TSpaces and at 32KB JPS reads a factor 1.9 faster than TSpaces
and writes a factor 2.1 faster.

5 Applications

To test the performance of JPS in real use we have implemented three applications using JPS.
In order to compare the performance to the alternatives we have also implemented the three
applications in TSpaces and mpiJava[7]. The applications we have chosen are a virtual wind-
tunnel, a Lattice Gas Automaton, which use only nearest neighbor communication, an n-body
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simulation of stellar bodies, which use all-to-all communication and a Raytracer which uses
pipelined communication.

5.1 Lattice Gas Automaton

The Lattice Gas Automaton, LGA, is a complete application that models air-flow in a two-
dimensional wind tunnel. The flow is modeled as particles rather than using gas dynamics.
The model is both simple and efficient, and is to some degree easy to parallelize. The idea
is to model the two-dimensional space using several large bit-matrices. The bit-value one
indicates the presence of a gas particle moving in a direction associated with each matrix.
The bit-value zero indicates the absence of a particle at this particular location and direction
represented by the matrix. The simulation runs for a predetermined number of time steps.
The simulated space is divided into bands, and a worker is spawned to service each band.

Each iteration consists of three distinct phases. First all points in the space are checked
to see if more than one particle occupies this space, indicating a collision of two or more
particles. A set of collision-rules determines the implications of collisions on the particles
involved. This first step accounts for most of the time spent in each iteration. Following the
collision-test, all gas particles are moved in the matrices. Finally new particles are injected
into the system. Each worker starts an iteration by doing collision-detection, it then moves
the particles that should be migrated to another partition, moves the particles inside its own
block and finally observes and inserts the particles that are migrated into its block. The LGA
application uses fairly small messages® and may run in phase-lock and thus should have only
little contention on the messaging systems. Each worker writes it’s border values to one given
element. This element is the one most frequently used by the process, and because of this
the application is written so that the worker is guarantied to be the first to touch that element
which is an advantage when the First Touch model is used.
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Figure 8: Performance of the LGA application.

The execution times for the LGA application are shown in figure 8. The TSpaces version,
which of course differs only in syntax from the JPS version, consistently crashed when run-
ning with 32 workers and thus we did not manage to get performance numbers for 32 workers

10ne bit per point length-wise
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using TSpaces?. It was the TSpaces server that crashed and not the application. The trend-
line for TSpaces is clear enough though and it does not scale at all. JPS however achieves
very good performance and gets a speed-up of 25 using 32 CPUs. The mpiJava version runs
stable enough but the performance of mpiJava in this application is quite disappointing! Us-
ing 32 CPUs the mpiJava version achieves a speedup of only 13, a CPU utilization of less
than 0.5 where JPS achieves an utilization of 0.8!

5.2 N-Body

The chosen N-Body algorithm is a trivial O(n?) complexity simulation of celestial bodies.
The JPS implementation works by dividing the responsibility for the bodies amongst the
workers. Since updating one body requires knowledge about all the other bodies the JPS
implementation exchanges the complete set of bodies in each iteration. To this end we use an
URMS function that assembles the bodies from all workers into one single tuple, much like
an MPI_Allgather operation. In this way all workers write their local bodies to the PastSet
and reads the complete set of bodies.
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Figure 9: Performance of the N-Body simulation.

Figure 9 shows that JPS achieves close to linear speedup until 16 CPUs while at 32 CPUs
the CPU utilization drops to 0.63. It is obvious that collecting results from 32 workers is too
much work for the server, and the application looses performance. To address this we need
to incorporate the PATHS[8] work in the Java version of PastSet also. In the TSpaces version
however each worker need to write its own bodies to the tuple-space and then read n-1 tuples
from the tuple-space, one from each other worker. The mpiJava implementation achieves fair
speedup up until 16 CPUs but only gains another speedup of two by adding 16 more CPUs.

5.3 Raytracer

Ray-tracing is another classic target for parallelization which remains popular for two rea-
sons; the need for speedup in ray-tracing is very real; and parallelizing raytracers is seemingly
straightforward.

2TSpaces also crashed frequently with 16 workers but managed to terminate correctly a few times so that
we could get the performance numbers
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loop:
Search through all objects to find the first one the ray hits
If ray hits no objects
Return ray
Modify ray to match the hit of the object
Increase ray-age by one
If ray-age > ray-max-age
Return ray
Goto loop

Figure 10: Pseudo-code for the raytracer

The pseudo-algorithm for tracing one point is very simple, as shown in figure 10. This
is then done for each pixel in the picture that should be rendered. The intuitive way to
parallelize this is to divide the area that is rendered into blocks or stripes and let each worker
render one such block. This seems natural since it requires no communication between the
workers and thus in effect becomes an embarrassingly parallel application. There are two
pitfalls however. First of all the individual blocks won’t require equal time to render and
thus the parallel execution may become highly unbalanced. This problem could be partially
hidden by applying cyclic-striping instead. The second, and more frequently visited, pitfall
is that in the embarrassingly parallel version of ray-tracing each worker needs a copy of
all the objects in the model to render the portion of the frame that it is assigned to. All
workers then need to search exhaustively through all objects for each pixel they render. If
the problem is parallelized by distributing the objects along the workers instead one gets
the benefit of improved cache locality which can result in super-linear speed-ups for this
particular problem, thus we apply the latter approach in this work.
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Figure 11: Performance of the raytracer.

The performance of the raytracer is shown in figure 11. Once again we were unable to
correctly execute the TSpaces version using 32 CPUs, again it was the TSpaces server that
crashed. However, in this scenario TSpaces performs better that JPS using 2 and 4 CPUs.
We are not quite sure why this is, but suspect that the TSpaces operations are so slow that
the raytracer can successfully run the garbage-collector during an operation in tuple-space,
and this may be an advantage in this application. Once the raytracer is run with eight or
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Figure 12: Result of the raytracer.

more CPUs the TSpaces version levels out while JPS takes off and end up with an amazing
speedup of 145 using 32 CPUs! The result is very good, but on par with what one might
expect with raytracing. The mpiJava implementation turned out to cause us lots of problems
as it crashed at various points in the execution. It turned out that mpiJava has problems when
an application uses the dynamic memory model heavily, which the raytracer does. The work
around we applied was to call the garbage-collector before every send or receive operation.
This is clearly visible in the performance of the mpiJava version of the raytracer, which is
only super-linear from 4 through 16 CPUs and has a final speedup of 31 using 32 CPUs.

6 Conclusions

Java PastSet, JPS, is an attempt to provide a Java version of PastSet with as few differences
as possible. We believe that the design of JPS is sound, and furthermore that the performance
we have shown verifies this claim.

Compared to the best existing tuple-based DSM system, TSpaces, JPS is as much as two
orders of magnitude faster and it provides a communication bandwidth that is 3.4 times faster
than TSpaces.

At application level JPS consistently outperforms both TSpaces and mpiJava. Java Past-
Set achieves speed-ups of between 19 and 145 which are quite fair considering that we are
working with Java.

We believe that JPS provides programmers with all of the convenience of the shared
memory paradigm while providing usable performance.
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