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Abstract. Previously, Martin [1] gave formal conditions under which a simple design
rule guarantees deadlock-freedom in a system with service (client-server) architecture.
Both conditions and design rule may be statically verfied. Here, they are re-arranged
to define service protocol, service network (system), and service network component,
which together form a model for system abstraction. Adding mutual exclusion of
service provision and dependency between service connections enriches abstraction
and is shown to afford compositionality. Prioritised alternation of service provision
further enriches abstraction while retaining deadlock-freedom and denying priority
conflict, given appropriate new design rules.

1 Abstraction and Design

This work is predicated on the belief that abstraction is paramount in the engineering of any
system. Abstraction must capture system behaviour and provide for reduction via design.
Compositionality is therefore an essential consequence of the definition of system and com-
ponent. Every system must form a valid component (for composition) and every component
a valid system (for decomposition).

It is further held that concurrency, priority, and alternation, are essential forms of abstrac-
tion and their expression should be supported by a programming language. Concurrency is
typically neglected because it invites pathological behaviour, such as deadlock, and the pos-
sibility of interference. However, formal design rules can provide security against most,
possibly all, pathology [2, 3, 4]. Components, each using a different rule, may be composed
without loss of guarantee, for example, of deadlock-freedom [5].

Guaranteeing interference-freedom in compositional concurrent system abstraction re-
mains a challenge [6] and is not addressed here.

Design rules should be applied, and verified, as design proceeds. They thus need to
form part of the model for system abstraction, to be incorporated within the language in
which design is expressed, and to be statically verified. None of this is new. Structured
Programming may be regarded as the abstraction of procedure, enforced by design rules
expressed as the syntax of a ”high-level” programming language, such as Pascal. In return
for the loss of some personal freedom in the way an algorithm is expressed, considerable
security against error is gained.

occam extended this principle with the incorporation of “usage rules” – statically verified
design rules which deny, for example, aliasing and concurrent access to a variable.

Static verification affords correctness by construction. The alternative is “trial-and-error”,
which is not engineering. With static verification, every valid program is a priori guaranteed
free of certain errors. Obtaining the same security by trial-and-error introduces unpredictable
delay and requires additional capability in the development team. Both cost and risk increase.

Honeysuckle [7] relies upon a development of the Brinch-Hansen master-slave (client-
server) protocol for all communication [8]. Peter Welch et al. first applied this to systems with
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communicating process architecture, and provided a proof of deadlock-freedom [3]. Jeremy
Martin later provided a formal foundation and proof using the failures model in CSP [1, 9].

Honeysuckle requires formal definitions that are compositional and which can be effi-
ciently verified upon compilation. Its model for abstraction relies upon the notions of service
protocol and service network (component) which will be adequately defined in the next sec-
tion, giving rise to the notion of service architecture.

Honeysuckle also seeks to serve engineers of reactive systems, which respond to external
events via pre-emption according to some prioritisation. Such needs are typically met at the
hardware level by prioritised vectored interrupts. Normal control-flow may be interrupted
by a signal, whereupon an interrupt service routine is executed. Behaviour may be said to
alternate between processes. (This should not be confused with the ALT construct in occam.
ALT might better abbreviate alternative and denotes a “one-off” selection.) Hoare described
an alternation operator which relied upon an external signal, so that interruption was outside
the control of either process, and which did not prioritise [10, #5.4]. The author has previ-
ously proposed a prioritising operator and programming construct. These are summarised in
a companion paper which explores their semantics [11].

Section 3 extends the notion of service architecture to include prioritised alternation, thus
introducing prioritised service architecture, showing how deadlock-freedom may be retained
and priority conflict denied.

2 Service Architecture

2.1 Hierarchical Data-Flow

Brinch-Hansen introduced the idea of enforcing a hierarchical dependency between “mas-
ters” and “servants” in order to avoid deadlock between communicating processes [8]. He
defined service as the receipt of a request, possibly followed by a reply, and began with a
“basic assumption”:

A servant will always eventually receive a request, and (if required) send a reply,
unless delayed indefinitely by one of its own servants.

A simple inductive proof is then given that deadlock can never occur.
Rather than label processes ‘master’ or ‘servant’ (or the more liberal ‘client’ or ‘server’),

an oriented arc drawn between the two should be labelled ‘serves’. A system can be ab-
stracted by a directed graph, where each node represents a process, and each arc represents
service provision.

Design proceeds from higher to lower levels of abstraction. Thus some means must be
found by which to guarantee the basic assumption. Brinch-Hansen lists four conditions,
establishing a protocol between connected components.

While, as Brinch-Hansen points out, such a protocol may be implemented simply via
stepwise refinement, there can be no guarantee that it is then always in force. Errors are
possible. These might be detected by some additional verification tool. However, such a tool
will not be easy to compose, and in any case affords only trial and error.

2.2 Service Protocol and Network

CSP affords a definition of service at a level of abstraction above data-flow. Furthermore,
there is no need to be limited to a sequence of two communications. Provided all partners
to service protocol are ‘live’ (never refuse every offer of communication) and deterministic
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(allow the environment first authority to resolve any choice between two communications),
the failures model [12] provides an adequate language in which to express the necessary
conditions.

If, after trace s, an environment offers a process P the set of events X, and it refuses to
participate in any of them, X is termed a refusal of P/s (P ‘after’ s). The combination of trace
and refusal is referred to as a failure of P. Each failure is a very useful characteristic of a
process as it constitutes a relation between past and imminent behaviour.

failures(P) = {(s, X) | s ∈ traces(P), X ∈ refusals (P/s)} (1)

There is an important difference in the use of the terms ‘client’ and ‘server’. Here, they
refer to ports owned and regulated by the (distinct) processes that consume and provide a
service. One should think of each end of a service connected to an appropriate port.

Definition 1 (Service). A service is a finite chain of communications between two processes
P (provider) and Q (consumer)

S = 〈c1, c2, . . . , cn〉 ⊆ αP ∩ αQ (2)

such that:

S1 Client Condition.
Q, as consumer, may request service at any time, by requesting c1, but must then re-
quest each subsequent communication ci immediately after the last, and continue to do
so until it is granted.

∀(s, X) ∈ failures(Q). ∀ i ∈ N>.

s ↓ c1 = s ↓ cn ⇒ ∀ j ∈ N<. cj ∈ X, (3)

s ↓ ci > s ↓ ci+1 ⇒ ci+1 /∈ X

S2 Server Condition.
P, as provider, may initially offer only c1, and must eventually grant each subsequent
communication until service completion.

∀(s, X) ∈ failures(P). ∀ i ∈ N>.

s ↓ c1 = s ↓ cn ⇒ ∀ j ∈ N<. cj ∈ X, (4)

s ↓ ci > s ↓ ci+1 ⇒ ∀ j ∈ N. j �= i + 1 ⇒ cj ∈ X,

∃(s � t, X′) ∈ failures(P). ci+1 /∈ X′

where N> = {1 . . . n − 1}, N = {1 . . . n}, and N< = {2 . . . n}.

This definition suffices whether service is offered just once or continuously.
Service may be guaranteed to proceed, once initiated, and in strict sequence. Conflict-

freedom is assured. No service may be simultaneously both available and in progress. Service
is never ‘re-entrant’, and is oriented, according to initiation not data-flow.

The applicable set of client ports – clients(P) – and server ports – servers(P) – may
now be attributed to any process P. The interface between any pair of processes can then be
recorded as follows:

interface(P, Q) = (clients(P) ∩ servers(Q)) ∪ (clients(Q) ∩ servers(P)) (5)

Each communication within a service must, at some stage, be qualified according to:
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• orientation of data-flow

• whether value or object is passed

• type of value or object passed.

Note that an interface may now be expressed without reference to any channel. A service
is a higher form of abstraction. Channels are needed only for the implementation of a service.
At most two channels suffice (one in each direction of data flow).

Design may be restricted to systems comprising only processes which communicate en-
tirely, and always, according to service protocol. A first attempt at a suitable definition, of
both system and component, follows.

Definition 2 (Service Network (a)). A service network V is a set of concurrent processes
such that:

S3 Network Communication Condition
Every communication forms part of some predefined service.

∀P ∈ V. ∀ c �= τ ∈ αP. ∃ S ∈ (servers(P) ∪ clients(P)) . c ∈ S (6)

S4 Network Composition Condition
Every service provided/consumed by any component of V is either consumed/provided
by another component or forms part of the system interface.

∀P ∈ V. (7)

∀ S ∈ servers(P). (∃Q ∈ V. S ∈ clients(Q)) �⇔ S ∈ servers(V),

∀ S ∈ clients(P). (∃Q ∈ V. S ∈ servers(Q)) �⇔ S ∈ clients(V)

S5 Network Client Condition (a)
No component of V may ever refuse everything.

∀P ∈ V. ∀(s, X) ∈ failures(P). X �= Σ (8)

S6 Network Server Condition (a)
Every component of V must either offer all its services, be actively providing at least
one, or offer none.

∀P ∈ V. ∀(s, X) ∈ failures(P).

∀ S ∈ servers(P). c1 /∈ X

∨ ∃ S ∈ servers(P). ∃ i ∈ N<. ci /∈ X (9)

∨ ∀ S ∈ servers(P). c1 ∈ X

As well as governing internal communication, S3 also implies that the system interface
be composed entirely of services provided or consumed. Similarly, S4 implies that V itself
has no ‘loops’ (connections between a client and server port within its interface), should it
form a component of a larger system.

The above definition of a service network also defines a class of process, termed a ser-
vice network component, or SNC. S5 ensures that no SNC may ever deadlock, livelock, or
terminate.
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S6 is entirely consistent with a SNC never offering any service. Such a component is
termed pure-client. One that never requests any service is called pure-server. S6 prohibits a
system/component offering just some of its services while none are in progress.

S5 has two additional consequences. Any pure-client SNC must, at all times, request
or consume at least one service. This also holds for any component that is not pure-client,
but which insists on withholding all its services (permitted by S6). Second, any SNC that
requests services only in response to requests for those of its own must offer them all when
not engaged in providing one. When so engaged, it may suspend the offer of any or all other
services. This is simply the familiar “basic assumption” made by Brinch-Hansen. Whether a
component is able to offer one service while providing another is left open.

System design is documented as a service digraph, which overlays the corresponding
(undirected) communication graph. Each node represents a component process. Each arc
represents a service provided, and is oriented from client to server.

It is quite a simple matter to compose systems whose service graph enjoys one or more
directed circuits but which remain free of deadlock. Security must always be purchased with
a certain loss of liberty. It is hereby proposed that circuit-free networks comprise a diversity
sufficient to fulfil a worthwhile set of applicable specifications.

Conversely, given the above definition, it remains easy to contrive systems composed of
valid SNCs which are not valid components themselves. Figure 1 depicts two such systems.

P Q

c d

a b

P Q
e

d

ba

Figure 1: Service network components do not parallel-compose, under Definition 2.

On the LHS, services a and b are presumed dependent upon c and d, respectively. Fol-
lowing a request for a, the composite process is unable to satisfy any clause of S6. Once P
requests c, it cannot immediately proceed with any service as provider. Neither can it offer
all its services or deny them all.

On the RHS, a and b are presumed dependent upon e and d, respectively, but not e upon
d. This time, following a request for a, S6 will be satisfied. P will withdraw a, and Q will
withdraw b, when e is requested. However, following a request for b, a will remain on offer,
while b suspends, pending completion of d. S6 is again denied.

It is the second clause of S6 that poses difficulty. Reliance upon it implies concurrency.
To advance one service in progress, while offering others requires at least two processes. On
the other hand, the set of SNCs, thus defined, does not close under the parallel operator. Two
SNCs, composed in parallel, can together obtain states that breach the definition.

While a proof of deadlock-freedom is possible given Definition 2 and a simple design
rule, it makes sense to seek compositionality first.

2.3 Composite Service Provision

With the rise in commercial importance of component-based software development [13], the
need for precise and complete component specification is greater than ever. The ability to
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freely interchange components, without denying the system specification, depends upon com-
positionality, which can be traced back to the 19th century philosopher Gottlob Frege [14].

The meaning of a sentence must remain unchanged when a part of the sentence
is replaced by an expression having the same meaning.

With reference to engineering, ’sentence’ refers to the design of a system, where a more
practical definition is needed. The term ‘component’ is preferred over ‘part’.

Definition 3 (Compositional).
In order to recursively decompose a system into components, we require:

• some indivisible components

• that compositions of components are themselves valid components

• that behaviour of any system is manifest in its interface, without reference to any inter-
nal structure. Any such interface shall be termed adequate.

Components whose definition complies with all the above conditions may be termed compo-
sitional.

Corollary. It is then possible to substitute any component with another, possessing the same
interface, without affecting either design or compliance with specification.

Corollary. Since the above definition must clearly apply recursively, closure is required in
the definition of system and component. Every system should form a valid component and
every component a valid system.

Jeremy Martin began by defining an indivisible component [1]:

Definition 4 (Basic Process). A basic process (BP) P is one that:

S1–3 communicates solely via service protocol

S4 possesses an interface comprising precisely those services it either provides or consumes

S5 may never refuse everything

S7 offers either all the services it is committed to providing, or none (satisfying S6).

∀(s, X) ∈ failures(P).

(∀ S ∈ servers(P). c1 /∈ X) ∨ (∀ S ∈ servers(P). c1 ∈ X) (10)

It is obvious that any BP qualifies as a valid SNC, as thus far defined. Therefore any
system composed entirely of BPs will be inherently deadlock-free. Note that the ability has
been lost to offer other services while one is in progress, and that any BP may be expressed
using only sequence, repetition (or recursion), and selection.

Martin termed a parallel composition of BPs a parallel-composite process (PCP). While
any BP is a PCP, the converse is false. It is was thus necessary to separately prove that parallel
compositions of PCPs are both deadlock-free and themselves compose. Worse, the new proof
rests on the absence of any directed circuit in a new service graph where each node depicts a
PCP. This denies many systems that would lack a circuit when reduced to the original graph,
comprising only BPs.

An alternative approach was later proposed by Martin and Welch [9], whereby a network
of PCPs is “exploded” (converted to one of BPs) and then tested for circuit-freedom. This does
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not overcome the previous objection, and again reduces to trial-and-error, as the entire sys-
tem must be re-assessed upon each refinement. (While a suitable programming environment
might efficiently maintain an exploded description and rapidly add and test each refinement,
such a description is not readily apparent to the designer, working at a (possibly much) higher
level of abstraction.)

Clearly, a singular definition of system and component, together with a single design rule,
is highly desirable, in order to permit secure recursive (de)composition.

2.4 Exclusion, Dependency, and Deadlock-Freedom

Services provided (“server connections”, or just “servers”) may be grouped into distinct
bunches. Every server shall be a member of exactly one bunch.

⋃

i

bunchi(P) = servers(P),
⋂

i

bunchi(P) = ∅ (11)

∀ S ∈ servers(P) ∃ i. S ∈ bunchi(P) (12)

Within any bunch, services are now declared mutually exclusive. From the moment the
delivery of any service starts until completion, no other member of its bunch may be offered.
We shall also ensure that no service need be delayed by the delivery of one from another
bunch. For example, two clients must queue to receive services within a common bunch.
However, they may be served concurrently if the services they request each belong to a
different one.

Any dependency between server and client connections is noted, indicating that the pro-
vision of one service requires the consumption of another. In the interface to any given
component, any pair of client and server connections are either dependent or independent.
When independent, the server need not be delayed by the client.

dependencies(P)=̂ {(S, C)} . S ∈ servers(P), C ∈ clients(P) (13)

Any dependency applicable to a server connection is shared by every member of its
bunch.

Note that the dependency set of any process does not emerge from its definition but forms
part of that definition. In other words, one specifies the servers, clients, bunching, and depen-
dencies, in order to define a system or component. Design and implementation follow.

Dependency forms a relation between server and client connections, characteristic of a
particular component or system. It is transitive and forms a strict partial order on the arcs of
a service digraph.

Exclusion and dependency affords the decomposition of a process interface into server
interface components, each comprising a server bunch together with the set of clients on
which it depends. Since there is also a sense in which these clients also ‘depend’ upon the
servers, and because it makes a useful distinction, we shall refer to them as ‘dependent’
clients.

SICi(P) = {S ∈ servers(P) | S ∈ bunchi(P)} ∪
{C ∈ clients(P) | (S, C) ∈ dependencies(P)} (14)

Other clients within an interface may be entirely independent. They pose no threat of
deadlock since, by definition, they cannot compose to form a circuit of dependent services.
Should they initiate a service, they remain bound by the service conditions (S1 and S2) and
thus cannot give rise to conflict. It is useful to bunch any such ports together and refer to
them as the independent client component of an interface.



62 I. East / Prioritised Service Architecture

Just as it was necessary to require the earlier form of service network (component) to be
‘live’ (never refuse all communication), a compositional service network must require all its
server interface components to behave similarly.

Definition 5 (Service Network (b)). A service network V is a set of concurrent processes
such that obey:

S3 Network Communication Condition

S4 Network Composition Condition

S8 Network Client Condition (b):
No component of V may ever refuse everything within any server interface component:

∀P ∈ V. ∀ i. ¬∃(s, X) ∈ failures(P). SICi(P) ⊆ X (15)

S9 Network Server Condition (b):
Every component of V must either offer either all services provided or none, within
each server bunch (interface component):

∀P ∈ V. ∀ i. ∀(s, X) ∈ failures(P).

(∀ S ∈ bunchi(P). c1 /∈ X) ∨ (∀ S ∈ bunchi(P). c1 ∈ X) (16)

The definition of SNC is now closed under parallel composition. Unlike S6, S9 does not
retain a clause that implies concurrency. It is also no longer possible to compose two SNCs
in parallel to form something that is not itself a valid component.

Each interface component may be implemented using a single BP. Parallel composition
of BPs introduces new interface components, and vice versa. S8 merely mirrors S7, which re-
quires each BP to be ‘live’, but it allows an interface to be constructed without foreknowledge
of implementation.

A design rule may now be stated and proved to guarantee deadlock-freedom:

Design Rule 1 (Service Architecture Design Rule). (SADR)
No circuit of dependent services is permitted in the service digraph.

Before we can offer a proof, a little more background is needed. For greater detail, refer
either to the standard text [12] or Martin’s thesis [1].

First, it is common to restrict interest to systems where communication occurs only be-
tween pairs of processes. Such systems are called triple-disjoint:

∀ {i, j, k} .i �= j �= k. αPi ∩ αPj ∩ αPk = ∅ (17)

When a process finds itself ready to engage in at least one communication (shared event),
it is said to make a request. If its partner is unready or unwilling to comply, the request is
said to be ungranted.

Pi −→ •Pj ⇔ (αPi ∩ αPj ⊆ Xi ∪ Xj) (18)

Each arc in a snapshot digraph represents an ungranted request. Any directed circuit
manifest in a snapshot graph is termed a cycle of ungranted requests (CUR).

Conflict is said to occur between a pair of processes if both are ready to engage in a shared
event but cannot agree on which one. Conflict-freedom implies the absence of any directed
circuit of length two. Any circuit of length three or more is said to form a proper cycle, which
is easily shown to be a necessary, but not sufficient, condition for deadlock.
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A system of interest is one which is statically defined, connected, triple-disjoint, conflict-
free, and composed of processes that are non-terminating and individually free of deadlock
and divergence. None of these restrictions are severe in their consequences, and serve prin-
cipally to simplify analysis.

The following theorem of Brookes and Roscoe can be used to prove deadlock-freedom in
a wide range of systems, including service networks:

Theorem 1 (Fundamental Principle of Deadlock (FPD) [5]). In any deadlock state of
any system of interest, the snapshot digraph reveals at least one proper cycle of ungranted
requests.

Corollary. Any system of interest that never exhibits a proper cycle of ungranted requests is
deadlock-free.

Corollary. Any system of interest whose communication graph contains no circuit is inher-
ently deadlock-free.

There is no benefit here to separating the case of two processes in a “deadly embrace”
from that of more than two. Conflict is a useful notion elsewhere, where local rules may be
applied to pair-wise interaction. A generalization of the FPD [1, Theorem 1] may be applied
instead that accounts directly for conflict-freedom, rather than treating it as a precondition.
(It simply removes conflict-freedom from the definition of a system of interest.)

The following theorem may be proven by demonstrating that even when a CUR does
occur, it is only temporary, and thus does indicate deadlock.

Theorem 2 (Service Network Theorem). Any system whose service graph is free of any
directed circuit of dependent services is free of deadlock.

Proof. (adapted from that by Martin [1])

1. Assume a deadlock state exists. The FPD demands a CUR as a consequence.

2. Because there is no directed circuit of dependent services in the underlying service
digraph, the CUR must contain a sub-path such that some process Q offers service to
both its neighbours:

∃P, Q, R ∈ V. ∃ i, j ∈ N. P
ci−→ •Q

cj−→ •R (19)

P and R may represent the same process, which would then infer conflict.

3. The Client Condition (S1) allows R to refuse only the initiation of service, i.e. j = 1.
(Whenever the orientations of ungranted request and service oppose, it is the service
itself that is refused, i.e. its initial event.)

Two possibilities must now be addressed separately: Either Q serves P and R via
servers within a common bunch, or the two servers each lie in a separate bunch.

4. The Network Service Condition (S9) denies the possibility of a CUR passing through
any single server bunch at Q. If i = 1 then ci is granted. Q cannot offer service to R and
not to P. If i > 1 then Q is denying P fresh service. It therefore cannot offer service to
R.

5. Should the two servers at Q lie in separate bunches, a CUR through P, Q, and R is then
possible. Another member of the bunch connected to P may be in progress, denying
it service (i = 1). Should service be underway (i > 1), Q may be requesting or re-
ceiving a dependent service, and thus unable to immediately continue. Both situations
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are temporary. The Server Condition (S2) guarantees that any service underway must
eventually continue. The Network Client Condition (S8) ensures that any request for
service will eventually be granted, provided there is no deadlock at a given server bunch
(proven at previous step), and no “infinite overtaking” by other members (required in
implementation).

There can thus be no CUR that corresponds to a deadlock state and therefore no deadlock.

It is worth adding that S8 and S9 prevent not only deadlock but also infinite overtaking
(and thus indefinite postponement) as a result of any preference a process might otherwise
have for one interface component over another. However, such “unfairness” is still possi-
ble within any server bunch. As with any form of selection, resolution must be sought in
implementation, which in practice is not usually a problem.

Note also that Step 5 also guarantees that a circuit in the underlying service digraph
linking independent services can cause no deadlock either.

2.5 Summary

In place of the conditions listed ad hoc by Martin [1], there is now clear and separate for-
mal abstraction of service and service network. The channel has been removed from system
abstraction, as has the restriction on service protocol to sequences of just one or two com-
munications. The definition of service network has been rendered compositional under the
parallel operator by the introduction of exclusion and dependency – both natural forms of
abstraction.

It remains to add priority and alternation to complete the arsenal, without compromising
security.

3 Prioritised Service Architecture

3.1 Prioritised Alternation

Many applications require systems that respond to events that occur in their environment
according to some prioritisation. Such systems are said to exhibit reactive or event-driven
behaviour. Processor architecture often provides for this with prioritised vectored interrupts.
Some external mechanism provides both an interrupt signal and an interrupt vector. The sig-
nal causes interruption of normal (sequential) control flow. The vector identifies the interrupt
service routine subsequently executed. Upon completion of that routine, control returns to
the interrupted process. Resumption must typically await completion, even should the in-
terrupt service routine become blocked. It is usually possible to prevent re-entrance to the
routine prior to its completion. Performance of reactive systems is often measured according
to latency (the delay between interrupt signal and commencement of service routine) rather
than data or instruction throughput.

In his seminal book, Hoare discussed binary operators that capture both interruption and
alternation, whereby some external signal causes behaviour of a system to switch between
two processes [10, #5.4]. Upon change-over, the state of the interrupted process is preserved,
allowing later resumption (interrupting its partner). This differs from the behaviour described
earlier. First, the signal lies outside the alphabet of either process and must be repeated to
cause resumption. Second, there is no prioritisation. Third, it is not immediately clear what
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happens should either component process terminate. An interrupt service routine sometimes
disables further interruption. It may even disable interruption by other events.

A new operator has been proposed by the author, along with a corresponding program-
ming construct, that is intended to reflect the behaviour of non-re-entrant prioritised vectored
interruption, and better serve the abstraction of reactive systems [15]. A companion paper
[11] seeks to clarify the semantics of such prioritised alternation (termed pri-alternation, for
convenience). It also provides a complete description of operator and construct.

We are already well-equipped to abstract the behaviour of processes composed under
pri-alternation, which can be seen as complementary to parallel composition. (The designer
must choose whether to provide two services (or bunches) via two basic processes arranged
in parallel or via the same processes in pri-alternation.) Communication with an interrupt
service routine is easily abstracted as the conduct of a single service. The interrupt signal
may be considered a request for that service – the first in its characteristic sequence. Re-
sponse is captured by the remainder of that sequence. Finally, the behaviour of the interrupt
service routine may be captured via a process that is typically cyclic about interruption and
completion. The question of termination is addressed in the companion paper.

3.2 Cyclic Dependency

Pri-alternation may be easily added to a service digraph by the use of a second kind of di-
rected arc, representing the possibility of interruption of one process (node) by another. A
prioritised service digraph (PSD) can thus be drawn using one colour for each kind of arc —
here, gray for interruption and black for service.

ba c

Figure 2: Three circuits within a prioritised service digraph (PSD).

With regard to deadlock in systems with PSA, consider the three circuits shown in Fig-
ure 2. Each diagram (a, b, and c) depicts two processes composed under prioritised alter-
nation. In a, for example, a request for the service provided by the upper component will
cause interruption of the lower one, as indicated by the gray arrow between them. The lower
component will resume only when provision of that service has been completed.

Circuits of type a will clearly deadlock. Service cannot progress between two processes
that alternate. If they alternate, they cannot be concurrent, and thus cannot synchronously
communicate. Any attempt to connect services in this way will be denied by condition S4,
which forbids loops, and by the SADR, which forbids circuits of any length.

Circuits of type b are permitted by the SADR and are inherently safe. Communication
between upper and lower components of the alternation is mediated by the external process
shown. It is free to gain a complete service from the upper component before proceeding to
complete a service to the lower one. However, success depends upon the orientation of the
gray arrow.

Those of type c, where the gray arrow is reversed, are still permitted by the SADR but are
clearly unsafe. The upper component will not be at liberty to provide service to the external
process. It must await completion by the lower one before it may resume. That will never
occur.
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To deny such eventualities, a new design rule is required for systems with prioritised
service architecture.

Design Rule 2 (Prioritised Service Architecture Design Rule 1). (PSA DR1)
No directed circuit of dependent services and interruptions is permitted.

Note that this subsumes the earlier SADR, as a PSD subsumes a SD. PSA DR1 is thus the
only design rule required, and the PSD is the only system design description required.

Prioritisation increases the scope for deadlock. As yet, deadlock-freedom cannot be guar-
anteed. PSA DR1 is a necessary but not a sufficient condition.

3.3 Priority Conflict

One other aim remains to be met — that prioritisation in one process should not conflict
with that of another. Prioritisation here applies to services, not individual communications or
processes, and forms part of the interface between processes. To be more precise, it is applied
to server bunches, which are enumerated accordingly. The priority of each client connection
is determined by the server bunch which, directly or indirectly, depends upon it.

Definition 6 (Priority Conflict). A priority conflict exists when the provision of some ser-
vice is dependent upon the consumption of another of lower priority.

Inversion is one possible consequence, where an intended prioritisation is reversed as a
result of parallel composition.

b
d

c
a

Figure 3: Priority inversion and potential deadlock in a PSD obeying PSA DR1.

Figure 3 shows how deadlock can arise from priority conflict even when PSA DR1 applies.
Suppose a request for service b is made. The lower component of the right-hand alternation
will be interrupted and service commenced. If it is dependent upon the service c then a
request for that will be made, via the intervening node. All will be well unless the service
a was already in progress and dependent upon d. If a request for d was made first at the
left-hand alternation, deadlock will ensue.

Figure 3 also illustrates the futility of merely enforcing a local interface. No pair of
processes can be found in direct conflict. More than a local connection rule is required.

The PSD has two dimensions – one representing interruption (gray), and one service
(black). It will prove useful to require a normal form where all arcs are drawn oriented
in common according to colour. For example, all gray arcs might be aligned vertically, with
interruption proceeding upwards, and all black arcs aligned horizontally, with provision, say,
on the left. Figure 3 is depicted in this fashion.

Design Rule 3 (Prioritised Service Architecture Design Rule 2). (PSA DR2)
When all arcs of the PSD are aligned according to colour, no pair of dependencies may cross.

This is clearly equivalent to a requirement that any prioritization of services, established
via dependency, is consistent with that of the servers of any process to which they are con-
nected. In other words, it must be possible to draw the PSD without any arcs of a given colour
crossing. Freedom from priority conflict, and thus inversion, follows directly. (The proof is
trivial but included for completeness.)
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Theorem 3 (Prioritised Service Network Theorem 1).
Every system with PSA that obeys PSA DR1 and DR2 is free of priority conflict.

Proof. In the absence of a directed circuit in the SD (PSA DR1), it is possible to follow any de-
pendency to its conclusion. Arcs along any dependency may be enumerated by back-tracking
and decrementing the label each time an interruption is traversed in the corresponding PSD.
The algorithm actually employed must take account of the fact that each arc may lie along
multiple dependencies. For example, an existing label can be adopted and a correction ap-
plied back up the chain. It is thus possible to enumerate the global priority of every service.

It is therefore also possible to verify that the interface of each component is satisfied and
thus that every system is free of priority conflict.

PSA DR2 requires that the PSD can be drawn on a plane. One dimension corresponds to
prioritisation (interruptability), the other to service dependency. It is proposed that this will
also guarantee deadlock-freedom.

Theorem 4 (Service Network Theorem).
Every system with PSA that obeys PSA DR1 and DR2 is free of deadlock.

No proof is offered here of this theorem. This is because it would depend upon a formal
definition of prioritised alternation — something which cannot be given using the failures
model of CSP alone. (The formal definition of prioritised alternation is addressed in the
companion paper [11].)

Formal conditions now govern whether any proposed system extension is admissible. It
must be possible to incorporate the new subsystem within the existing (2-colour) PSD without
dependency circuit or crossover. A suitable tool could verify this, still without the need to
deploy mathematical skills in its application. The significance can be appreciated when it
is remembered that around 98% of programmer activity is devoted to extending existing
systems rather than constructing new ones.

As was noted earlier, performance of reactive systems frequently highlights latency rather
than throughput. While physical time has not been introduced to the abstraction model pre-
sented here, in practice it remains possible to verify any latency requirement. A compiler
will have knowledge of all aspects of the implementation of each pri-alternation. This can
easily be extended to the timing parameters of the platform concerned. Thus verification
of latency requirements could easily be accommodated within an appropriate programming
environment.

4 Conclusion

Prioritised service architecture (PSA) is proposed for the abstraction of concurrent systems
with a wide range of application, including those which are reactive (event-driven). It is
suitable for the capture of both specification and design, where decomposition is safeguarded
against deadlock and priority conflict by formal design rules. Direct implementation will be
possible via the Honeysuckle programming language.

Figure 4 depicts a system with an interface comprising three components, each compris-
ing a three-server bunch and a single dependent client. A prioritisation is also indicated.
Provision of any service in bunch one will be pre-empted by a request for any in bunch two
or three, for example.

PSA inherits the benefits of service architecture (SA). Not only are SA systems inherently
deadlock-free, but they also are compositional; every component is a valid system, and every
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1 2 3

Figure 4: A prioritised service interface (PSI).

system a valid component. Components may be interchanged according only to their service
interface.

Alternation provides a secure means by which to provide feedback within a system, avoid-
ing the limitation to “process tree” structure inherent with client-server architecture defined
according to data-flow. It also provides a simple, and natural, way to incorporate and express
prioritisation.

Hybrid systems, where some components guarantee deadlock-freedom by enforcing other
design rules, such as cyclic order protocol [4], can be achieved by exploiting the Network
Composition Theorem of Brookes and Roscoe [5].

In addition to completing the definition of, and implementing, Honeysuckle, further work
continues to address additional guarantees regarding pathological behaviour, and the issue of
interference.
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