
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

219

Dynamic BSP: Towards a Flexible Approach to
Parallel Computing over the Grid

Jeremy M. R. MARTIN
Oxagen Limited, 91 Milton Park, Abingdon, Oxon OX14 4RY, UK

Alexander V. TISKIN
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Abstract. The Bulk Synchronous model of parallel programming has proved to be
a successful paradigm for developing portable, scalable, high performance software.
Originally developed for use with traditional supercomputers, it was later applied to
networks of workstations. Following the emergence of grid computing, new program-
ming models are needed to exploit its potential. We consider the main issues relating
to adapting BSP for this purpose, and propose a new modelDynamic BSP, which
brings together many elements from previous work in order to deal with quality-of-
service and heterogeneity issues. Our approach uses a task-farmed implementation of
supersteps.

1 Introduction

The BSP parallel computation model [1, 2] is very simple. It assumes that there is a set
of p processors, each capable of performings operations per second. The processors are
connected by a communication fabric, which can communicate one data item to or from
every processor in the time it takes each processor to performg floating-point operations. It
can also perform a global handshake synchronisation of all the processors in the time it takes
each processor to performl floating-point operations.

The BSP programming model is also very simple. Execution of a BSP program is divided
into supersteps, each separated by global synchronisations. A superstep consists of each
processor doing some calculation on local dataand/or communicating some data by direct
memory transfer to other processors. The global synchonisation event guarantees that all
communication of data has completed before the commencement of the next superstep.

Perhaps the most useful feature of BSP is the ability to constructcost functionsof the pa-
rameters(s, p, l, g) in order to predict the performance and scalability of parallel algorithms
across different hardware platforms. This can be done prior to implementation. Tables of ap-
proximate values for these parameters are available for a wide range of machines [3, 2]. There
have been a number of successful case-studies of using BSP in practice (see for instance [4]).

BSP was originally intended for use within a reliable, homogeneous, dedicated parallel
computing environment, rather than with the unpredictable and variable resources that are
associated with grid computing [5]. However, it is such an attractive model for programmers,
that it is surely worthy of consideration as to whether it can be adapted for use in the grid
environment.



220 J.M.R. Martin and A.V. Tiskin / Dynamic BSP

2 Previous Work

There are three main areas where the grid deviates from the BSP model.

1. Processor heterogeneity: variation between grid nodes of available computation power,
either due to architectural differences, or due to time-dependent resource sharing is-
sues. If a BSP program were run on a heterogeneous cluster, the progress of the overall
computation would be constrained by the rate of the slowest processor. In some cases,
we could consider getting around this problem by using sophisticated domain decom-
position techniques to achieve better load balancing. However, this would make both
programming and cost modelling substantially harder, which is against the spirit of the
original BSP philosophy.

2. Network heterogeneity: significant variation of communication performance between
nodes. Previous work has suggested that progress of a BSP program is usually con-
strained by the slowest communication link in the network [6].

3. Reliability and availability: processors may fail intermittently or be withdrawn unex-
pectedly by the service provider. This may lead to a variation in processor count during
execution.

Let us consider existing published work in this field and assess where it has attempted to
deal with the above issues.

Vasilev [7] has developed the BSPGRID model for grid-based parallel algorithms, by
extending the BSPRAM model of Tiskin [8]. A BSPGRID computer is a collection of
processor-memory units, a shared memory considered to be of unlimited capacity (which
is likely to be implemented as a collection of disk units), and a global synchronisation mech-
anism. Unlike the standard BSP model, there is no persistence of data at processor nodes
between supersteps — the contents of all local memories are discarded at the end of each
superstep.

The amount of memory at each processor is considered to be limited, so for large prob-
lem sizes where the total amount of available memory at the processor nodes is insufficient,
the concept of virtual processors is used. This means that each physical processor may be
required to perform the work of multiple virtual processors sequentially in a particular super-
step. The issue of processor reliability and availability is addressed by allowing the number
of available physical processors to vary between supersteps. There is a recovery protocol
for the case when processors may fail unexpectedly during a superstep: an additional syn-
chronisation barrier is introduced, and the work of failed processors is rescheduled after the
barrier.

A centralised global shared memory would lead to a communication bottleneck at the
master processor, therefore any implementation of BSPGRID is likely to implement virtual
shared memory distributed over the grid. Such an implementation would need to be made
easy to use and fault-tolerant.

BSPGRID has a cost model consisting of the following parameters:

• M — the amount of memory per processor in words;

• g — the cost of shared memory accesses per word;

• l — the cost of synchronisation;

• N — the problem size in words.



J.M.R. Martin and A.V. Tiskin / Dynamic BSP 221

The model is used to predict two cost functions for an algorithm: time and work. The time
cost of an algorithm is the optimal execution time that could be achieved if enough real pro-
cessors are applied to the problem, whereas the work cost is the processor-time product of the
algorithm. The model does not consider the issues of network and processor heterogeneity,
apart from variation in the amount of available memory at each node. A static and uniform
allocation of virtual processors to physical processors is performed at each superstep.

Work by Goldschleger et al. [9, 10] describes development of a grid middleware infras-
tructure InteGrade, and implementation of BSP using that system. It is particularly focussed
on provision of a virtual BSP computer to a user by allocation of idle resources within an or-
ganisation. There is no treatment of heterogeneity, but it is reported that work is in progress
to support fault tolerance via a checkpoint and recovery protocol. The system is based on the
Oxford BSP toolkit [11], and is claimed by the authors to be the first grid implementation of
BSP.

Mattsson and Kessler [12] describe implementation of a BSP-based virtual shared mem-
ory programming language for grid computing. It supports a hierarchical extension to the
BSP paradigm with localised supersteps. Other hierarchical extensions of BSP and a dis-
cussion of the localised approach can be found in various sources in the literature, including
earlier work by the present authors [6, 13].

Nibhanupudi and Szymanski [14] have developed a fault-tolerant version of BSP, which
works by running multiple redundant peers for each BSP processor. The peers are able to
take over whenever the original process is assumed to have failed. They have developed a
complex arbitration protocol to manage this, since it is hard to detect that a process has failed
and is not merely slow.

The Satin system by van Nieuwpoort et al. [15] allows dynamic processes in the form of
“pure” (side-effect free) function calls, scheduled by work stealing. Our proposed approach is
more flexible, allowing more general process types and scheduling strategies. Tiskin [13] pro-
posed a mechanism for dynamic process management in the BSP model, using both SPMD
parallelism and dynamic processes. Our approach is conceptually simpler and easier to pro-
gram, since it involves only one of these parallelism types (dynamic processes).

Rosenberg, Adler and Gong [16, 17] have investigated in depth the matter of optimally
scheduling a bag of similar tasks to a heterogeneous network of processors. They have com-
pared mathematically the predicted performance of using a FIFO communication protocol
with that of a BSP communication protocol, in order to distribute tasks and gather results.
This work is highly relevant to optimisation of the implementation of a superstep within a
model such as BSPGRID.

3 Towards a New Approach: Dynamic BSP

Although there has clearly been substantial progress concerning grid implementation of BSP,
we have seen that there is no single approach which would address all of our major concerns.
Here we present a significant modification to the BSPGRID approach, which will enable
us to address the heterogeneity issues, as well as fault-tolerance. It will also offer us a more
flexible programming model, with the ability to spawn additional processes within supersteps
as and when required.

There has been considerable success in utilising the internet to solve embarrassingly par-
allel problems using task-farms, for instance by the application of screen savers performing
drug-protein docking simulations on vast numbers of personal computers [18]. Task-farming
has also been proposed as a general programming paradigm for grid computing, e.g. in [19].

The essence of our new approach is to use the task-farm model to implement BSP su-
persteps, where the individual tasks correspond to virtual processors (see Figure 1). A task-



222 J.M.R. Martin and A.V. Tiskin / Dynamic BSP

Figure 1: Standard BSP compared with Dynamic BSP

farm implementation of BSP has been suggested previously by Sarmenta [20], whose paper
recognises that this approach suffers from the data bottleneck, unless the computation is em-
barrassingly parallel. We propose a mechanism of avoiding the data bottleneck.

Our model consists of:

• a master processor (task server);

• worker processors; and

• a data server (which can either be implemented as distributed shared memory or re-
mote/external memory).

In each superstep there is a bag of virtual processors to be run on a pool of available
physical processors. The computation and communication performance of each processor is
considered to be variable, but we do assume a certain minimum level of available memory at
each node, as with BSPGRID.

The master processor is responsible for task scheduling, memory management, and re-
source management. At the beginning of each superstep, a virtual processor number is dis-
tributed to each physical processor, which then has the responsibility to retrieve local data
from the data server, perform the required computations, write back the modified data, and
then inform the master processor that it has finished the task. The master processor maintains
a queue of pending virtual processors and dynamically assigns them to waiting physical pro-
cessors. As soon as the all the virtual processors have been executed on a particular superstep,
the global shared memory is restored to a consistent state and the next superstep commences.

Using the task farm approach, the problem of heterogeneity across the grid can be con-
cealed by choosing the number of virtual processors to far exceed the number of physical
processors. This approach is sometimes known asparallel slackness, and complements ex-
plicit heterogeneous extensions to the BSP model, such as the ones by Williams and Parsons
[21], and Morin [22].



J.M.R. Martin and A.V. Tiskin / Dynamic BSP 223

3.1 Fault Tolerance

If a physical processor fails to complete its task within a reasonable time, then it is consid-
ered to have died, and its work is reallocated to another physical processorwithin the same
superstep. Also the master process is at liberty to seek additional resources at any point to
expand the processor pool. This approach to fault-tolerance is likely to be less computation-
ally expensive than the generic Unix process migration mechanism proposed by Hill et al.
[23].

3.2 Creation of Child Processes

Dynamic BSP allows the number of virtual processors to vary not only between supersteps
but alsoduring supersteps. Hence we may allow them to spawn other virtual processors
(which would be useful for example to implement divide-and-conquer algorithms). Since the
master processor still has to keep control, a virtual processor has to send a message to the
master to spawn one or more children, and is then descheduled. The master will reschedule
the requesting processor once all its children have terminated. There can be no data redis-
tribution within supersteps, therefore the new virtual processor can only see a snapshot of
the global data as it was at the beginning of the superstep, together with local state inherited
from its parent. A traditional superstep would only allow one level of spawning, but within a
task farm implementation arbitrarily many levels of descendant processors can be spawned,
as long as data redistribution is not required.

The master processor generates tasks (virtual processors) and can either execute them
(if they are small enough), or pass them on to workers. Workers can spawn new tasks,
which must be registered with the master. Tasks may contain remote data references, and can
transmit data to and from the data server. Additionally, sometimes it may be convenient that
the data server can perform by request simple data-parallel computations without passing the
data to the master or workers.

3.3 Memory Bottleneck

The main barrier to scalability with both BSPGRID and Dynamic BSP is the implementation
of the global shared memory. To avoid a bottleneck, the data would need be distributed and
treated similarly to BSPRAM model. Virtual processors would be decoupled from their data,
but they would also need a mechanism of knowing where their data is (potentially distributed
across several physical processors), and be able to access it bypassing the master processor.
There would also need to be a separate fault-tolerance mechanism for the data, requiring
replication and/or check-pointing such as implemented by Nibhanupudi and Szymanski [14].

3.4 Cost Model

The standard cost model for BSP would appear to be suitable for dynamic BSP, despite the
fact that theg andl parameters might very well vary significantly between grid nodes. Using
the task-farm approach, together with use of parallel slackness, would make it reasonable to
use measured values forg andl (suitably averaged) to predict cost.

3.5 An Example: Strassen’s Algorithm

McColl [24] (see also [25]) proposed a synchronisation-efficient BSP Strassen matrix mul-
tiplication algorithm, which generates block multiplication subtasks recursively in a data-



224 J.M.R. Martin and A.V. Tiskin / Dynamic BSP

parallel fashion. When the number of tasks becomes sufficiently high (equal to the number
of physical processors, or more if one needs parallel slackness), matrix data are redistributed
and the computation is completed in task-parallel fashion.

In our model, the master will generate the first “root” task, which will request the data
server to do data-parallel work (without communication), and then spawn some children
tasks. The children will do the same recursively. All this can be done in the master processor,
since the tasks do not need to download data from the data server, hence their cost is at this
point negligible. When the number of spawned tasks is large enough, they are distributed
across the workers, and enter the task-parallel phase of the computation (i.e. download the
matrix data, synchronise, compute block products, upload them back to the data server, and
synchronise again). As soon as the task-parallel part of the computation is finished, the
workers can send the tasks back to the master. The children tasks now start to terminate, and
the parents resume and combine the childrens’ results by issuing data-parallel computation
requests to the data server. Upon termination of the root task, the data server contains the
final output.

4 Conclusions and Future Work

We have investigated the potential issues in implementation of the BSP model over the grid.
We have reviewed some useful existing work in this context, and also proposed a new dy-
namic model. Our model builds on Vasilev’s BSPGRID model, and retains some of its key
elements: a dynamic task pool and a virtual shared memory. In contrast with BSPGRID,
our model utilises the task-farm approach to implement supersteps, and allows the tasks to
spawn an arbitrary number of subtasks within a superstep. We have also introduced into the
model some capability of data-parallel computation, which can be performed by the tasks
remotely via the data server. The flexibility of this approach has been demonstrated by the
Strassen matrix multiplication example. Since computational tasks are decoupled from data,
both BSPGRID and our approach require an efficient implementation of distributed/remore
shared memory for the data server.

The next logical step is implementing our model and testing it on a real-life system. In
addition to that, here are some issues that would be worthy of further consideration.

Improved fault-tolerance. Instead of timeouts, it might be possible to use more sensitive
mechanisms, such as ping clients.

Security. Commercial enterprises have to be extremely careful about data security, and
this tends to be the main barrier to the uptake of grid computing in industry. A BSP imple-
mentation offering data encryption could help to solve this problem.

Persistent data. Many computationally intensive algorithms in use today require local
access to substantial databases, e.g. the Blast program for biological sequence similarity
analysis [26]. We need to consider extending our protocols to allow external resources to
be requested with special attributes such as this.

Economics. In real-life grid applications, there is likely to be a tradeoff between quality of
service and price. Commercial service providers, such as [27], offer use of dedicated reliable
homogeneous virtual clusters for a competitive fee, whereas it is also possible to harness
idle cycles on workstations within an organisation at very little cost. Work [28] contains an
analysis of some of the economic factors involved in running a supercomputing service. It
could be possible to take these factors into account by making financial cost an integral part
of the cost model. Vasilev’s BSPGRID makes the first step in this direction: the time cost of
a computation is appropriate for evaluation of an algorithm implemented using inexpensive
idle cycles, whereas the work cost is more relevant to time hired on commercial processor
warehouses.



J.M.R. Martin and A.V. Tiskin / Dynamic BSP 225

Acknowledgements

We thank the anonymous referees for helpful comments.

References

[1] L. G. Valiant. A bridging model for parallel computation.Communications of the ACM, 33(8):103–111,
August 1990.

[2] R. H. Bisseling. Parallel Scientific Computation: A structured approach using BSP and MPI. Oxford
University Press, 2004.

[3] BSP machine parameters.http://www.bsp-worldwide.org/implmnts/oxtool/params.
html .

[4] J. M. R. Martin and Y. Huddart. Parallel algorithms for deadlock and livelock analysis of concurrent
systems. InProceedings of Communicating Process Architectures, pages 1–14. IOS Press, 2000.

[5] I. Foster and C. Kesselman.The Grid: Blueprint for a new computing infrastructure. Morgan Kaufmann,
second edition, 2004.

[6] J. M. R. Martin and A. V. Tiskin. BSP modelling of two-tiered parallel architectures. In B. M. Cook, editor,
Proceedings of WoTUG, volume 57 ofConcurrent Systems Engineering Series, pages 47–55, 1999.

[7] V. Vasilev. BSPGRID: Variable resources parallel computation and multiprogrammed parallelism.Paral-
lel Processing Letters, 13(3):329–340, 2003.

[8] A. Tiskin. The bulk-synchronous parallel random access machine.Theoretical Computer Science, 196(1–
2):109–130, April 1998.

[9] A. Goldchleger, C. A. Queiroz, F. Kon, and A. Goldman. Running highly-coupled parallel applications in
a computational grid. InProceedings of Brazilian Symposium on Computer Networks, 2004.

[10] A. Goldchleger, F. Kon, A. Goldman, M Finger, and C. C. Bezerra. InteGrade: object-oriented Grid mid-
dleware leveraging idle computing power of desktop machines.Concurrency and Computation: Practice
and Experience, 16:449–454, 2004.

[11] J. M. D. Hill, W. F. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas,
and R. H. Bisseling. BSPlib: The BSP programming library.Parallel Computing, 24:1947–1980, 1998.

[12] H. Mattsson and C. W. Kessler. Towards a virtual shared memory programming environment for grids. In
Proceedings of PARA, Lecture Notes in Computer Science. Springer-Verlag, 2004. To appear.

[13] A. Tiskin. A new way to divide and conquer.Parallel Processing Letters, 11(4):409–422, 2001.

[14] M. Nibhanupudi and B. Szymanski. Runtime support for virtual BSP computer. InProceedings of
IIPS/SPDP, volume 1388 ofLecture Notes in Computer Science, pages 147–158. Springer-Verlag, 1996.

[15] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, T. Kielmann, and H. E. Bal. Satin: Simple and efficient
Java-based Grid programming.Journal of Parallel and Distributed Computing Practices. To appear.

[16] A. L. Rosenberg. To BSP or not to BSP in heterogeneous NOWs. InProceedings of Workshop on
Advances in Parallel and Distributed Computation Models, 2003.

[17] M. Adler, Ying Gong, and A. L. Rosenberg. Optimal sharing of bags of tasks in heterogeneous clusters.
In Proceedings of ACM SPAA, pages 1–10, 2003.

[18] E. K. Davies, M. Glick, K. N. Harrison, and W. G. Richards. Pattern recognition and massively distributed
computing.Journal of Computational Chemistry, 23(16):1544–1550, 2002.

[19] J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. Master-worker: An enabling framework for applica-
tions on the computational grid.Cluster Computing, 4:63–70, 2001.



226 J.M.R. Martin and A.V. Tiskin / Dynamic BSP

[20] L. F. G. Sarmenta. An adaptive, fault-tolerant implementation of BSP for Java-based volunteer computing
systems. InProceedings of IPPS Workshop on Java for Parallel and Distributed Computing, volume 1586
of Lecture Notes in Computer Science, pages 763–780. Springer-Verlag, 1999.

[21] T. L. Williams and R. J. Parsons. The heterogeneous bulk synchronous parallel model. In J. Rolim et al.,
editors,Proceedings of IPDPS Workshops, volume 1800 ofLecture Notes in Computer Science, pages
102–108. Springer-Verlag, 2000.

[22] P. Morin. Coarse grained parallel computing on heterogeneous systems. InProceedings of ACM SAC,
pages 628–634, 2000.

[23] J. M. D. Hill, S. R. Donaldson, and T. Lanfear. Process migration and fault tolerance of BSPlib programs
running on a network of workstations. In D. Pritchard and J. Reeve, editors,Proceedings of Euro-Par,
volume 1470 ofLecture Notes in Computer Science, pages 80–91. Springer-Verlag, 1998.

[24] W. F. McColl. A BSP realisation of Strassen’s algorithm. In M. Kara et al., editors,Abstract Machine
Models for Parallel and Distributed Computing, pages 43–46. IOS Press, 1996.

[25] W. F. McColl and A. Tiskin. Memory-efficient matrix multiplication in the BSP model.Algorithmica,
24(3/4):287–297, 1999.

[26] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215(3):403–410, 1990.

[27] Sychron Inc.http://www.sychron.com .

[28] J. M. R. Martin K. M. Measures and R. C. F. McLatchie. Supercomputing resource management —
experience with the SGI Cray Origin 2000. InProceedings of WoTUG. IOS Press, 1999.


