
Communicating Process Architectures 2003 315
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

A multimodal robotic control law modelled
and implemented with the CSP/CT

framework†

Gerald H. HILDERINK, Dusko S. JOVANOVIC, Jan F. BROENINK
Twente Embedded Systems Initiative,

Drebbel Institute for Mechatronics and Control Engineering,
Faculty of EE-Math-CS, University of Twente,

P.O.Box 217, 7500 AE, Enschede, the Netherlands
g.h.hilderink@utwente.nl

Abstract. We use several formal methodologies for developing control applications
at our Control Engineering research group. An important methodology we use for
designing and implementing control software architecture is based on CSP concepts.
These concepts allow us to glue multidisciplinary activities together and allow for
formal stepwise refinement from design down to its implementation. This paper
illustrates a trajectory and shows the usefulness of CSP diagrams for a simple
mechatronic system. The simulation tool 20-SIM is used for creating the control
laws and our CTC++ package is used for coding in C++.

1. Introduction

1.1 The need for a new approach

At the Control Engineering research group of the University of Twente, concurrent
architectures are used in control (robotic, mechatronic) applications for more than two
decades. Good experiences with applying transputers [1] programmed with occam [2] gave
rise to the investigation of building control software with CSP concepts; transputers and
occam are founded on CSP. CSP stands for Communicating Sequential Processes, which is
a theory in the form of a process-algebra for specifying and analysing concurrent systems
[3]. In order to exploit occam/CSP-like concurrent programming (developing concurrent
software) in sequential programming languages like C/C++ and Java, the Communicating
Threads (CT) libraries were developed [4]. CT allows for concurrent programming where
multithreading in execution is encapsulated in CSP-like abstractions of processes and
channels. Relying on these libraries, a software developer is freed from explicit dealing
with low-level synchronization issues in a concurrent software architecture [5]. CT for C is
called CTC, for C++ is CTC++ and for Java is CTJ.

Engineers engaged with designing control laws for a control application use block
diagrams. Block diagrams provide an abstract graphical notation for modelling control laws
offering a data-flow oriented and a plug-and-play design concept.

There is a big gap between a block diagram and its implementation; there are

† This research is supported by PROGRESS, the embedded system research program of the Dutch organization
for Scientific Research, NWO, the Dutch Ministry of Economic Affairs and the Technology Foundation STW.

316 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

discontinuities between data-flow and control-flow. Furthermore, the engineer has little
influence in the flow of control of the execution framework. In order to bridge the gap so
that the engineer can specify any executable behaviour of the control software we use an
intermediate graphical language, namely CSP diagrams. A CSP diagram specifies data-flow
(continues on the block diagram notation) and control-flow in an application and eliminates
the discontinuities between the two. This language allows the engineer to refine a design
towards the demands of the system. This way the engineer gets a better understanding of
concurrency that affects the real world in relation to the real-time software.

This paper reports a stepwise refinement trajectory from a control design to its
implementation with the help of CSP diagrams. We use the simulation tool 20-SIM to
design block diagrams of the system dynamics and the control laws. 20-SIM allows
translating the equations to C-code. Of course we only translate the control laws since these
have to be computed by the computer system. The paper mainly focuses on the way CSP
diagrams are used for systematically designing control software. We use a simple
mechatronic setup, named JIWY, which is a controlled motion device with two joints that
rotate according to the movement of a joystick.

The needs for modelling concurrency are most commonly:
- managing complexity with multiple control loops,
- dealing with multiple frequencies,
- priorities and pre-emptive behaviours,
- event-driven control or reactiveness,
- guaranteeing real-time behaviour,
- dealing with distributive and parallel architectures.

The CSP diagrams deal with these issues at a high level of abstraction. We will show
that this abstraction directly maps on software using CTC++. The path of code-generation
is under control of the engineer and under control of the code-generation tool in a formal
way.

1.2 The tools used in the refinement trajectory

We use a few languages and tools in the refinement trajectory from control laws to their
implementation. As previously mentioned we use block diagrams to specify the control
laws, the CSP diagram language is used to specify the concurrent executable framework,
and C++ with CTC++ is used to implement the control software. For modelling block
diagrams and C-code generation of the control laws we use the tool 20-SIM, see Section
1.2.1. Designing CSP diagrams is done by a drawing tool because there is no a specific
design tool for CSP diagrams available. We are working on a specific design tool designing
and analysing CSP diagrams. For coding we use a workbench that usually comes with the
computer platform or a simple text editor tool for typing the C++ code. We have developed
C++ template files that is used by 20-SIM, which takes care of most of the coding. Finally,
a C++ compiler-linker and a program loader are used.

We will not elaborate on using these tools in this paper. We are primarily concerned
with the design trajectory. This trajectory relies on identifying processes (i.e. physical
processes, controller loop processes, control mode processes, and support processes) and
identifying communication between these processes (i.e. signals, synchronization, interrupt
handling, AD-DA conversion, etc.). The design forms the solution. In order to deal with
concurrent software architectures we use the CSP concepts. Concurrency that boils from
above affects every stage in the design to the implementation. Using CSP diagrams and CT
is our solution to implementing concurrent software architectures.

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 317

1.2.1 20-SIM

20-SIM is a modelling and simulation tool developed by ControlLab Products B.V. [6], a
spin-off company of the Control Engineering group of the University of Twente. It is a
standard MS Windows application consisting of several integrated modules that supports
modelling and design of mechatronics products in many aspects.

Modelling of a system can be performed by means of one or more 20-SIM modelling
languages: bond graphs [7], block diagrams, iconic diagrams, equations [8] and importing
Matlab models is supported as well. The tool complies well with the demand of offering a
time-efficient and elaborate feedback to the user on the modelling/design decisions, by
means of simulation plots, animated graphs and 3-D animations.

A recent functionality of 20-SIM is to generate C-code from internal equation model
derived from a selected submodel. The C-code is sequential and needs to be inserted in a
larger framework written in C or C++. This framework is specified in template files.
Template files contain target-specific code, like device drivers, and special keywords that
are replaced by generated C-code from 20-SIM submodel.

A C++ template is created which extends the 20-SIM code-generation. This C++
template allows us to generate individual submodel objects. A submodel object contains a
data structure and methods that operate on this data structure, including the control law
equations. The resulting C++ files can be compiled, linked and loaded on the target
computer system. In Section 3.2 we discuss aspects of the C++ template for generating
control processes, i.e. 20-Processes.

1.2.2 CSP diagrams

Since the introduction of the graphical modelling language based on CSP by Hilderink [9]
the language has slightly evolved to become applicable for designing control software in
the form of CSP diagrams. CSP diagrams show processes and their interrelationships by a
graphical notation. A CSP diagram expresses an execution model of the resulting network
of processes. The designer can specify the desired nature of concurrency of the real-time
control software.

In this research we investigated the continuity between control models in 20-SIM, CSP
diagrams, and the resulting code. The use of CSP diagrams is intended to bridge the gap
between control models and the final code. CSP diagrams allow the designer to specify the
connectivity between control processes and their execution order. CSP diagrams are based
on data-flow concepts and control-flow concepts which can be used as an addition to the
block diagrams used in control engineering.

One of many advantages that come with using CSP diagrams is that the graphical CSP
notation offers straightforward code generation. Since our effort to create tools for drawing
and analyzing CSP diagrams is in a begin stage, we do not have developed automated code-
generation yet. Only 20-SIM can generate code which we will extensively use in this
research. Coding of the execution framework is mainly done by handcraft and the results of
this research will be used for the development of an automated code-generation tool of CSP
diagrams. The coding by hand is not a difficult task since the mapping between a CSP
diagram and object-oriented code with our CT library is almost one-on-one. See Section 3.

1.2.3 CT – Communicating Threads package

The Communicating Threads (CT) package consists of an object-oriented framework
providing high-level design patterns based on CSP. These design patterns encapsulate
multithreading from the user by means of processes, channels, and compositional

318 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

constructs. It basically adds process-oriented concepts to the object-oriented paradigm
which are useful for reasoning about concurrency and real-time behaviors. Real-time and
embedded computer issues have been carefully designed in CT. For example, it integrates
real-time scheduling into the application rather than using it from a real-time operating
system. In fact, CT does not require a real-time operating system and it can run on bare
microprocessors, microcontrollers, or digital signal processors (DSPs). The CT framework
has been ported to Java (CTJ), to C (CTC) and to C++ (CTC++). For CTC and CTC++ the
memory footprint is low and the scheduling overheads are efficient and fast. We use CTJ
for educational purposes and CTC/CTC++ for real-time laboratory setups. The examples
presented in this paper are based on CTC++.

1.3 Overview

The refinement trajectory using block diagrams in 20-SIM and CSP diagrams for JIWY is
described in Section 2. Section 3 elaborates on the implementation of CSP diagrams and
generated 20-SIM C-code using C++ and CTC++. The mapping between CSP diagrams
and the resulting code is discussed, while detail on the 20-SIM code-generation process is
not discussed. Conclusions are found in Section 4

2. Designing concurrent controllers

2.1 Case study JIWY

As a case study to illustrate the stepwise refinement trajectory, a classical example of a
multimodal controller has been chosen, which is a two-degree-of-freedom robotic end-
effector, called JIWY, see Figure 1. The construction contains two revolute joints that allow
mounted device to rotate on a horizontal axis and a vertical axis. The joints are equipped
with DC motors and incremental encoders. We use a PC under DOS, an analog joystick, a
amplifier/circuit box to drive the motors and to convert sensor signals. Details on JIWY can
be found in [10].

JIWY uses incremental encoders and therefore the centre position for each axis has to be
calculated. It is required that the outer boundaries of each axis are measured first in order to
determine the centre position of the axis. A joint will first rotate to the left and when it
reaches the end stop this process terminates. It remembers the maximum value. The next
process rotates the joint with constant velocity to the right until it reaches the end stop.
Again this process remembers the maximum value. Then the main servo position motion
controller for controlling JIWY takes over. It uses the two maximum values from the
alignment processes to determine the exact centre position of the setup. The main controller
can be stopped by the user by pressing a specific button on the joystick. After the main
controller is stopped by the user it is required that the joints return back to their centre
position as a safe position. This process is called homing. After homing the motors will be
disabled.

This functional description gives rise to four control modes or sub control laws per joint.
One velocity control law for aligning left, one velocity controller for aligning right, a
motion controller reacting on the joystick input, and a position controller for homing to the
safe centre position.

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 319

2.2 Process design and control law design

The design trajectory is a continuous interaction between process design and control law
design. See Figure 2. Each design discipline can be carried out separately, but the whole
results in an executable control software framework. The process design embraces the
context (or overview of controllers), integration of control processes, and target depending
issues. For this, CSP diagrams are used. The control law design focuses on the system
dynamics and the control laws. The control laws are exclusively designed in 20-SIM using
block diagrams. In the following these two design disciplines are interleaved.

2.2.1 Modes of control

The identified control modes are designed as four different control processes. Figure 3
shows these processes and their interrelationships in a CSP diagram. Figure 3a shows the
communication diagram representing the data-flow between these four processes; the
arrows render the communication relationships or channels between processes. Figure 3b
shows the compositional diagram of the control-flow between these processes. Each joint
operates in parallel and so there is a parallel relationship between the horizontal and vertical
processes. The little circle at the end of the parallel relationship denotes a parenthesis which
determines a group of control processes for the horizontal joint. The parenthesis symbol

Process Design

start

Control Law Design

Figure 2 Proces design and control law design

Figure 1 Photo of the JIWY end-effector

320 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

forms one parent anonymous process. This is similar for the vertical joint, which is not
shown in the figure. In order to describe this system we will mainly restrict ourselves to the
horizontal joint. The vertical joint is identical but with slightly different parameters than the
horizontal joint.

Here, suffix “@Tsh” specifies that we deal with a sampled data system, where the
samples of measured values arrive at equidistant moments in time. Clearly, each sample
must be processed before the next arrival. This suffix means that the external channels are
triggered on sampling period Tsh for the horizontal control loop. Tsv is the sampling period
for the vertical control loop, which is not shown here. This information is used to set up
timing, see Section 3.7.

A process can be in a different scope than another process when:
• a process resides at a different level in hierarchy than the other process,
• one process is in a different context than the other process, e.g. process in

software and process in hardware.
A process that is out of scope is replaced by a port name at the end of the arrow. See the

names feedback_horizontal, control_horizontal, joystick_horizontal, and
joystick_buttons in Figure 3a. These names identify process-interface elements or ports
of the parent process to which the CSP diagram belongs. These names are used inside the
parent process and are connected to communication relationships outside the process. In
Figure 3a these external processes reside in hardware. A port of the parent process acts also
as a local label of the communication relationship.

In order to show the ports of a process to which communication relationships are

alignLH
:VelocityControlLeft

Horizontal

motionControlH
:ControlHorizontal

alignRH
:VelocityControlRight

Horizontal

homingH
:HomingHorizontal

max leftmax

leftmax_h:double

rightmax_h:double

rightmax

control_horizontal@Tsh

feedback_horizontal@Tsh

feedback feedback feedback feedback

control control control control

joystick_horizontal@Tsh

joystick_axis
joystick_buttons@Tsh

joystick_buttons

leftmax

rightmax

max

(a) Four sub-controllers and their communication relationships for the horizontal joint

alignLH
:VelocityControlLeft

Horizontal

motionControlH
:ControlHorizontal

alignRH
:VelocityControlRight

Horizontal

homingH
:HomingHorizontal

seq_h seq_h seq_h

par

(b) Composition relationships between the four sub-controllers for the horizontal joint

Figure 3 CSP diagram of the horizontal controller

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 321

connected, the name of a port can be shown next to the arrow head or arrow tail, e.g.
feedback, max, leftmax, etc. These names are used locally by the process at the end of the
communication relationship. Each port has properties such as its name, direction and
communication type, e.g. {feedback_horizontal, channelin, double} and
{control_horizontal, channelout, double}. The communication types of ports at
each end of a communication relationship should be of the same type otherwise they are
incompatible and cannot be connected. For example, port {max, channelout, double} on
alignLH is compatible to port {leftmax, channelin, double} on motionControlH. The
label leftmax:double identifies the actual communication object, i.e. a variable of type
double, between the ports max and leftmax. These labels can be hidden individually in
order to hide detail.

A communication diagram is responsible for the declarations of the processes, the
internal communication relationships and the ports to external communication
relationships. A composition diagram is also responsible for the declarations of processes,
the compositional relationships, conditions, and guards. In Section 3 we will see them
appearing in the code with the use of CTC++. For this each element requires an identifier.

2.2.2 Motion controller

The motionControlH process in Figure 3 is the main sub-controller that receives the set
points from the joystick that is used by the user. This process only terminates when the stop
button on the joystick is pressed. This process contains a 20-SIM process
servoHorizontal which computes one sample in the control law. See Figure 4. The
looping is specified by the µ-process.

In Figure 4a communication relationships between the external ports and the ports of the
20-SIM process servoHorizontal are specified. A 20-SIM process can be recognized by
the name 20Process at the end of the process class name, like

servoHorizontal
:PositionControllerHorizontal

20Process
µ

[status != 2]

control

jockstick_axis

? joystick_buttons

feedback

chanin[2]

chanout [1]

status=0:int

! zero=0.0:double leftmax

rightmax

chanin[0] chanin[1]

chanin[3]

servoHorizontal
:PositionControllerHorizontal

20Process
µ

[status != 2]

?

joystick_buttons [true] feedback [true]

!

(a) Communication diagram of motionControlH

(a) Composition diagram of motionControlH

Figure 4 CSP diagram of process motionControlH:ControlHorizontal

322 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

PositionControllerHorizontal20Process. A 20-SIM process or simply 20-Process is a
CSP process with special treatment, namely:
• it is a single-shot process performing a 20-SIM submodel for one sample;
• the process-interface (ports) consists of a channel-input and a channel-output array;
• it is generated by 20-SIM.

The 20-SIM process ports are rendered by indexed channel array names. These channel
array names rise from the 20-SIM submodel; chanin[i] → u[i] and y[j] → chanout[j], where
u[] is the model input vector u and y[] the model output vector y .

Two communication relationships have been added, namely status and zero. Here
status holds the status of the joystick buttons when it is pressed. The looping process µ
will continue repeating to perform the alternative relationship ‘ ’ until status is 2. zero is
a constant value 0 in the communication diagram, see Figure 4a. Therefore these variables
are declared and initialized with the default value in the code.

The alternative construct will wait until the channels feedback or joystick_buttons
become ready. Then it makes a (prioritized) choice between reading the joystick button and
computing one sample in the controller. The construct will select the controller when
feedback is ready to communicate and when the joystick button is not pressed. If the
joystick was pressed and feedback is not yet ready to communicate then the joystick
buttons will be read. If both the joystick button was pressed and the feedback is ready then
reading the buttons from the joystick button gets a higher priority. In this case the loop
terminates right before the entire process terminates, it will send a zero to the actuator in
order to release any steering of the joint.

Separate from CSP diagrams, a simulate-able model in 20-SIM has to be designed. A
20-SIM model embraces all relevant dynamics of the system and the controller itself. The
model can be simulated and the feedback can be used to understand and improve the
dynamics of the system. The identified processes can be found in the 20-SIM model in the
form of mathematical blocks.

The position motion controller is the main operational mode of this servo system. The
model renders the context of close-loop system where the two axes are servo-controlled by
a joystick as a position set-point generator. Figure 5 presents a 20-SIM model of this
control mode (for both axes). The joystick input is simulated by some function as described
in submodel JoystickHorizontal and JoystickVertical. The ioHorizontal and
ioVertical submodels model and simulate the hardware input/output interfacing between
the physical system and the control software to make simulation more realistic compared to

Figure 5 20-SIM model of the position motion controller

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 323

the real setup. The physical system is modelled by the MotorHorizontal and the
MotorVertical submodels using bond-graphs.

The submodels PositionContollerHorizontal and PositionControllerVertical
are the software controllers that will be code generated by 20-SIM as 20-SIM processes.
The block diagrams of these submodels slightly differ with different parameter values. One
block diagram of the control law is depicted in Figure 6.

2.2.3 Alignment controller

The alignment modes are based on velocity controllers. For each rotation and joint the same
velocity controller model is used. Again these controllers use slightly different parameter
values.

Process alignLH has been worked out in Figure 7. This process contains a 20-SIM
process vleftHorizontal and a loop construct which repeats itself until stop is true. The
variable stop becomes true when the end-stop has been reached. This is specified by the
20-SIM submodel. Process alignRH is identical to alignLH except that the motor rotates
right.

We separated the classes VelocityControlLeftHorizontal and
VelocityControlRightHorizontal because the submodels are also separated in 20-SIM.
This allows changing parameters independently of each other as a result of parameter fine-
tuning. For example, the resistance at rotating left could be different than when rotating
right. The 20-SIM model for left alignment and for right alignment is depicted in Figure 8.

The submodels VelocityContolLeftHorizontal, VelocityContolLeftVertical,
VelocityContolRightHorizontal, VelocityContolRightVertical are the controllers
that will be code generated by 20-SIM, called 20-SIM processes or 20-Processes. One of
the block diagrams is depicted in Figure 9.

2.2.4 Homing controller

The homing controller uses the same position controller process as in the motion controller,
see Figure 4. This process requires a set-point that is set to the centre position (i.e. zero).
Figure 10 shows the CSP diagram. The 20-SIM model is given in Figure 5.

Figure 6 Block diagram of a position controller

324 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

vleftHorizontal
:VelocityControlLeftHorizontal

20Process
µ

stop
:double

max

[!stop]

control

feedback

chanout[2]

chanout[1]

chanin[0]

chanout[0]

(a) Communication diagram of alignLH

vleftHorizontal
:VelocityControlLeftHorizontal

20Process
µ

[!stop]

(b) Composition diagram of alignLH

Figure 7 CSP diagram of alignLH:VelocityLeftHorizontal

tame differentiator

Constant1
endstop_control

SignalLimiter2

PID
SP

MV s
Controller1

K
N

-1z
∫

K
1

K2

feedback

control

Figure 9 Block diagram of a velocity controller

Figure 8 Alignment modes for left and right rotations

(a) Alignment mode for left rotation

(b) Alignment mode for right rotation

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 325

3. Implementation

3.1 20-SIM submodels

A system is usually designed by separating concerns in submodels in 20-SIM. The
submodels which are essential to the control software must be code-generated in C-code. In
our case, a submodel is code generated with 20-SIM using the C++ template which results
in a C++ class: MySubmodel class.

A 20-SIM submodel requires a vector of input signals u and a vector of output signals
y . These signals are mapped on array of variables u[] for input-only and y[] for output-
only.

double u[n], y[m];

The constructor requires no arguments and the constructor sets up the data structure.

submodel = new MySubmodel;

After construction of the object the begin state of the model needs to be initialized by

submodel->Initialize(u, y, 0);

Once the model has been initialized the control law equations can be performed by
invoking the Calculate() method. This method requires the input vector and the output
vector of signals (i.e. arrays of variables). This method must be called for each sampling
periode.

hominghorizontal
:PositionControllerHorizontal

20Process
µ

[!stop]

control

feedback

chanin[2]

chanout [1]
! zero=0.0:double leftmax

rightmax

chanin[0] chanin[1]

chanout[0]

stop
:double

setpoint=0.0:double

chanin[3]

(a) Communication diagram of homingH

homingHorizontal
:PositionControllerHorizontal

20Process
µ

[!stop]

!

(b) Composition diagram of homingH

Figure 10 CSP diagram of homingH:HomingHorizontal

326 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

submodel->Calculate (u, y);

The 20-SIM submodel is a black box which behavior can be observed and studied by

simulating the submodel in 20-SIM. No immediate knowledge of the generated code is
required since modifications to control laws are done in block diagrams and not directly in
C-code. Therefore we omit the implementation of MySubmodel.

3.2 20-SIM process

A 20-SIM process is a CSP process that is generated by 20-SIM. A 20-SIM process has the
task to invoke the equations of the submodel object when input data is available and in a
particular order of execution. A 20-SIM process is a single-shot process, see Section 2.2.2.
This means that the output values are calculated once according to the control laws and the
process immediately terminates afterwards. A 20-SIM process can be executed successively
according to its compositional relationships with other processes. A 20-SIM process can be
used in any kind of compositional relationship; in parallel, in sequence or by choice. In case
the 20-SIM process is executed in parallel it must pass data and synchronize on CSP
channels (or blocking channels) in order to prevent any race-hazards between process input
and output. These channels provide reactiveness to internal and external events. In case a
20-SIM process is in sequence to another process then unblocking channels (ChannelVar)
should be used to pass data between these processes because blocking channels will cause
deadlock.

A 20-SIM process of submodel MySubmodel has the following default constructor:

MySubmodel20Process::MySubmodel20Process(ChannelIn<double> **chanin,

ChannelOut<double> **chanout)

{

 this->chanin = chanin;

 this->chanout = chanout;

 this->u = (double *) malloc (n * sizeof (double));

 this->y = (double *) malloc (m * sizeof (double));

 /--- Execute Initialize submodel

 submodel = new MySubmodel;

 submodel->Initialize(this->u, this->y, 0);

}

The constructor requires two channel arrays (or vectors); an array of channel-inputs and
an array of channel-outputs. The arrays and each array element must be declared outside the
process. The constant number n is the number of input-channels and m is the number of
output-channels. These constants are determined and filled-in by the 20-SIM code-
generator.

The 20-SIM process performs a standard procedure:

• read from channels to u
• calculate submodel with inputs u and output y
• write to channels from y
• terminate

The code of this procedure is given in the run() method of the process below:

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 327

void MySubmodel20Process::run(void)

{

 //--- input

 for(int i=0; i<1; i++)

 if (chanin[i] != NULL)

 chanin[i]->read(&(u[i]));

 //--- perform calculation

 submodel->Calculate (u, y);

 //--- output

 for(int i=0; i<1; i++)

 if (chanout[i] != NULL)

 chanout[i]->write(&(y[i]));

 //--- done and now terminate

}

The arrays u[] and y[] are used internally by the submodel and the 20-SIM process and

their content is not influenced other than by channel inputs. Therefore, the constructor
declares these arrays exclusively for the 20-SIM process.

3.3 Top-level construct

As mentioned in Section 2 the CSP diagram declares all entities. The declarations of the
top-level CSP diagram in Figure 3 and the vertical part can be found in the main source file
of JIWY. Since we do not have a code-generator this is done by hand. The class names and
identifiers specified in the CSP diagram are found in the source code.

The communication relationships, processes, and constructs are declared as follows:

//--- channel pointer declarations

ChannelIn<double> *feedback_horizontal = NULL;

ChannelIn<double> *feedback_vertical = NULL;

ChannelOut<double> *control_horizontal = NULL;

ChannelOut<double> *control_vertical = NULL;

ChannelIn<double> *joystick_horizontal = NULL;

ChannelIn<double> *joystick_vertical = NULL;

ChannelOut<int> *joystick_buttons = NULL;

//--- internal channel declarations (‘chan’ prefix to variable names)

ChannelVar<double> chanleftmax_h = new ChannelVar<double>;

ChannelVar<double> chanrightmax_h = new ChannelVar<double>;

ChannelVar<double> chanleftmax_v = new ChannelVar<double>;

ChannelVar<double> chanrightmax_v = new ChannelVar<double>;

//--- Analog joystick

AnalogJoystick *joystick = new AnalogJoystick();

joystick_horizontal = new AnalogJoystickX(joystick);

joystick_vertical = new AnalogJoystickY(joystick);

328 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

joystick_buttons = new AnalogJoystickButtons(joystick);

//--- DAQSTC, National Instruments 6024E IO Board

DAQSTC *daqstc = new DAQSTC();

daqstc->Initialise();

//--- Analog Output

daqstc->SetAOTM(AOTM::Primary, AOTM::CPUDriven);

control_horizontal = daqstc->GetDAC(DAC::DAC0);

control_vertical = daqstc->GetDAC(DAC::DAC1);

//--- Two counters for sensors

feedback_horizontal = daqstc->GetCounter(GPC::Counter0);

feedback_vertical = daqstc->GetCounter(GPC::Counter1);

Firstly, the pointers to the external channels and the internal channels are declared.

Secondly, the external channels are declared and are assigned to the external channel
pointers, see italic code. The italic code cannot be derived from the CSP diagram and is
added apart from diagram-to-code translation. These external channels are based on
hardware-specific drivers with channel-interfaces and with CSP-valid channel semantics.
Therefore, this code is considered to be target dependent, where as the control processes
remain hardware-indepedent. The communication relationships leftmax_h, rightmax_h,
leftmax_v, and rightmax_v are prefixed by chan. We will see later that this is required to
distinguish a channel from a variable used in conditional expression.

Usually CSP channel will cause deadlock when they are used between processes in
sequential composition. Therefore to avoid deadlock we use unblocking channels only for
communication between processes in sequential composition. These communication
relationships are leftmax_h, rightmax_h, leftmax_v, and rightmax_v. These become
ChannelVar channels which are the unblocking versions of Channel. ChannelVar is a
subclass of Channel and therefore a ChannelVar can replace a Channel in code; they can
be intertwined because they have the same channel-interface. See listing above. These
unblocking channels can be analysed in CSP as an one-place override buffer within the
communication relationship.

The processes are declared in the main source file as follows:

//--- declare all processes

ControlHorizontal *motionControlH =

 new ControlHorizontal (joystick_horizontal, joystick_buttons,

feedback_horizontal, control_horizontal, chanleftmax_h, chanrightmax_h);

ControlVertical *motionControlV =

 new ControlVertical (joystick_vertical, joystick_buttons, feedback_vertical,

control_vertical, chanleftmax_v, chanrightmax_v);

VelocityControlLeftHorizontalProcess *alignLH =

 new VelocityControlLeftHorizontalProcess(feedback_horizontal,

control_horizontal, chanleftmax_h);

VelocityControlRightHorizontalProcess *alignRH =

 new VelocityControlRightHorizontalProcess(feedback_horizontal,

control_horizontal, chanrightmax_h);

VelocityControlLeftVerticalProcess *alignLV =

 new VelocityControlLeftVerticalProcess(feedback_vertical, control_vertical,

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 329

chanleftmax_v);

VelocityControlRightVerticalProcess *alignRV =

 new VelocityControlRightVerticalProcess(feedback_vertical, control_vertical,

chanrightmax_v);

HomingHorizontal *homingH =

 new HomingHorizontal(feedback_horizontal, control_horizontal, chanleftmax_h,

chanrightmax_h);

HomingVertical *homingV =

 new HomingVertical(feedback_vertical, control_vertical, chanleftmax_v,

chanrightmax_v);

The arguments correspond to the port names of the process-interface. These names can

be found in the interface description of the process classes. See for example the process-
interface specified by the constructor-interface in Section 3.4. Here the port names are
substituted by the local names of the channel pointers.

The compositional construct of the Figure 4 with CTC++ is:

//--- create CSP relationships

Sequential *seq_h = new Sequential(alignLH,alignRH,motionControlH,homingH,NULL);

Sequential *seq_v = new Sequential(alignLV,alignRV,motionControlV,homingV,NULL);

Parallel *par = new Parallel(seq_h, seq_v, NULL);

//--- timer code, see Section 3.7

The entire process will be executed by invoking run() on the top-level construct:

par->run();

Thus before the run() method of the top-level construct is invoked, all processes,

channels, constructs, timing, and objects have been created. Once the run() method is
invoked the real-time run bodies perform according to the communication relationships and
the compositional relationships in the CSP diagrams. After the top run() method
terminates the declared entities can be deleted and the program can gracefully terminate.
This top-level process is called a network building process. In our approach this top-level
process is the only hardware dependent process in the software since it is the only one that
sets up hardware dependent objects. All other processes are hardware independent since
they solely use channels and external channels access hardware devices. Whether channels
are internal or external is invisible to the processes since channels have a common and most
simplified fundamental interface for channel communication. Of course, processes may
depend on the data that flows through channels.

3.4 Motion controller process

The process-interface of motionControlH is specified by the constructor below. This
constructor assigns its ports to the ports of the child processes. The internal channels for
setpoint, stop, and zero are declared. Of course the 20-SIM process servoHorizontal
is declared.

330 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

ControlHorizontal::ControlHorizontal(ChannelIn<double> *joystick_axis,

ChannelIn<double> *joystick_buttons, ChannelIn<double> *feedback,

ChannelOut<double> *control, ChannelIn<double> *leftmax, ChannelIn<double>

*rightmax)

{

 //--- create channel-input array and a channel-output array

 this->chanin = new ChannelIn<double> * [4];

 this->chanout = new ChannelOut<double> * [2];

 chanstatus = new ChannelVar<int>(0); //(!)

 chansetpoint = new ChannelVar<double>(0.0);

 chanstop = new ChannelVar<double>;

 chanzero = new ChannelVar<double>(0.0);

 chanin[0] = leftmax;

 chanin[1] = rightmax;

 chanin[2] = feedback;

 chanin[3] = joystick_axis;

 chanout[0] = NULL;

 chanout[1] = control;

 //--- create the 20-SIM process

 servoHorizontal = new PositionControllerHorizontal20Process(chanin, chanout);

 //--- set up the alternative construct process

 alt = new Alternative();

 alt->add(new Guard(feedback));

 alt->add(new Guard(joystick_buttons));

}

The run() method performs the CSP diagram of Figure 4. Here we see that status and
chanstatus are used. We need to distinguish between a channel and a variable. This is
similar for zero and chanzero.

void ControlHorizontal::run(void)

{

 int status = 0;

 double zero = 0;

 do

 {

 switch(alt->select())

 {

 case 0: //--- controller process

 servoHorizontal->run();

 break;

 case 1: //--- stop button process

 joystick_buttons->read(&status);

 chanstatus->write(&status); // (!)

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 331

 break;

 }

 chanstatus->read(&status); // (!)

 } while (status != 2);

 //--- release output by setting to zero

 chanzero->read(&zero); // (!)

 control->write(&zero);

}

The switch(alt->select()) {} clause performs the alternative construct. The lines
marked with “// (!)” can be eliminated as part of optimization. This optimization
increases the performance of the application by using variables instead of ChannelVar
channels. This optimization requires further research and is not discussed in this paper.
Anyway, CSP diagrams contain enough information to allow these kinds of optimizations.

3.5 Alignment controller process

The process-interface of alignLH is specified by the constructor below

VelocityControlLeftHorizontal::VelocityControlLeftHorizontal(ChannelIn<double>

*feedback, ChannelOut<double> *control, ChannelIn<double> *max)

{

 this->chanin = new ChannelIn<double> * [1];

 this->chanout = new ChannelOut<double> * [3];

 chanstop = new ChannelVar<double>;

 chanin[0] = feedback;

 chanout[0] = control;

 chanout[1] = max;

 chanout[2] = chanstop;

 vleftHorizontal = new VelocityControlLeftHorizontal20Process(chanin, chanout);

}

Figure 7b and some information of Figure 7a translates to the following process body.

void VelocityControlLeftHorizontal::run(void)

{

 do

 {

 vleftHorizontal->run();

 chanstop->read(&stop);

 } while (!stop);

}

332 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

3.6 Homing controller process

The CSP diagram in Figure 10 is translated to:

HomingHorizontal::HomingHorizontal(ChannelIn<double> *feedback,

ChannelOut<double> *control, ChannelIn<double> *leftmax, ChannelIn<double>

*rightmax)

{

 this->chanin = new ChannelIn<double> * [4];

 this->chanout = new ChannelOut<double> * [2];

 chansetpoint = new ChannelVar<double>(0.0);

 chanstop = new ChannelVar<double>;

 chanzero = new ChannelVar<double>(0.0);

 chanin[0] = leftmax;

 chanin[1] = rightmax;

 chanin[2] = feedback;

 chanin[3] = chansetpoint;

 chanout[0] = chanstop;

 chanout[1] = control;

 homingHorizontal = new PositionControllerHorizontal20Process(chanin, chanout);

}

void HomingHorizontal::run(void)

{

 do

 {

 homingHorizontal->run();

 chanstop->read(&stop);

 } while (!stop);

 //--- release output by setting to zero

 chanzero->read(&zero); // (!)

 control->write(&zero);

}

3.7 Timing and sampling

The CSP diagrams are based on untimed CSP. We have created an environmental process
which takes part accepting every communication event in the software. We can command
the environmental process to accept events at certain moment in time with periodical
interval. This will be based on external channels. The environmental process will control a
timer and on interrupts of the timer the drivers inside the external channels will be executed
in sequence and at highest priority (atomic).

 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework 333

Environment::at(feedback_horizontal, starttime, Tsh);

Environment::at(joystick_horizontal, starttime, Tsh);

Environment::at(control_horizontal, starttime, Tsh);

Environment::at(feedback_vertical, starttime, Tsv);

Environment::at(joystick_vertical, starttime, Tsv);

Environment::at(control_vertical, starttime, Tsv);

The starttime is set to a value that is long enough for all initializations to be finished

and until it waits for the first events to occur. Usually we set the starttime to 10000
(=10000 µsec, or 100 ms). The sampling time for the horizontal control loop Tsh and for
the vertical control loop Tsv are set for the timed external channels. See @Tsh for the
external channels feedback_horizontal, joystick_horizontal, and control_horizontal in
Figure 3. When processes do not arrive on the timed channel before the environmental
process want to accept the communication event, then a TimeoutException will be
thrown by the channels and the processes will be released and terminate unsuccessfully. In
this paper we omit exception handling. JIWY is hard real-time and timeout-exceptions do
not occur so far. In further research we will investigate the exception framework under
various kinds of errors in the system.

4. Conclusions

Guidance for transformation of the control engineering block diagram language to the
control software processes and composition with other vital software components starts
coming in sight. The CSP diagrams provide links for refinements of the substantial control
system objectives towards complete runnable computer code and language for composing
the computer code as a concurrent ensemble. The CT libraries catch the necessary
constructs for building the compositional network structure, timing aspects and a CSP-
consistent hardware access framework. The control code is generated from CSP diagrams
and 20-SIM submodels.

This way, following an intuitive reasoning path, the interdisciplinary communication in
development phases of a mechatronic project, is freed from serious design flow
discontinuities.

References

[1] INMOS. Inmos Web Site, www.inmos.com,
[2] INMOS. occam 2 Reference Manual. C. A. R. Hoare International Series in Computer Science, Prentice

Hall. 1988. ISBN 0-13-629312-3.
[3] A.W. Roscoe. The Theory and Practice of Concurrency. R. Bird Series in Computer Sciences, Prentice-

Hall. 1998. 0-13-674409-5.
[4] G.H. Hilderink. Communicating Threads for Java (CTJ) home page, http://www.rt.el.utwente.nl/javapp,

2002.
[5] G.H. Hilderink, A.W.P. Bakkers and J.F. Broenink. A Distributed Real-Time Java System Based on

CSP. In The Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC-2000), IEEE Computer Society. Newport Beach, California: pp. 400-407, 2000.

[6] 20-SIM. Control Labs Products, www.20sim.com, 2003.
[7] P.C. Breedveld. Multibond graph elements in physical systems theory. In J. Franklin Inst. 319: pp. 1-36,

1985.
[8] J.F. Broenink. 20-Sim software for hierarchical bond-graph/block-diagram models. In Simulation

Practice and Theory. 7: pp. 481-492, 1999.
[9] G.H. Hilderink. A Graphical Modelling Language for Specifying Concurrency based on CSP. In IEE

334 G.H. Hilderink et al. / Robotic control law modelled and implemented with the CSP/CT framework

Proceedings Software, IEE. 150: 108-120, 2002. ISSN 1462-5970.
[10] D.S. Jovanovic, G.H. Hilderink and J.F. Broenink. A Communicating Threads (CT) Case Study: JIWY.

In V. S. Sunderam Communicating Process Architecture 2002, IOS Press. University of Reading, UK.
60: pp. 311-320, 2002. ISSN 1383-7575.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

