
Communicating Process Architectures 2003 235
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

Real-time and Fault Tolerance in
Distributed Control Software†

Bojan ORLIC and Jan F. BROENINK
Twente Embedded Systems Initiative,

Drebbel Institute for Mechatronics and Control Engineering,
Faculty of EE-Math-CS, University of Twente,

P.O.Box 217, NL-7500 AE Enschede, The Netherlands
E-mail: B.Orlic@utwente.nl, J.F.Broenink@utwente.nl

Abstract. Closed loop control systems typically contain multitude of spatially
distributed sensors and actuators operated simultaneously. So those systems are
parallel and distributed in their essence. But mapping this parallelism onto the given
distributed hardware architecture, brings in some additional requirements: safe
multithreading, optimal process allocation, real-time scheduling of bus and network
resources. Nowadays, fault tolerance methods and fast even online reconfiguration
are becoming increasingly important. All those often conflicting requirements, make
design and implementation of real-time distributed control systems an extremely
difficult task, that requires substantial knowledge in several areas of control and
computer science. Although many design methods have been proposed so far, none of
them had succeeded to cover all important aspects of the problem at hand. [1]
Continuous increase of production in embedded market, makes a simple and natural
design methodology for real-time systems needed more then ever.

1 Introduction

Being inherently parallel, control systems need transparent and structured way of using
multithreading in a distributed environment. Formal checking based on CSP algebra has
already been successfully applied to solve those problems in the occam programming
language. This programming language was used for design and implementation of the
scalable distributed systems constructed from transputer nodes and links. After the
transputer disappeared from the market, several occam-like libraries [2],[3] were
implemented in the popular programming languages. Section 2 starts by emphasizing the
need to modify a way in which occam constructs are implemented in a distributed
environment. Application model independent of target hardware architecture model is key to
efficient and flexible design. However, in occam those two are not totally independent since
not all constructs can be distributed. Constructs can actually easily be adapted to distributed
form, if they are treated in the same way as all other process. They should communicate with
their subprocesses using only channel communication and not knowing their identities.
Afterwards, applicability of the CSP based framework in control is explored. In Section 3,
various scheduling techniques for distributed occam-like programs are analysed. In Section

† This research is supported by PROGRESS, the embedded system research program of the Dutch organization
for scientific research, NWO, the Dutch Ministry of Economic affairs and the Technology Foundation STW.

mailto:B.Orlic@utwente.nl
mailto:J.F.Broenink@utwente.nl

236 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

4, the proposed approach to scheduling is extended to additionally lead to graceful
degradation in case of processor overloads and network congestions. Fault tolerance issues
and possibilities of system reconfiguration through mode changes are also discussed.

2 CSP application model

Hard real-time control data is usually exchanged over serial fieldbus protocols. The
proposed distributed framework is an attempt to conceptually extend the occam-like library
made by Hilderink [3], to achieve fault tolerance and real-time guarantees in fieldbus-based
distributed control systems. Occam programs are organized as a nested hierarchical
composition of constructs and processes. Nesting is allowed by the fact that constructs
themselves are also processes.

2.1 The application model should be independent of the hardware architecture model

Separating application and target hardware architecture models of embedded system plays a
key role in establishing a high degree of modelling and exploration flexibility [4]. An
application model is independent of the target architecture if an application designer can
make it exclusively based on the required functionality. Later in the design phase, this
application model can be mapped onto the range of hardware architectures. Process
allocation can be proposed in order to achieve real-time guarantees, best or fair utilization of
all processors and communications.

CSP-based models are claimed to be architecture independent, but this is not quite true
because only the parallel construct can be distributed (PLACED PAR). The actual design
consists of several hierarchies of CSP constructs and processes that will run in parallel on
different nodes.

The most desirable application model is the one where any process (keep in mind that
constructs are processes too) can be deployed on any node. Thus all constructs should be
able to be distributed in same way as a PLACED PAR from occam. Actually, this is true for
almost all constructs. The PRIPAR construct was derived to assign priorities in using a basic
shared resource - microprocessor. In a single processor system, PRIPAR priorities will
indeed determine the order of execution. However, in a distributed system the role of
PRIPAR construct is questionable and it does not make much sense to use it in the usual
way. Besides easier readability, maintainability, and reconfigurability, purpose of using the
SEQ construct, instead of putting whole sequential behavior inside one process, is so far an
unused opportunity for distribution. Different parts of sequential behavior can be executed
on nodes where the needed resources are. Sequential behavior can be implemented by using
parallel processes, or in this case processes on different nodes, where the end of the first
process in sequence triggers the next one and so on. Distributed SEQ organized in this way
should not be confused with a pipeline, because the first process in sequence can be
triggered again only after the last process in the sequence finishes. The ALT construct seems
to be the most problematic for distribution. Guards can be attached to remote channels in
same way they are attached to internal channels. There is just the additional communication
overhead when remote guard becomes ready.

2.2 Constructs are processes too

In practical implementations of occam-like libraries, constructs are often not realized in the
same way as other processes and instead of communicating only through channels, function
calls are used. This creates a situation in which a parent construct holds pointers to its

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 237

subprocesses, and each of them in turn has a pointer to its parent construct. When constructs
are distributed over several nodes, this hardcoding is the source of many difficulties and
artificial solutions must be applied to solve them. Furthermore, the essential reconfiguration
power of CSP lies in the fact that processes do not know about identity of processes they are
communicating to. Consequently, parent constructs should be protected from knowing the
identity of its subprocesses.

A solution is to view the constructs only as processes that take care of the execution of a
group of processes. Being a process itself, construct should communicate only through
channels. Instead of holding pointers to each other, process and its parent construct need just
to be correctly connected through a pair of channels. Thus, instead of using dedicated
function calls, every process execution could be triggered over a channel. Similarly, the end
of process execution is an event important for its parent construct. Instead of calling the
parent construct’s function, a process should use a dedicated channel to notify its parent
about that event. Since each channel communication is also a potential scheduling point, this
solution will be more preemptive in a natural way, eliminating the need for time-slicing
algorithms. Not only is this approach more in the CSP spirit, but it will also allow easier
distribution of processes over remote nodes. For instance a SEQ construct can trigger its
subprocesses in sequence without knowing their location. Less flexible, but more efficient
solution is to let each subprocess from a sequential construct, directly triggers next
subprocess after it has finished. A distributed PAR construct can trigger all of its
subprocesses on remote nodes using some kind of broadcast message and wait till all of its
subprocesses finish their executions.

Also to dynamically update the list of nested processes, channels for adding and
removing processes from/to a construct can be added to its interface. Those channels would
be checked for changes on beginning of every execution cycle.

2.3 Applicability of CSP application model in control

In existing control systems, there is often a gap between timing constraints of the control
theory model and its practical software implementations. This time inaccuracy can lead to
uncontrollable performance degradations [5]. Control system can encompass many control
and supervisory loops. Each loop can be further decomposed into the set of mutually
dependent cooperating tasks, described using precedence constraints (see Figure 1).

 Sensors
 Input

 Actuators
 Output

End-to-end
 deadline

P1

P3

P2

P4

P6

P5

Figure 1: Possible precedence graph for one of control loop chains

238 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

Tasks are possibly distributed over different processors, near data sources they use or
because some of them need special processors or hardware. Control loop chain starts with
sensor data measurements and finishes with delivering command data to actuators. The
order of task execution is on each processor determined by the use of an appropriate
scheduling strategy. Scheduling requirements are determined by classifying tasks and
messages, according to changes in their utility functions over time, in several well-known
categories. Hard real-time tasks require guarantee to be given that it will finish its execution
before deadline. In case of firm real-time tasks, there is no point to continue the task
execution after missing a deadline. However their execution can occasionally be skipped
without disastrous consequences. For soft real-time tasks reaching deadlines do not have to
be guaranteed and applying only best-effort strategy is sufficient. Non-real-time tasks have
no deadline. This classification sorts tasks based on the importance of achieving deadline.
For control systems, except mentioned deadline-oriented tasks, especially important are
precise [6] or time-bounded tasks [7]. Precisely periodic task [5] must execute, rather than
just to be released, exactly one period apart in predefined time moments. Due to finite clock
precision and the time needed for a processor to perform other activities, a small amount of
jitter is unavoidable. Larger the jitter less is the utility obtained by task execution (see Figure
2). To reduce influence of other tasks on the size of this jitter, genuine precise tasks should
not synchronize on events other then time events.

Figure 2: Utility functions for different tasks and message types (adapted from [6])

time

utility

time

utility

time

utility

time

utility

Although modern control theory is making some advances towards control algorithms that
handle time varying delays, most of the contemporary control systems are based on control
theory that assumes constant control delays and equidistant sampling [5]. Translated to the
task domain, this means that sampling and actuation tasks should be precisely periodic. Note
that precise and synchronized execution is more important in case of sampling tasks then in
case of actuation tasks. The system state variables change value over time subject to
physical laws. Jitter in sampling time will thus introduce uncertainty into the measured
value. Because an uncertainty is introduced even before control computations are done, jitter
in sampling time is more dangerous then jitter in actuating time. Since only a finite amount
of energy can be delivered to an actuator in one sampling period, in many cases a little late
actuation will still be better then no actuation. This leads to the implementation of actuation

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 239

tasks as processes which will be released after both input data from preceding computational
processes has arrived and a predefined actuation delay time is about to expire.

Often, instead of specifying explicit deadlines to every intermediate task forming a
precedence graph of computational algorithm, this behavior is defined only through end-to-
end deadlines [8]. End-to-end deadline is the only hard deadline for whole chain of tasks
inside control loop.

Precedence constraints (see Figure 1) of tasks from each control loop can easily be
translated into a hierarchy of CSP constructs and processes. Instead of specifying whole
construct hierarchies, the application designer can only specify relationships between
processes for which relationships are known. A design tool can then derive relationships that
stayed unspecified, like proposed in [9]. Non-uniqueness of this mapping leaves additional
space for various optimizations during design process.

Achieving real-time guarantees is most important in implementation of control systems.
Especially appealing sub area of research in CSP theory, is attempt to give CSP support for
real-time [10]. This real-time CSP theory is still not sufficiently mature for application
design purpose. Actually real-time CSP theory can only make time specifications. Execution
times of processes will always depend on properties of employed processors and
communication links and those are described in the hardware architecture model. It is hard
to expect that CSP theory will be extended in such an extent to behave like a simulator of
hardware properties and behavior. It seems wise to view real-time scheduling and formal
checking for multithreading hazards as totally orthogonal problems. Real-time behavior of
systems is target-architecture dependent and rely on appropriate priority assignment
scheduling, while occam-like process/channels application models enable the CSP formal
check. Applying formal checks can guarantee freedom of deadlocks, livelocks and race
conditions during normal system operation. But after component failure, components
waiting on communication with failed components will be deadlocked. This situation must
be handled by using timeouts and other error detection mechanisms, and by invoking
recovery mechanisms possibly based on redundancy.

In order to really simplify system testing and validation by using CSP formal checks, the
use of asynchronous communication must be maximally restricted. Furthermore, all parts of
CSP based library including scheduler and various communication link receivers &
transmitters should be built using construct / process / channel model. Only in this way, it is
possible to be sure that overall system will not deadlock.

3 The target-architecture model: Can scheduling achieve real-time guarantees?

Instead of just gluing a communication layer to existing single system architecture, design of
distributed real-time systems should be treated in the holistic way. Scheduling in distributed
systems is more complicated then scheduling in its single processor counterpart. Reason lies
in the fact that processor time scheduling and network resources scheduling are not totally
independent of each other.

3.1 End-to-end deadline scheduling in distributed environment

In a distributed system, scheduling decisions are made locally for each node and our
hierarchy of dependent occam-like processes spans over many nodes. If processes
communicate reasonably often, natural scheduling/descheduling on channel communication
will implement approximately fair distribution of processor time. But in real-time systems,
fair distribution of processor time would conflict the fact that not all processes have same
importance of execution. Some processes contribute more to the system behaviour then

240 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

others. Some have more stringent timing requirements. The hierarchy of constructs and
process encompasses part of the knowledge on process ordering. More precisely it defines
which processes are done in a particular order and which are executed in parallel. Creating
hierarchy of dispatchers by attaching a dispatcher to each construct works fine in case of a
single processor system. Applying the same concept in a distributed system is not so good
idea, since each dispatcher would under its control have subprocesses that might be on
different nodes. Hierarchy of constructs and processes cannot directly be used to guarantee
real-time scheduling. Still, this information reduces non-determinism considering the order
of execution on each processor by imposing constraints on valid schedules. Those
constraints can be used to transform the end-to-end deadline of each control loop into
conservative deadlines attached to each process. Let us designate worst-case execution time
of any process as WCET and minimal case execution time as MinCET. One of possible
mappings for a set of processes from Figure 1 to CSP hierarchy of channels and processes is:
(P1||P2);P3;(P4||P5);P6. WCET, MinCET and utility functions derived for the application
model of that control loop are shown in Figure 3.

Figure 3: Deriving utility functions and deadlines for one control loop chain

According to [8] in case of a hierarchical approach to end-to-end scheduling, the best
strategy is to use distributed scheduling based on both global and local information. In this
case global information is obtained by offline use of application-specific constructs and
process hierarchy to derive intermediate deadlines for each process. Those deadlines could
then be applied locally for run-time scheduling. The absolute deadline is determined by
subtracting WCET of all following processes and remote communications from the time
when a control loop chain execution cycle ends. If there are multiple paths through the chain
for which real-time guarantee is necessary, the deadline should be calculated considering
each path and the worst-case value should be chosen. The relative deadline is obtained by

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 241

subtracting the task release time from the absolute deadline. The simplest and most often
applied priority assignment method is rate monotonic (RM) approach.

3.2 RM approach

Complex control systems encompass several control loops with possibly different sampling
periods. Those control loops might not be totally independent. For instance, supervisory
loop can occasionally update a parameter inside some control loop. The rate monotonic
approach would assign priorities to be proportional to the respective sampling frequencies.
This gives the scheduler freedom to execute task anywhere between two consecutive
periodic releases of the task. Note that this is somewhat different from precise in time
execution. To guarantee real-time execution of all tasks, this approach assumes that
scheduled processes are mutually independent and that deadlines are equal to the period,
which does not hold in this case. Even on a single processor, RM approach can be strictly
applied only if each control loop chain is implemented as one process with a deadline equal
to its period. Applying rate monotonic scheduling locally on each node and on the network
is obviously not identical to the case of applying it to the same software system on a single
processor. Priorities are properties defined for each process on the system level, but applied
on the local level. If we consider two active processes with different priorities on different
nodes, process with lower priority on the less loaded node can be executed before process
with higher priority on the overloaded node. Thus, in distributed systems global priority
does not determine order of execution.

Even if we could prove schedulability of system designed in this way, this approach
would still have a major disadvantage that it does not lend itself naturally to applying fault
tolerance methods. Reason lies in the fact that in RM scheduling there is no distinction of
importance priorities and deadline priorities. If we try to achieve graceful degradation by
organizing a control loop process further as concurrent execution of several process
hierarchies with priorities based on importance, priority inversion situation can happen. For
instance let us consider two control loop chains with different sampling frequencies running
in a RM-based PRIPAR. If the RM approach is used, RM priorities must have priority over
importance priorities. Not important lowest priority optional process belonging to more
frequently executed control loop, will have a higher priority then essential hard real-time
process belonging to control loop executed less frequently. This example of priority
inversion, resulting from mixing RM priority assignment and importance priorities, is
illustrated in following occam-like pseudo code:

PRIPAR
 Control loop 1
 WHILE TRUE
 SEQ
 TIME? samplingTime1
 ...Sensor measurments
 ...Control computations
 PRIPAR
 ...Essential (hard r.t.)
 ...Optional 1
 ...Optional 2
 ...Actuation
 Control loop 2
 WHILE TRUE
 SEQ
 TIME? samplingTime2
 ...Sensor measurements
 ...Control computations

242 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

 PRIPAR
 ...Essential (hard r.t.)
 ...Optional 1
 ...Optional 2
 ...Actuation

3.3 Deadline based scheduling

Whenever the deadline is not equal to the period, modification of rate-monotonic approach
known as deadline-monotonic (DM) priority assignment can be applied. Instead of getting
priority proportional to the sampling frequency, each process will get priority inversely
proportional to its relative deadline. The scheduler has now freedom to execute tasks in any
time between task release and its deadline. In our case, conservative absolute deadlines can
be derived for each process by subtracting the sum of WCET of all following processes from
the end-to-end deadline. However, relative deadlines will depend on process release
moments, which are dependent on the execution state of all processes in system and cannot
be determined in practice. Strict application of deadline monotonic priority assignment is
therefore not possible.

With absolute deadlines derived from hierarchy of constructs and processes, applying
earliest deadline first (EDF) scheduling is possible. This approach is usually avoided
because a large amount of overhead is introduced by recalculating priorities, especially in
systems with several sampling frequencies. Introducing acceptable constraints can in some
cases though lead to more efficient deadline and priority recalculation. Choosing sampling
periods in such a way that there is not a to small biggest common divisor is usually not too
much to ask. This value should not be small, because it will be the basic period designated
by time reference messages, announced periodically over the fieldbus by a time master.
Time reference messages must have highest priority on the fieldbus. If the maximum latency
time for the highest priority message is not small enough, other ways (like interrupts) must
be used to synchronise clocks. Local schedulers will use these messages to perform
sampling and to synchronize their timers.

To efficiently use an EDF approach a least common multiple of applied sampling periods
should be calculated as well. This value will designate the large cycle used as time line for
expressing deadlines. Deadlines have not to be recalculated all the time. The scheduler
knows the current time and the deadlines of processes expressed as offsets from start of the
large cycle. A process only needs to recalculate its deadline at the very end of its execution
by increasing the last absolute deadline for one period of its control loop. When the deadline
value exceeds the large cycle, it is given its first value again. The scheduler always chooses
to execute process with deadline nearest to current time. Thus, due to the special properties
of control systems, recalculation of absolute deadlines for EDF scheduling can be done in
very efficient way.

Advantage of using fieldbus time reference message compared to using local timers is
that all sampling will be triggered simultaneously and with a time precision dictated by the
most precise processor in system. As explained in section 2.1., synchronized and precise
execution is more important for sampling then for actuating tasks. Therefore, while time
reference message should be used to determine sampling points, time points of actuating can
be determined using local timers. To ensure that sampling is done precisely in time and that
sensor measurements can efficiently be distributed to all processes that need it, sampling
processes should not synchronize with computational processes directly. Same sensor data,
needed by several processes on different nodes, can be broadcasted. Synchronization and
triggering control loops can be done in separate trigger process. This process execute
triggering scheme describing the time execution pattern of the current operation mode. The

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 243

trigger process is executed after all required sampling processes have finished or after the
timeout in case of sensor failure. Thus it can also handle cases when various sensors data is
unavailable. To minimize communication overhead trigger process is distributed. On each
node part of triggering scheme, concerning only the control loops initiated there, is placed.

To illustrate some of architecture decisions more clearly simple control system will be
considered as an example. Let system consists of Control loop 1 and Control loop 2 with
sampling periods T and 2T respectively, and Supervisory loop executed every 3T, where T
is length of the basic cycle. Required length of one large execution cycle is obviously equal
to 6T. More insight into the time patterns of loop executions can be given using some kind
of sketch as in Figure 4. The vertical axis shows the flow of time inside one large cycle and
the horizontal arrows present points in time when precise sampling and actuation tasks
should be executed.

Figure 4: System consisting of three control loops executed on different sampling frequencies

A readable way to describe the functionality of the highest level of the system is using some
kind of occam-like pseudo code:

244 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

largeCycleSize=6
Interrupt Service Routine SAMPLING_ISR[i] {Signal data[i] ready}

PAR
 SEQ
 WHILE(true)
 if((basicCycleNum++)==largeCycleSize) basicCycleNum=0
 FIELDBUS_Broadcast? time ref. msg. {largeCycleNum, basicCycleNum}

 -- after receipt of this message on each node START_CONVERSION(basicCycleNum)
 -- process will trigger sampling of appropriate A/D converters based on
 -- basicCycleNumber; after conversion completion interrupts are triggered

 START_CONVERSION(basicCycleNum)
 CLOCK? SamplingTime
 PAR
 SamplingProcess[0]
 -- wait data[0] ready
 A/D_Conv_register[0]?data[0]
 OVERWRITE_BUFFER[0]!data[0]
 SamplingProcess[1]
 -- wait data[1] ready
 A/D_Conv_register[1]?data[1]
 OVERWRITE_BUFFER[1]!data[1]
 ...
 -- This PAR construct on exit broadcast SamplingOver message

 Trigger process
FIELDBUS_Broadcast? SamplingOver{list Of unavailable Sensor data}
 -- here unique triggering scheme is shown. When not all control loops
-- start on same node, triggering is done only on node where loop starts
 SWITCH (basicCycleNum)
 CASE 0:
 Control_loop1.START!SamplingTime
 Control_loop2.START!SamplingTime
 Supervisory_loop.START!SamplingTime
 CASE 1:
 Control_loop1.START!SamplingTime
 CASE 2:
 Control_loop1.START!SamplingTime
 Control_loop2.START!SamplingTime
 CASE 3:
 Control_loop1.START!SamplingTime
 Supervisory_loop.START!SamplingTime
 CASE 4:
 Control_loop1.START!SamplingTime
 Control_loop2.START!SamplingTime
 CASE 5:
 Control_loop1.START!SamplingTime

 Control_loop 1
 SEQ
 WHILE(true)
 START? SamplingTime
 PRIALT
 PARAMETERS1_UPDATE?par
 parameterUpdate()
 SKIP
 ...Get sampled data from overwrite buffers
 ...CALCULATIONS (hierarchy of distributed CSP processes and constructs)
 CLOCK? AFTER SamplingTime+ControlDelay[1]
 ...ACTUATING
 Control_loop 2
 SEQ
 WHILE(true)
 START? SamplingTime
 ...Get sampled data from overwrite buffers
 ...CALCULATIONS (hierarchy of distributed CSP processes and constructs)
 CLOCK? AFTER SamplingTime+ControlDelay[1]
 ...ACTUATING
 Supervisory_loop
 SEQ
 WHILE(true)
 START? SamplingTime
 ...Get sampled data from overwrite buffers
 ...CALCULATIONS (hierarchy of distributed CSP processes and constructs)

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 245

 ...PARAMETERS1_UPDATE!par

START_CONVERSION is dependent of basicCycleNum value because not all sensor measurements are
performed every basic cycle. This variety of sampling frequencies reduces the possibility to
trigger all A/D conversions using a single broadcast signal. A satisfying alternative is to
implement this part of code as a short sequence of assembly lines, triggering conversions
always in the same order and with the same offset within sampling period. Once the
measured data is collected in the registers of A/D converters, the execution order of
sampling processes fetching that data is not so important. All those processes can be
executed in parallel. Sampling processes that do not require data every basic cycle will have
an internal counter to effectively reduce the sampling frequency. Same sensor data can be
used by several processes from different control chains. Some of those control loops might
have an execution frequency less then the sampling frequency of the used sensor. The
sampling process might in that case write data to an overwrite channel or buffer in case all
samples should be collected.

Each calculation block represents a hierarchy of distributed mutually dependent
processes. Each of those processes has an initial deadline value calculated offline based on
WCET times and the end-to-end deadline. On the very end of each process execution, its
deadline is recalculated by adding the period. Obtained deadlines are used in local processor
and network schedulers to implement EDF policy.

For fault tolerance reasons, several nodes equipped with high precision oscillators are
capable to take over the role of the time master in case it fails. If some process misses its
relative deadline, this still does not imply failure of the system. Reason is that extra
conservatism is added while transforming end-to-end deadline into deadlines of intermediate
processes. It is important to perceive that only the end-to-end deadline of the whole control
loop chain is a hard deadline. If any subprocess misses its deadline, derived under worst-
case assumptions, that still does not imply that end-to-end deadline will also be missed.
Deadlines derived for intermediate processes can thus be classified as soft real-time, as it
was depicted in Figure 3 using concept of utility functions. From Figure 3 it is possible to
conclude that missing end-to-end deadline is unavoidable only after the current process is
not completed and time reaches value determined by subtracting MinCET of all following
processes from the end of the loop chain cycle time. At this point, an exception is raised and
the system performs what ever fault-tolerance measures are needed to prevent disaster [11].

4 Graceful degradation and reconfigurability

Being mission-critical by definition, hard real-time control systems usually have to
encompass some support for fault tolerance. Sometimes, perhaps due to failed components,
there is not enough processor time available to perform all computations or not enough
network bandwidth to send/receive all messages in time. In same time it is important to
observe that not all tasks and messages contribute equally to the overall system behavior.
Instead of complete failure, reaction to processor overloads or network congestions must be
omitting execution of less important processes resulting in somewhat lower, but still
acceptable performance of delivered service. Reconfiguration is introduced due to hybrid
nature of the designed system or due to the need for software restructuring as respond to,
planned or failure caused, changes in hardware architecture or environment.

Several approaches to graceful degradation can be used:
1) Increasing sampling periods of control or supervisory loops can reduce time

needed for application execution. This is possible because the sampling period is
usually not determined based only on Shannon’s theorem, but also to satisfy some

246 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

performance requirements [5]. However, changing a sampling period implies that
prefilters must be changed too [12]. Possibly, this can be implemented. Anyway,
filter dynamics and sampling periods are parts of system model and thus the
whole model must be recalculated. [12] A solution could be to predefine
alternative computational algorithms for several values of sampling periods.

2) Simplified alternative processes that need fewer resources can be employed,
resulting in degraded quality of service.

4.1 How can graceful degradation be naturally achieved?

The methods described in section 3.4 attach priorities directly to each process and leaves the
PRIPAR construct unused. One of the reasons is that PRIPAR priorities can be defined only
during design time, and deadline based priorities are changing dynamically. More structured
approach would be to derive PRIPAR priorities based on the importance level of process
(essential, optional level one, optional level two …). If priorities were derived hierarchically,
their values would be dependent of application structure. Although nested hierarchies of
PRIPAR processes exist, importance priorities should not be dependent of the position in
the hierarchy. This means that process importance priority defined inside PRIPAR is also its
global importance priority. Essential processes would have the highest importance priority
and several additional levels of optional processes can exist in the system. Thus, the lowest
importance priority that can be executed in time, will define the level of system
performance. Assigning this kind of priorities can help to divide system execution on several
layers and accomplish graceful degradation in case of overload. If any essential process
needs to be executed, it will always have priority compared to other optional processes. If
the system is additionally made as totally pre-emptive, processes from a lower priority level
can never jeopardize real-time execution of higher priority layers. Thus, the essential layer
can be seen as separate hard real-time system. Several optional levels with high priority
would form the soft real-time layer of the application and the rest of the levels would not
have deadlines and will form the non real-time layer of the system. Execution of firm
processes can be omitted occasionally, but not every time. To prevent starvation, firm
process can, in addition to its basic importance priority, experience temporary priority boost
each time it is omitted. This boost is cancelled after such a firm process is executed. To keep
guarantees for the hard real-time layer unaffected by this, importance priority of firm
process after applying priority boost must always be less then the essential priority.

The deadline value and importance priority are encapsulated in each processes, and made
viewable to the scheduler. The schedulability is tested offline during the process allocation
phase. Some processes will have a fixed allocation due to their connection to specific
hardware. Allocation of the other processes can be determined in a way that will guarantee
real-time behaviour of overall system. The allocation is the result of a complex optimization
process aiming at fair distribution of the load to all nodes and minimizing network
communication, especially for high priority processes, while satisfying time constraints.
Local schedulers are executing EDF policy with several priority groups according to
graceful degradation levels.

4.2 Graceful degradation in the communication layer

Absolute deadlines can also be derived for each remote communication. Priority of
messages on the fieldbus will be determined based on the importance priority and its
deadline. Dominant part of message priority is the importance priority, which is set to the
value of priority of the sending process. In this way, more essential layers of execution will
always be given priority over more optional layers. This means that in case of network

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 247

congestion, the ability to transfer messages in time will gracefully degrade. The second part
of the message priority will be derived based on its deadline if there is one. For instance, in
case of CAN, the message ID is used both for arbitration and addressing purposes. Such a
CAN message ID can, therefore, be divided into several fields sorted by relevance:
importance priority field, deadline priority field, one bit for specifying whether data or
protocol control information is transmitted, one bit for specifying if content is rendezvous
message acknowledgment or plain message, one bit for broadcast and two fields needed to
uniquely identify each channel: node ID field and channel ID field. By using node identifiers
Channel IDs can be assigned locally on each node.

Priority(importance|deadline)
(PRIORITYFIELDSIZE)

Protocol/data
(1B)

/ack
(1B)

broadcast
(1B)

nodeID
(NODEIDFIELDSIZE)

channelID
(CHANNELIDFLDSIZE)

Main principles of communication subsystem are to encapsulate package protocol details in
a passive link driver[13] object and all hardware specific functionality in a passive device
driver object. Link drivers are plugged into the remote channels transparently of user
process. In this way, the process using a channel does not know whether that channel is
remote or local. Each remote channel has a link driver object and there is one unique device
driver object per node. Any two link drivers speaking the same language (having same
package protocol) can communicate. Interrupt service routines initiated by the hardware side
of communication subsystem will only release blocked processes: producers or consumers to
allow them to continue executing write () or read () function of link driver. Synchronization
to access the communication resource (like CAN transmit mailbox) as well as all other
device specific functionalities and register configurations are hidden in the device driver
object. The prioritization in accessing communication resources is done in a natural way
because semaphores sort waiting-queues based on priorities of blocked processes.

4.3 Reconfigurability

Many control systems are hybrid and encompass several modes of operation depending on
current place in the system’s state-space. For instance, in airplanes separate modes can be
defined for: take-off, normal flight, landing and various emergency situations. In systems
with several modes of operations, each process can be used in one, several or all modes. In
each mode, the same process can be employed inside different configuration and with
different priority level. For every mode, separate hierarchy of constructs is predefined. Only
one of several alternative hierarchies can be active at the same time. Thus, mode change will
trigger fast system reconfiguration by choosing an alternative hierarchy of constructs to be
executed in the next cycle. Information on the current mode or information on the mode
change must still be passed to a process whenever it is triggered. This is another situation in
which the described solution using start channels to trigger process execution from its parent
construct appears to be useful. In each mode, different levels of graceful degradation are
defined by designating different priorities to system parts. During the design phase, each
mode must pass a schedulability test, a CSP formal check and a control system performance
simulation. Once the system is designed in this way, a central reconfiguration management
process (possibly being implemented as human operator) can only trigger mode changes,
which will be performed automatically.

More flexible online reconfiguration can be achieved by implementing a reconfiguration
tool on a remote node. This tool would monitor program execution and perform optimization
techniques for load balancing and it would execute schedulability tests and formal check all
potential alternative configurations. Due to the design principle, described in section 3.1,
that processes are not hard-coded into the parent constructs, hierarchies of constructs and

248 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

processes could be modified easily for inactive modes. New modes could also be defined,
tested and loaded online. Such software system would be able to respond without restarting
to major planned changes in software as well as in its environment structure. New nodes
could be added and employed easily; nodes that need maintenance would be removed from
system through planned reconfiguration and possibly transient period of system performance
in appropriate level of graceful degradation.

4.4 Fault tolerance issues

Fault tolerance is important aspect of mission critical control systems, and it must be
considered during design of such a system in as much as possible natural way. Reliability of
control systems is usually increased by choosing robust control laws, non-sensitive on order
of operations or finite precision of calculations, or by calculating and reducing the sensitivity
of control loop on time delay, inserting redundant sensors or actuators into system, using
sensors to check if actuators had performed requested action [12]. But besides this design
time approach, additional software methods are needed to enable run-time error detection
and determine how the system should respond in case of error. Therefore, the next research
area would be to investigate possibility and adjustments needed to apply well-known fault
tolerance techniques in the context of this framework. Refining every PAR construct to
PRIPAR, by defining importance priority of each process, will divide the system into several
layers of graceful degradation. But this is not enough. Fault tolerance must be taken care at
all levels in the system architecture: on level of signals, data structures, processes, channels,
constructs, nodes, network, cluster of nodes and on global system level. On each level,
appropriate error detection and recovery mechanism can be applied and a minimum level of
service is defined to distinguish operational and failed components.

Every primitive process is sequential and every sequential execution can easily be divided
into one or several recovery blocks. Recovery block [1] including several concurrently
executing processes is much harder to implement. After error is propagated through inter-
process communication, all processes participating in that communication can be affected.
Rigorous application of recovery blocks in primitive processes and sequential constructs will
minimize the probability of error propagating through channels. However, this might not be
enough, since acceptance test might need to check invariants including global state variables
defined out of the scope of such recovery block. In a software system organized as
hierarchical layers of communicated processes, the global state is distributed locally in every
process. While sequential execution can be considered to change the state in deterministic
way, concurrent execution yields different patterns of state traces, depending on actual order
of execution. The correct point for executing acceptance test in PAR constructs is
immediately after all inner processes in that parallel construct have finished execution and
the final state of the current execution cycle is reached. One of possible implementations is
that each process makes part of its internal state viewable via an asynchronous channel. If
the acceptance test fails, all processes from the recovery block reload previous state.
Acceptance tests must contain knowledge of state variables relations as well as which
processes are maintaining needed state variables. Thus, those tests must be defined
separately for each mode and redefined whenever some operation mode is redesigned. If
processes from a PAR construct can be partitioned into groups with no communication
between groups, separate recovery block can be defined for each group. Only for those
groups that did not pass the acceptance test, alternative execution is started.

Processes or constructs must report their failures to their parent constructs using status
messages in their end channels. This is another important factor in deciding to use end
channels instead function calls to notify parent processes of finished execution. Service

 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software 249

status messages can deliver combination of error flags: value error in case of failed
acceptance test or timeout error in case of missed deadlines. If the detected error cannot be
handled locally, it is propagated to higher levels in hierarchy. When the error reaches the
highest level and cannot be handled, some emergency mechanism is used to get the system
to a safe state. If the part (node, sensor, actuator, network) that needs maintenance is
identified, the problem is solved by excluding that part from system operation and replacing
its functionality by activating passive replicas on other nodes.

5 Design tool requirements

A designer must be supplied with a tool that offers a simple transformation path from
complex requirements to a simple, safe and testable implementation. A control algorithm
and its implementation represent two views of the same system model. Therefore, the
strength of the used design methodology would especially be improved if the design tool is
made in combination with simulation and control design tools like Matlab, Simulink or
20SIM. In those tools, system models and control algorithms are traditionally designed using
a functional block diagrams. When translating this to CSP, each block could be turned into a
process, and passing data between blocks would become communication over CSP channels.
In the implementation phase, the tool would take as inputs this occam like structure derived
from the control algorithms. Real-time requirements of model would be refined by
specifying sampling periods and end-to-end deadlines for each control loop chain. To ensure
that automatically generated code is safe, design tool must be equipped with a CSP-based
formal checker. Combining this with some graphical modelling language, like GML
proposed by Hilderink [9], would make the design process even more natural and easy. CSP
models should include this library’s underlying multithreading kernel model and network
protocol models. The application level design methodology could be further improved by
translating existing design patterns to occam-like application models and constructing new
CSP design patterns as guide to solving typical problems in the real-time control application
area.

The design tool should be able to recalculate reliability and other dependability features
of the system. Refining every PAR construct to PRIPAR, by defining importance priority of
each process, will divide system into several layers of graceful degradation. For any signal,
the allowable range and maximum rate of change and additional ways of protection could be
specified. A library of fault-tolerance enabled components and design patterns can be made
to facilitate automatic code generation. For instance, replicated PAR components can be
made to ensure replica’s synchronization and consistency. Also based on given invariant
constraints, a tool could propose how to construct recovery blocks and generate code
automatically. Influence of various faults and component failures should be easily simulated,
leading to discovery of weak points in system.

Architecture model should describe used hardware components. Programmable
processing node models (memory model, instruction execution times, cache…) and detailed
fieldbus models should be made. Using those models, time and reliability behavior of single
application model could be simulated for range of target architectures. Based on those
simulations and analysis, appropriate architecture and optimal process allocation would be
chosen. It would be possible to validate complete system by refining application level
simulation considering influence of chosen architecture. For instance, special libraries like
TrueTime and Jitterbug [14] can be used to explore influence of determined worst case time-
delays on control algorithm, giving us opportunity to adapt control algorithms.

250 B. Orlic and J.F. Broenink / Real-time and Fault Tolerance in Distributed Control Software

6 Conclusions

In this paper, several design principles were proposed leading to consistent, designer
friendly, CSP-based architecture for design of fault tolerant, distributed, hard real-time
control systems. Avoiding hard coding of processes inside parent constructs leads to
enhanced flexibility and easier distribution. The proposed priority assignment method
integrates graceful degradation and real-time scheduling. This approach tries to make a
unified view on several distinct important areas in real-time control software design. It
expresses need to treat design of distributed real-time systems as whole and not as gluing
real-time communication layer to existing systems. Properties of design tool needed to
achieve this unified design view are explored.

References:

[1] Burns A., Wellings A., Real-Time Systems and Programming Languages Ada95, Real-time Java and
Real-Time POSIX. Third ed. INTERNATIONAL COMPUTER SCIENCE SERIES, ed. M. A.D. 2001,
Essex, UK: Pearson Education Limited.

[2] Welch, Peter H. Java Threads in the Light of occam/CSP. in Architectures, Languages and Patterns for
Parallel and Distributed Applications, WoTUG-21. 1998. Amsterdam: IOS Press.

[3] Hilderink, G.H., Broenink, J.F., and Bakkers, A.W.P. Communicating threads for Java. in Proc. 22nd
World Occam and Transputer User Group Technical Meeting. 1999. Keele, UK.

[4] A.D. Pimentel, P. van der Wolf, E.F. Deprettere, L.O. Hertzberger, J. T. J. van Eijndhoven, S. Vassiliadis.
The Artemis Architecture Workbench. in Progress workshop on Embedded Systems. 2000. Utrecht, the
Netherlands.

[5] Wittenmark B., Nilsson J., Torngren M. Timing problems in Real-time control systems. in American
control conference. 1995. Seattle.

[6] Buttazzo, Giorgio C., Hard real-time computing systems: Predictable Scheduling Algorithms and
Applications. The Kluwer international series in engineering and computer science. Real-time systems.
2002, Pisa, Italy: Kluwer Academic Publishers.

[7] Bakkers A.W.P., van Rooij R.M.A., James L . Design of a real-time operating system (RTOS) for robot
control. in OUG-7 Technical Meeting. 1987. Grenoble, France.

[8] Liu, Jane W. S. Issues in distributed real-time systems. in IDA Workshop on Large, Distributed, Parallel
Architecture of Real-Time Systems. 1993. Fairfax, Virginia.

[9] Hilderink, Gerald H. A graphical Specification Language for Modeling Concurrency based on CSP. in
Proc. Communicating Process Architectures 2002. 2002. Reading, UK.

[10] Schneider, S., Concurrent and Real-Time Systems: The CSP approach. 2000: Wiley.
[11] Orlic B., Broenink, J.F. CSP channels for CAN-bus connected embedded control systems. in Progress

2002 Workshop. 2002. Utrecht.
[12] Astrom, K.J., Wittenmark B., Computer-Controlled systems : theory and design. 3rd ed. 1997: Prentice

Hall, Inc.
[13] Hilderink, G.H., Bakkers, A.W.P., and Broenink, J.F. A Distributed Real-Time Java System Based on CSP.

in The third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing ISORC
2000. 2000. Newport Beach, CA: IEEE.

[14] Cervin A., Henriksson D., Lincoln B., Eker J., and Arzen K., How Does Control Timing Affect
Performance? IEEE Control Systems Magazine, 2003. 23(3): p. 16--30.

	Introduction
	CSP application model
	The application model should be independent of the hardware
	Constructs are processes too
	Applicability of CSP application model in control

	The target-architecture model: Can scheduling achieve real-t
	End-to-end deadline scheduling in distributed environment
	RM approach
	Deadline based scheduling

	Graceful degradation and reconfigurability
	How can graceful degradation be naturally achieved?
	Graceful degradation in the communication layer
	Reconfigurability
	Fault tolerance issues

	Design tool requirements
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

