Communicating Process Architectures — 2002 79
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
I0S Press, 2002

On the Complexity of Buffer Allocation in
Message Passing Systems

Alex BRODSKY, Jan Baekgaard PEDERSEN and Alan WAGNER
Department of Computer Science, University of British Columbia
Vancouver, BC, Canada, V6T 174

{abrodsky,matt,wagner }@cs.ubc.ca

Abstract. In modern cluster systems, message passing functionality is often off-
loaded to the network interface card for efficiency reasons. However, this limits the
amount of memory available for message buffers. Unfortunately, buffer insufficiency
can cause an otherwise correct program to deadlock, or at least slow down. Hence,
given a program trace from an execution in an unrestricted environment, determining
the minimum number of buffers needed for a safe execution is an important problem.
We present three related problems, all concerned with buffer allocation for safe and ef-
ficient execution. We prove intractability results for the first two problems and present
a polynomial time algorithm for the third.

1 Introduction

For efficiency reasons, most modern clusters off-load message passing functionality to the
network interface card (NIC) [1] to facilitate a greater overlap of computation and communi-
cation. Unfortunately, most NICs have two orders of magnitude less memory than the average
host, which makes message buffers a limited resource. Thus, programs that use asynchronous
message passing and execute correctly otherwise, might dead-lock when executing on a sys-
tem where parts of the message passing system have been off-loaded to the NIC; such issues
have been investigated in [2, 3, 4].

Ideally, we want to detect the possibility of dead-lock and prevent it from happening.
The MPI message passing standard [4] defines a “safe” program as one that requires no
buffering and uses synchronous communication. Since better performance can be obtained
by taking advantage of system or network buffers to reduce unnecessary synchronizations—
asynchronous communication—the notion of a “k-safe” (asynchronous) program arises. A
“k-safe” program requires buffers to guarantee completion [1, 5, 6].

Unfortunately the value of is usually not known a priori. In this paper we investigate
the complexity of determining a minimum value bffor programs that use asynchronous
buffer communication and have static communication patterns. Under these assumptions we
show that the problem of determinirtg the minimum number of buffers for deadlock free
execution, iSNP-hard. Furthermore, we show that the simpler task of verifying whether
a buffer assignment is sufficient to avoid deadlockddNP-complete. Finally, we give a
polynomial time algorithm for determining the exact number of buffers needed to ensure
nonblocking sends, achieving efficient program execution. Interestingly, the nonblocking
requirement makes the problem tractable! Motivations and precise definitions of the system
and the problems considered are given in the following sections.

80 A. Brodsky et al. / The Complexity of Buffer Allocation

2 Background

Determining the k-safety of a program is important for several reasons. First, the seman-
tics of asynchronous communication depend on the availability of buffers, and change—in
an implementation dependent fashion—when buffer space becomes exhausted. Since buffer
space is typically limited, or pre-allocated during application initialization, a priori knowl-
edge of the application’s buffer requirements ensures that communication semantics do not
change part way through the execution. Second, to improve performance, many systems use
zero-copy techniques: messages are transferred directly from the NIC to application buffers.
Since these buffers must be pre-allocated by the application, the application must know the
number required. Third, one of the most common purposes of parallelization is to enable
the solutions of bigger problems on larger data sets. Typically, host memory is the limiting
resource and, if the number of buffers needed is known, memory utilization can be improved.
Finally, communication libraries like MPI allow the application to manage the buffer space;
this can be optimized if the number required is known in advance.

The most natural primitives for asynchronous buffered communication are “nonblock-
ing sends” and “blocking receives”; these are also the standard communication primitives in
MPI [4] and PVM [7]. Cypher and Leu formally define the former aB@ST-SENDm-
mediately followed by &VAIT-FOR-BUFFER-RELEASENd the latter asBOST-RECEIVE
immediately followed by &AVAIT-FOR-RECEIVE-TO-BE-MATCHEB, 9]. Informally, the
send blocks until the message is copied out of the send buffer and the receive blocks until the
message has been copied into the receive buffer. We only consider point-to-point communi-
cation similar to the model used in [10], since multicast and broadcast communication can
be simulated with point-to-point communication.

A multiprocess systerfy is a set of simultaneously executing independent asynchronous
processes that perform a computation by interspersing local computation and point-to-point
message passing between processes; these are referrel-tmeputationsn [10]. Such
a system is equivalent to the system with three different events like the one defined by Lam-
port [11]: send events, receive events and internal events. Send events cause messages to be
sent, receive events causes messages to be received and internal events represent computa-
tion on internal state. The system uses nonblocking sends and blocking receives; processes
synchronize by communicating and no assumptions can be made about the computation time
of any process.

When a process performs a send, the message may either be sent to the receiving process
where it is either received or buffered, or the sending process blocks. If the receiving pro-
cess is ready to receive (i.e., has issued a receive request for the incoming message), or the
message passing system has free buffers available, the sending process does not block. If no
buffers are available and the receiving process is not ready to receive, the sending process
blocks until one of the conditions changes. These communication primitives are compa-
rable to the default send/receive primitives found in PVM and MPI: blocking receives and
nonblocking sends when buffers are available and blocking when not.

In such a model each process has a pool of buffers for incoming messages used on a first
come first served basis; we call theseeive buffers Buffers are used when a message is not
ready to be received by the receiving process. Buffers are returned to the receiving process’s
buffer pool when the message has been received (i.e., the corresponding receive request has
completed).

Other models that use ongend buffers a combination of send and receive buffers, or
buffers that are allocated on a per channel basis, are possible. While the focus of this paper
is on the receive buffer model, our results are applicable to other models as well.

In this paper we consider programs that are repeatable [8, 9] when executed in an unre-
stricted environment, i.e., programs with static communication patterns. While this narrows

A. Brodsky et al. / The Complexity of Buffer Allocation 81

the class of programs we consider, the class of applications with static communication patters
is still considerable, including: grid computations, linear system computations, and pipe line
computations. Since the communication pattern must be static we do not consider the case
where a receive can specify a wild card, i.e., a receive specifies exactly one sender; regardless
of this restriction the problems we consider remain intractable.

A message history/ for the execution of a systeiti is a set of messages of the form
m = (1, i, j, s;) wherei and; are process identifiersrepresents the sender ajkepresents
the receiver. The sequence numbegrands; are local to the sending and receiving processes,
respectively. For processhe first send or receive has sequence number 1, the second has
number 2, and so forth. We use a communication gi@p$i), described in the next section,
to encode the message history; sends and receives are encoded as vertices, and the sequence
numbers are represented by the topological order of the verticgsdin

Even though the communication pattern is static, the arrival time of messages varies from
execution to execution. The following example shows this effect and how the allocation of
buffers can result in deadlock. Consider the three process system depicted in Figure 1 where
p1 andps each have zero buffers available and progesbas one buffer available. Two
different scenarios exist. In the first scenario, message 1 arrives before message 3 and takes
up the buffer. Now processes andps can never progress as one additional buffer is needed
to break the deadlock between them. In the second scenario, message 3 arrives first and takes
up the buffer. Process; can proceed to its receive call and block until message 2 arrives.
Consequently, process will send message 2, receive message 1 followed by message 3.
Thus, all processes finish and no deadlock occurs. For example, if pradesd one buffer
rather than process,, the system depicted in Figure 1 is guaranteed to complete for all
executions.

Figure 1: Order of execution can cause deadlock.

As demonstrated, the order in which messages arrive at a process determines whether a
system deadlocks. We call a system that exhibits such behaviosade This situation can
be rectified by an appropriate allocation of buffers to processes.

To conserve memory, we want to allocate only as many buffers as needed. For programs
with static communication patterns, we would like to determine a minimum buffer assign-
ment or to determine whether a given buffer assignment prevents deadlock. As we will show,
both of these problems are intractable.

If systemS is to execute efficiently, ideally, no send operation blocks. In addition to
safety, we like to determine the minimum buffer assignment necessary to prevent blocking
sends. Interestingly, the stricter constraint makes the corresponding buffer allocation problem
tractable.

Determining whether a system is buffer independent—the system is 0-safe—was inves-
tigated in [8, 9]. In our model the interesting systems are buffer-dependent, and require
an unknown number of buffers to avoid deadlock. To determine the minimum number of
buffers, the execution of a system can be modeled using a (coloured) Petri net [12]. In order

82 A. Brodsky et al. / The Complexity of Buffer Allocation

to determine if the system can reach a state of deadlock, the Petri net occurrence graph [13]
is constructed, and a search for dead markings is performed. However, the size of the occur-
rence graph is exponential in the size of the original Petri net.

A variation of this problem has been investigated by the operations research commu-
nity [14, 15, 16]. In these models, events or products are buffered between various stations
in the production process, however, the arrival of these events is governed by probability dis-
tributions, which are specified a priori. In our model, since processes are asynchronous, the
time for a message to arrive is non-deterministic, i.e., a message may take an arbitrarily long
time to arrive and a process may take an arbitrarily long time to perform a send or a receive.

3 Definitions

Let .S be a multiprocess system withprocesses anfl; communication events occurring in
process; a communication event is either a send or a receiveomimunication graph of

S is a directed acyclic grapf¥(S) = (V, A). The set of vertice¥ = {v;. |1 < i < n,

0 < ¢ < (E;+ 1)} corresponds to the communication events. The arcisebnsists

of two disjoint arc sets: the computation arc seand the communication arc sét Each

vertex represents an event in the system: vestgxepresents thetart of process, vertex

v, 1 < ¢ < B, represents eithersendor areceiveevent, and vertex; (,11) represents
theend of a process. An artw; ., v;.+1) € P,0 < ¢ < E;, represents a computation within
process and an arduv; ;,v,;) € C represents a communication between different processes,

¢ andj, wherev; ; is a send vertex, and;, is a receive vertex (e.g. Figure 2). Note, the
process arcs are drawn without orientation for clarity; they are always oriented downwards.
In general vertices are labelled with double indices, representing the process label and the
sequence number of the corresponding event. The former is dropped when the process label
is given by the context. Communication graphs are comparable to the time-space diagrams—
without internal events—noted in [11].

pl p2

(&)

=V

s 10 20 o
o [
= K 1 V2,1 g
O - - - =
g -
E v v =
g 12 22 E
o @]
° Vs Vs ©

Figure 2: An example of a communication graph with a 2-ring.

A multiprocess systerfi is unsafeif a deadlock can occur due to an insufficient number
of available buffers; ifS is not unsafe, thef is said to besafe Figures 1 and 3 are examples
of unsafe systems. Note: the numbers above the graph in Figure 3 represents the buffer
assignment.

A buffer assignmentis ann-tuple B = (b4, bs, ..., b,) Of non-negative integers that rep-
resent the number of buffers that can be allocated by each process. Since buffers use up
memory, which may be needed by the application, ideally, as few buffers as possible should
be allocated. However, allocating too few buffers can result in an unsafe system.

Two natural decision problems arise from this optimization problem. Given a commu-
nication graph(S) and a non-negative integér the Buffer Allocation Problem (BAP)
is to decide if there exists a buffer assignméht= (by, bs, ..., b,) such thatS is safe and

* 1 bi < k. In order to solve this problem we need to solve a simpler one. Suppose we are

A. Brodsky et al. / The Complexity of Buffer Allocation 83

0 1 0 1

Figure 3: Order of buffer selection can cause deadlock.

given a buffer assignme® = (by, b, ..., b,) and a communication gragh(S), the Buffer
Sufficiency Problem(BSP) is to decide if the assignment is sufficient to mélsafe.

Additionally, we can require that no process in syst€mhould ever block on a send.
Given a communication grapH(S) and a non-negative integér the Nonblocking Buffer
Allocation Problem (NBAP) is to decide if there is a buffer assignmént= (by, b, ..., b,),
such that no send i ever blocks, and_ , b; < k. Next, we introduce the terminology
used throughout the paper.

3.1 Terminology

The ith process componenty;(S) of G(5) is the subgrapldz;(S) = (V;, A;) whereV, =

{vie e V|0<ec< (E;+1)}andA4; = {(vie,Vier1) € A| 0 < ¢ < E;}. The process
component corresponds to a procesS.iWe construct communication graphs by connecting
process components with arcs. Hence, it is more intuitive to treat a process component as a
chain of send and receive vertices bound by a start and an end vertex.

A t-ring is a subgraph of a communication gragtiS), consisting oft > 1 process
components such that in each of therocess components there is a send vesfex and a
receive vertex;, 4., c; < d;, 1 < j < tsuchthatthe arcs;, .,, s, .4,) aNd (i, ;1> 7i;.d;)s
1 < j < t,areinA. This definition is equivalent to the definition of a “crown” in [10].

A t-ring is a circular dependence of alternating send and receive events; an example of a t-
ring is illustrated in Figure 4. As the shaded arcs in Figure 4 show, each receive event depends
on the preceding send event and each send event depends on the corresponding receive event.
Thus, without an available buffer, there is a circular dependency that results in the system
deadlocking.

Pi

1

P;

2

Figure 4: Dependency cycle @(S).

Therefore, a systerfi whose communication gragh(.S) contains a t-ring will deadlock
unless one of the processes in the t-ring has an available buffer. S{is9emust be a DAG,
no cycle will ever occur irG(.S). Figure 2 shows an example of a 2-ring3{sS) contains a
t-ring, then we say that systefhalso contains a t-ring.

In this paper we usé&'(.S) rather than the dependency graph because the order in which
received messages are allocated to buffers depends on the execution history. In order to

84 A. Brodsky et al. / The Complexity of Buffer Allocation

model the execution of a system we define a colouring game that simulates the execution of
the system with respect @(5).

3.2 Colouring the Communication Graph

Given a communication gragh(S), an execution of a corresponding syst&is represented
by a colouring game where the goal is to colour all vertices green; a green vertex corresponds
to the completion of an event. We use three colours to denote the state of each event in
the system: a red vertex indicates that the corresponding event has not started, a yellow
vertex indicates that the corresponding event has started but not completed, and a green vertex
indicates that the corresponding event has completed. Hence, a red vertex must first be
coloured yellow before it can be coloured green; this corresponds to a traffic lights changing
from red, to yellow, to greeh

To represent buffer allocations we use tokens. For each process with a number of al-
located buffers, we associate an equal size pool of tokens with the corresponding process
component. To represent a buffer allocation, tokens are removed from the process compo-
nent’s token pool and placed on the receive vertices.

The colouring game represents an execution via the following rules. Initially, the start
vertices ofGG(S) are coloured green and all remaining vertices are coloured red; this is called
theinitial colouring .

1. A red send vertex may be coloured yellow if the preceding vertex is green (i.e., the
send is ready).

2. Aredreceive vertex may be coloured yellow if the corresponding send vertex is yellow,
and

(a) the preceding vertex (in the same process component) is green (i.e., both the send
and the receive are ready), or

(b) a token from the corresponding buffer pool is moved on to the vertex (i.e., the
send is ready and a buffer is available).

3. A yellow send vertex may be coloured green if the corresponding receive vertex is
coloured yellow (i.e., the communication has completed from the senders perspective).

4. A yellow receive vertex may be coloured green if both of its preceding vertices are
green. If the vertex has a token, the token is returned to the process component’s
pool (i.e., a receive completes once the send completes and the preceding computation
completes).

5. Ared end vertex may be coloured yellow if the preceding vertex is green.

6. Ayellow end vertex may be coloured green if the preceding vertex is green.

Buffer utilization is represented by placing a token from the token pool of the process
component on the selected vertex, and colouring it yellow. If no tokens are available, the rule
cannot be invoked.

A valid colouring of GG, denotedy, is a colour assignment to all vertices that can be
obtained by repeatedly applying the colouring rules, starting from the initial colouring. A
colouring sequences = (\!, x?, ...) is a sequence of valid colourings such that each colour-
ing is derived from the preceding one by a single application of one of the colouring rules. An
execution of a multiprocess systefiwith buffer assignmenB is represented by a colouring
sequence otv(.S). We say that a colouring sequerammpletesif and only if the last colour-
ing in the sequence comprises only green vertices. A colouring seqdeadécksif and
only if the last colouring in the sequence has one or more non-green vertices and the sequence

'Naturally, we refer to a European traffic light.

A. Brodsky et al. / The Complexity of Buffer Allocation 85

cannot be extended via the application of the colouring rules. Furthermore, each transition,
from one colouring to the next, within a colouring sequence, corresponds to a change of state
of an event in the corresponding execution.

Assuming that all events in the system are ordered, there is a correspondence between the
colouring sequences @r(.S) and the executions of systeth A systems is safe if and only
if every colouring sequence on the grapfiS) completes. Furthermore, sendsSmever
block if and only if every partial colouring sequence 6%S) that ends with a colouring
containing a yellow send vertex and a corresponding red receive vertex can be extended by
applying rule 2 to the red receive vertex. The choice of when to apply rule 2b affects future
choices. For example, in Figure 3, applying the rule to the receive vertex corresponding to
the send from process, before the send vertex in processis coloured green, results in a
deadlocked colouring sequence.

4 The Buffer Allocation Problem

In order to prevent deadlock in distributed applications the underlying system needs to al-
locate a sufficient number of buffers. Ideally, it should be the minimum number required.
Unfortunately, the corresponding decision problem, BAP is intractable: given a communica-
tion graphGG(.S) and a positive integet, determine whether there exists a buffer assignment
of at mostk buffers such that' is safe. We show that BAP iNP-hard by a reduction of the

well known 3-SAT problem[17] to BAP. Recall the definition of 3-SAT: determine if there
exists a satisfying assignmentA@_, (a; V b; V ¢;), wherea;, b;, andc; are boolean literals in

{x1, 21,29, Ta, ..., s, T, }. We first need the following lemma.

Lemma 4.1 (The t-Ring Lemma) Let G be a communication graph comprising a single t-
ring. No colouring sequence di can complete without invoking rule 2b at least once.

Proof: Assume by contradiction that there exists a complete colouring seqiethed does

not make use of rule 2b. Consider the first colourin@iwhere one of the sending vertices

is green; call the vertex;. Letr; be the corresponding receive vertex. By rule 3, the vertex

r; must be yellow. Since rule 2b has not been applied, rule 2a must have been invoked earlier
in the sequence. By the definition of a t-ring, the send vesfaxust be the predecessor of

r;. Since the rule 2a was appliedstg s; must be green. Hence, there is an earlier colouring

in X with a green send vertex. This is a contradictien.

Theorem 4.2 The Buffer Allocation Problem (BAP) ISP-hard.

Proof: We prove this by reduction of 3-SAT to BAP. For any 3-SAT instahose construct
a corresponding systetsi and the corresponding communication gra&ptt), both which
are polynomial in the size af.

The system hagn + 1 processes, where is the number of variables. Each process
containsc + 1 epochs where is the number of clauses iA. An epoch is a consecutive
sequence of one or more events in a process. An epoch terminates on a send to a barrier
process, or when the process terminates. An epoch begins on a receive from a barrier process
or when the process starts. A barrier process is used to synchronize all processes at the end
of its epoch. Each process performs a send to the barrier process at the end of their epoch,
and waits for a response from the barrier process. The barrier process sends the response to
every process only after it has received a message from each process. An epoch of a process
component is correspondingly defined. Epochs are used to prevent unwanted interaction
between processes.

For each literal:; andz;, let the systen$ contain processes,, andp;,. In addition, let
Prarrier dE€NOtE the barrier process.$h

86 A. Brodsky et al. / The Complexity of Buffer Allocation

Epoch0 is used to fix a buffer assignment corresponding to a variable assignment in 3-
SAT. In epoch0 add a 2-ring between procesges andp;,. This corresponds to fixing an
assignment, because by Lemma 4.1, we have to assign a buffer topgjtbep;, to prevent
deadlock (see Figure 5). Next, every procgssandp;,, 1 < ¢ < n, performs a send to
Procesy.ier- After praier receives from all processes, it performs a send to all processes,
allowing them to proceed into the next epoch.

rxi,O rii,

Figure 5: The choice widget.

The jth epoch of each process corresponds tojtheclause ofF" and is a 3-ring on the
processes.;, py;, andp.; that correspond to the literals, b;, andc; (see Figure 6). By
Lemma 4.1, in order to avoid deadlock, at least one of the three processes, , or p.;,
must have a buffer. Finally, at the end of the epoch, all processes perform a send to the
proces..ier and wait for a reply. This is formalized in the following Lemma.

Figure 6: The clause widget.

Lemma 4.3 There exists a token assignment of sizgich that all colouring sequences on
G(S) complete if and only if formuld’ is satisfiable.

Proof: Let s, 0, 53,0, 72,0, @ndrz, o be the send and receive vertices in epoch 0. By
Lemma 4.1, to colour vertices,, o andsz, o green, a free token must be available at either
process component,, or p;,. Hence, we need at leasttokens. Note, at the end of each
epoch, each token is released back into its token pool.

As long as all vertices in each epoch of each process component can be coloured green,
the barrier component can also be coloured green. A colouring sequence will only deadlock
in the barrier if the corresponding send vertex in one of the process components can not be
coloured yellow.

If F' has a satisfying assignment, then at least one literal in every clause will be true. A
corresponding token assignment will ensure that each 3-ring has at least one process com-
ponent with a token (one corresponding to a true literal). Hence, by Lemma 4.1 none of
colouring sequences will deadlock on any of the the 3-rings. Hence, any colouring sequence
on G(S) will complete.

If £ does not have a satisfying assignment, then for any assignment there exists at least
one clause comprising false literals. The corresponding token assignment will not assign
any tokens to the process components in the corresponding 3-ring. Thus, by Lemma 4.1 all
colouring sequences will deadlock in that 3-ring. Further, none of the colouring sequences
on G(S) will complete. Hence, any colouring sequence(éb) will complete if and only if
the corresponding assignment satisfiea

A. Brodsky et al. / The Complexity of Buffer Allocation 87

Hence, there exists a buffer assignment of sizich thatS is safe if and only ifF’ is
satisfiable. Thus, BAP iBNP-hard.m

Theorem 4.4 The Buffer Allocation Problem (BAP) is i, P.

Proof: By Theorem 5.1, verifying that a token assignment is sufficient to prevent dead-
lock (BSP) iscoNP-complete. Since we can non-deterministically guess a sufficient token
assignment, the result follows.

The Buffer Allocation Problem remains intractable for systems with send buffers only,
and for systems with a combination of both send and receive buffers. In the latter case, the
problem remains i, P because the class of systems with receive buffers only is a subclass
of systems with both receive and send buffers. In the former case, we conjecture that the
problem isNP-complete. TheNP-hardness follows from the observation that each t-ring
in the system has to have a buffer assigned to one of its processes in order for the system to
progress. It does not matter if it is a send or a receive buffer. Hence, the reduction used in
Theorem 4.2 can be applied with no modification.

5 The Buffer Sufficiency Problem

We now turn our attention to the possibly simpler problem of verifying whether a given buffer
assignment is sufficient to prevent deadlock. However, this turns out to be an intractable prob-
lem as well; we show that BSP é&NP-complete by a reduction from the TAUTOLOGY
problem [18, Page 261] to BSP. Given an instance of a formula in disjunctive normal form
(DNF), Vi, /\3;0 L;; whereL;; € {x1,%1,...,2,,%,}, the formula is a tautology if it is

true on all assignments. An assignment for which the formula is not true is a concise proof
that the formula is not a tautology.

Theorem 5.1 The Buffer Sufficiency Problem (BSPx&ENP-complete.

Proof: We first observe that if is unsafe, then there exists a concise certificate of this fact
comprising a colouring sequence GitS) that does not complete. Since the size of a colour-
ing sequence is at most twice the number of vertices(ii), the certificate is polynomial in
size and hence, BSP is #toNP.

Let /' be a DNF formula witht terms where théth term hagd; literals. For any formula
F, we construct a systesi and show that there exists a deadlocking colouring sequence on
G(5) if and only if the formula is not a tautology. We represent the disjunctiontefms
by a subsystem containing a t-ring bprocesses where each term is a subsystem consisting
of a single process, called a ‘term’ process. The communication graphs corresponding to the
term and the disjunction are illustrated in Figures 7 and 8 respectively. Following the t-ring,
one ‘term’ process performs a send — called a ‘done’ send — to signal that the t-ring did not
deadlock. Finally, théth ‘term’ process performg receives, corresponding to the literals
of theith term; the latter we call ‘literal’ receives. The first receive in the ‘term’ process is
called a ‘t-ring’ receive.

When a message to a ‘term’ process arrives before any send within the t-ring begins, the
message is buffered, using up the one available buffer and preventing the process from buffer-
ing any additional messages until it leaves the t-ring. This corresponds to the falsification of
the corresponding literal and term.

To represent a variable assignment, we use a select subsystem consisting of three pro-
cessey.., pz,, andg;; the first two processes correspond to the truth values aihd are
called ‘select’ processes. The third process, called the ‘arbiter’, fixes the truth vatye of

88 A. Brodsky et al. / The Complexity of Buffer Allocation

done send
Figure 7: Disjunction subsystem.

1

cycle send g cycle recv
L4
done send L
(only once L2
3

Figure 8: Each term is a process.

Processeg,, andp;, each perform a send to the third ‘arbiter’ process, but the ‘arbiter’ pro-
cess can receive neither message until it receives a ‘done’ message. Since the ‘arbiter’ has
only one buffer, only one of the sends from the procegseandp;, will be buffered; the

other send will cause the sending process to block until the ‘done’ message arrives.

done recv

—— to x; disperser
‘ » to X, disperser
o

Figure 9: Select subsystem.

The process that did not block performs a nonblocking send, via a disperser (described
below), to each ‘term’ process whose corresponding term contains the complement of the
fixed variable (i.e., ‘select’ procegs, sends a message to all ‘term’ processes whose corre-
sponding terms contain the litera)). Once the ‘arbiter’ process receives the ‘done’ signal,
all three processes,,, pz,, andg;, can complete without deadlock.

A disperser is a nonblocking subsystem that upon receipt of a ‘disperse’ message per-
forms a nonblocking broadcast by using additional processes as buffers (see Figure 10).

To construct a multiprocess systefrthat corresponds to formul&, instantiate a select
subsystem for each variable and a disjunction subsystem correspondingTioe disjunc-

A. Brodsky et al. / The Complexity of Buffer Allocation 89

disperse ® °
receive
—9
»9
S1 S S3 Sq

Figure 10: Disperser subsystem.

tion subsystem performs the ‘done’ send to a disperser, which broadcasts it to the select
subsystems. Finally, each select subsystem broadcasts its selection, via a disperser, to the
corresponding ‘literal’ receives of the ‘term’ processes; Figure 11 depicts the corresponding
communication grapl(.S) of a composition.

Intuitively, if each of the ‘term’ processes receive a message from a select subsystem —
sent via a disperser — before any of the ‘term’ processes initiate a send event, the buffers on
each of the ‘term’ processes will be used up. By Lemma 4.1 this will prevent the disjunction
subsystem from advancing past the t-ring. If the formula cannot be falsified, then at least one
‘term’ process will not receive any messages before the disjunction subsystem advances past
the t-ring. This is formalized in the following lemma.

Lemma 5.2 There exists a deadlocking colouring sequence on the communication graph
G(S) if and only if the formulaF” is not a tautology.

Proof: If F'is not a tautology, then there exists an assignment for which every term in the
disjunction is false. In this case we show that a deadlocking colouring sequence exists. Let
v, 0 anduz, o be the start vertices of process componentsindp;, respectively. Similarly,

let the send vertices,, ; ands;, ; be adjacent to the receive vertices,, andr, z, in the
process componeqt, and lets,, » andsz, » be the send vertices of the arcs that are incident
on the disperser components. LétC V' be the set of start vertices corresponding to the
falsifying assignment of’; Z will contain one ofv,, ; or vz, o for each.

First, let>,; be the longest colouring sequence constructed by applying the colouring
rules only to vertices that have ancestorsZin Since eacly; has one free token, for every
Vg0 € Z Oz, o € Z, Vertexr,, ... (respectivelyr,,), will be assigned a token and coloured
yellow via rule 2b; later in the sequence the vertiegs (respectivelys;, ») can be coloured
yellow and then green. The corresponding receive vertex in the disperser component can
thus be coloured green. Since the dispersers are adjacent to the ‘literal’ receive vertices in the
term process components, the corresponding send vertex of each of the receive vertices can
be coloured yellow, implying that rule 2b can be applied to the ‘literal’ receive vertices. Thus,
if Z containsv,, ¢ Or vz, o, and a term process component contains a ‘literal’ receive vertex
corresponding ta; (respectivelyr;), then the token in the corresponding process component
will be used up.

Second, extendl; by allowing all valid colourings. To avoid deadlock, Lemma 4.1 re-
quires at least one of the term process components in the disjunction to have a free token.
SinceF is not a tautology and we used a falsifying assignment, none of the process compo-
nents has a free token, and the colouring sequence will deadlock.

If F'is a tautology, then regardless of the assignment, one of the terms will be true (i.e.,
all the literals in the term will be true). Hence, at least one term process component will
have no ‘literal’ receive vertices that are descendants,cind will have a token available

90 A. Brodsky et al. / The Complexity of Buffer Allocation

_select su bsystems,
" p o n ?
le %147 % %2 st X3
0 01 0 01 0 01 111
® 0O ® 0O 66 :
disjunction
T

o=
o=
o= AN

o o o dispersers
%e SN gvo GRS g vo St
NN

R

N
UL =T

Figure 11: The composite widget for the formila, A z2 A Z3) V (T1 A Z3) V (21 A T2).

LAAAAA

to prevent the colouring sequence from deadlocking on the t-ring. Observe that the selection
component allows at most one qf . or r,, z, to be coloured yellow, via rule 2b. Provided

that the ‘done’ receive vertex of process compomgrg not coloured green, at least one term
component will not have any ‘literal’ receive vertices to which rule 2b can be applied. Thus,
the token belonging to that process component will be available to prevent the colouring
sequence from deadlocking on the t-ring. On the other hand, if the ‘done’ receive vertex is
coloured green, then the ‘done’ send vertex in the term component is coloured green. This
means that at least one ‘t-ring’ receive vertex is coloured green, and hence the colouring
sequence will not deadlock in the t-ring. Once the ‘done’ send vertex is coloured green, the
colouring sequence can always complete. Hence, the sysissafe.s

Hence, systens is unsafe if and only if the formula is not a tautology. Since BSP is in
coNP and iscoNP-hard via a reduction from TAUTOLOGY, BSP i«INP-completes

This result also holds for systems that use a combination of both send and receive buffers.
The coNP-hardness follows from the fact that systems with receive buffers only are also
systems that use combinations of send and receive buffers. Since a colouring sequence also
serves as a deadlock certificate for combination systemspiN&-completeness result fol-
lows. In the case of systems with send buffers, we conjecture that the corresponding BSP is in
P. Unlike communication in systems with receive buffers only, the order of the sends implies
an order on the allocation of buffers. Hence, we believe that the computation of sufficiency
is similar to the nonblocking buffer allocation problem and hence B.in

A. Brodsky et al. / The Complexity of Buffer Allocation 91

6 The Nonblocking Buffer Allocation Problem

We now turn to the last of the three problems we consider in this paper. In addition to the
system being safe, we can require that no sending process ever blocks due to insufficient
buffers on the receiving process. The Nonblocking Buffer Allocation Problem (NBAP) is
to determine the minimum number of buffers needed to achieve nonblocking sends. Given
G(S), the following algorithm computes the number of buffers needed to assure that none of
the sends will ever block.

Given two verticesp; .+ andv;., in G(S), k > 0, vertexv; .. IS communication
dependenton vertexv; . if v; . is the start vertex or if there exist a vertey;, ; # ¢, such
that there exists a path from, to v; ; and the ar¢v; 4, v; ;) is in A (see Figure 12). Vertex
Vi c+k 1S terminally communication dependenton vertexv; . if v; .4 IS communication
dependent om; . and is not communication dependent on the vertiges;, 0 < [< k. The
algorithm is depicted in Figure 13.

P, P,
;Vi,c_ |
Vi ok :

Figure 12:v; .4 is communication dependent of)..

1. For each receive vertex. determine its terminal communication dependency,
vertexv; ;, wheret < c.

2. Setl; . = [t, | to be the interval between vertex; and vertex; ...

3. For each process componé&i{.S), computeb;, the maximum overlap over all
intervalsl; ..

4. B = {by, by, ..., b,} is the optimal nonblocking buffer assignment.

Figure 13: Algorithm for computing an optimal nonblocking buffer assignment.

The time between when a message can arrive and when it is received at receive vertex
v; . IS represented by the intervAl.. Each interval must have a buffer to ensure nonblocking
sends. Hence, the minimum number of bufféfsis the maximum overlap over all intervals
of a process componeat;(.S).

Computing the terminal communication dependenciesf@¥) can be done via dynamic
programming inO(|V|n) time, wherel/ is the vertex set of7(S) andn is the number of
processes. If there exists a path from verntgxto v; 4, then there exists a path from, to
all verticesv; 4.1, £ > 0. Associate with each vertex . an integer vector; . of sizen;

a;.[j] = d means that there exists a path frem to v, 4, and thus ta, 444, & > 0. The
vectora, . is computed by taking the elementwise minimums over the vectors of the adjacent
verticesy; .; this is simply a depth first traversal 6f(.S). Since the number of arcs is at most
3|V|/2 and the pairwise comparison takesteps, the traversal takéx |V |n) time.

Next, computing theOD(|V|) intervals, I; ., requires one table lookup per interval. To
compute the maximum overlap we sort the intervals and perform a sweep, keeping track of

92 A. Brodsky et al. / The Complexity of Buffer Allocation

the current and maximum overlap; this takeg1’| log |V'|) time. Thus, the total complexity
isO(|VIn + |V]log |V|) time. In the worst case where~ |V'|, this algorithm is quadratic.
However, in practice: is usually fixed, in which case th&| log |V| term dominates.

6.1 Proof of Correctness of the Nonblocking Buffer Allocation Algorithm

In terms of the colouring game, a systeésnwill not block on any send if for any valid
colouring onG(.S) containing a yellow send vertexand a corresponding red receive vertex

r, vertexr can be coloured yellow by applying rule 2b. This corresponds to guaranteeing
buffer availability for every send in the system.

Lemma 6.1 Given a multiprocess systef let G(.S) be the corresponding communication
graph. For all vertices); 5, v, € G(S5), if v;, is a send vertex and there exists a path from the
vertexy; s to vertexv, ;, then vertex; , cannot be coloured yellow until vertey; is coloured
green.

Proof: By rule 1, the predecessor of, must first be coloured green beforg, can be
coloured yellow. Since rules 3 and 4 imply that the predecessors of a green vertex must be
green, the result follows

Corollary 6.2 LetS, G(S), v; s, andv,; be asin Lemma 6.1 and let, be the receive vertex
corresponding to the send vertex. Rule 2b will never be applied to vertex. before vertex
v; s IS coloured green.

The preceding corollary implies that a buffer for the receive event corresponding to vertex
v; » Need not be available until the completion of the send event corresponding to the vertex,
on whichw; ,. is terminally communication dependent. Hence, it is sufficient to allocate the
buffer just before the completion of the respective send event. Finally, we argue that this is
also necessary.

Theorem 6.3 GivenS andG(.S), letw; s be a send vertex ang ,. be a receive vertex that is
terminally communication dependent on vertex A token for the application of Rule 2b on
vertexv; , must be available before vertex; is coloured green.

Proof: Letv;, be the send vertex corresponding to the receive vertexand let@) =
{viq | s < ¢ < r} be the set of vertices that are predecessors ofbut on whichv; ,- is not
communication dependent.

Sincev; , is not communication dependent on the vertice@jmve can construct a colour-
ing sequence o (S) that fixes the vertices i) to be red, and colours vertex, yellow,
making the application of rule 2b possible in the next step. Since no progress is made in
theith process component after colouring vertex green, the state of the associated token
pool does not change until the application of rule 2b to vertgxHence, when vertex; , is
coloured green, the token pool must have a token destined for veftex

Thus, if receive eventis terminally communication dependent on send ewetiten it is
necessary and sufficient that a buffer to be used for receive evenst be allocated before
the send event completes. The start event may be thought of as a special send event. Since
a buffer is required for each receive over a corresponding interval, computing the maximum
overlap of intervals yields the number of buffers required.

A. Brodsky et al. / The Complexity of Buffer Allocation 93

6.2 Other Models

For systems with only send buffers the problem remairi3.iifhe problem can be solved by
first reversing all arcs in the communication graph, swapping the start and end vertices, and
then running the algorithm described above.

For systems with both send and receive buffers, we conjecture that the nonblocking buffer
allocation problem iNP-hard. This follows from the observation that we have a choice of
either allocating a buffer on the sending or the receiving side, each time a buffer is needed.

6.3 Approximating BAP with NBAP

The NBAP algorithm may be useful for determining a buffer assignment that prevents dead-
lock (BAP). Since a non-blocking execution is guaranteed not to deadlock, any buffer as-
signment determined by the NBAP algorithm ensures a safe execution. However, the buffer
assignment may be far from optimal. A simple example of this phenomena is a two process
producer-consumer system comprisingnainessages sent by the producer and received by
the consumer in the respective order. Such a system requires zero buffers to execute safely,
but requires: buffers to execute without blocking. Thus, the aforementioned buffer assign-
ment may entail infinitely more buffers than required.

6.4 Implementation of the NBAP algorithm in Millipede

We implemented the NBAP algorithm and added it to the Millipede parallel debugging sys-
tem, which is a a multi level parallel debugger for message passing programs [19, 20, 21].
Millipede logs all messages between processes in a parallel system; these message histories
are then used to analyze program execution and locate bugs. Determining the number of
buffers required for block free execution is one such analysis.

To demonstrate the NBAP algorithm we ran Millipede on a program that implements
the pipe-and-roll parallel matrix multiplication algorithm [22]. The program has one control
process and a number of worker processes arranged in a 2 dimensional mesh. We ran the
NBAP algorithm on meshes of si2zex 2, 3 x 3 and4 x 4. The communication graph for the
smallest example, comprising four workers ordered 2n-@2 mesh is depicted in Figure 14.

The corresponding optimal buffer assignment is, listed in the second column of table 1.

Proc. | Max overlap Overlap for intervals;l
i 12 I3 Iy 15 lg Iz lg g
0 4 ojojo|j0O0|4|3|2|1]|0
1 3 2|12 (3|2|1|1]0]|0
2 3 3|2|1|2|1|1]1|010
3 3 3212111010
4 3 2/1|2(3|2|1|1|0/|O0

Table 1: The result of NBAP algorithm on tlex 2 example.

In this example process 0 is the control process and processes 1 through 4 are the workers.
The control process needs 4 buffers and the workers each need 3 to execute without blocking.
The results obtained when executing the NBAP algorithm &n>a3 worker system is 9
buffers for the control process and between 4 and 5 buffers for the worker processes. For the
4 x 4 system the numbers are 16 for the control process and between 5 and 7 buffers for the
workers.

94 A. Brodsky et al. / The Complexity of Buffer Allocation

4 3 3 3 3
l ® ‘;;
=
= A

Figure 14: The communication system fo2 & 2 worker process mesh.

7 Conclusion

As more and more functionality of message passing systems is off-loaded to the network
interface card, limited buffer space becomes an increasingly important issue. Hence, the
problem of determining:-safety plays an increasingly important role. Unfortunately this
problem is intractable.

We have shown that in the receive buffer model, determining the number of buffers
needed to assure safe execution of a prograNii'shard, and that even verifying whether a
number of assigned buffers is sufficientcasNP-complete. On the positive side, if we re-
quire that no send blocks, we provide a polynomial time algorithm for computing the minimal
number of buffers. By allocating this number of buffers, safe execution is guaranteed!

There are several strategies that a programmer can use to reduce the likelihood of dead-
lock when only a few buffers are available. To decrease the risk of deadlock the programmer
can introduce epochs that are separated by barrier synchronizations. If each epoch only needs
a small number of buffers, the risk of deadlock due to buffer insufficiency is reduced.

For systems with only send buffers we conjecture that the Buffer Sufficiency Problem can
be solved in polynomial time because the order of the sends in each process is fixed. This
would imply that the buffer allocation problem for systems with only send buffeNéis
complete. For systems with both send and receive buffers we conjecture that the nonblocking
buffer allocation problem iNP-hard. Unlike in the other two models, a buffer can be
assigned either on the send side or on the receive side, dramatically increasing the size of the
search space. The results (conjectures) are summarized below.

| Problem|| Receive Buffers| Send Buffers| Send/Receive Buffers
BAP NP-hard NP-hard NP-hard
BSP coNP-complete (P) coNP-complete
NBAP P P (NP-hard)

A. Brodsky et al. / The Complexity of Buffer Allocation 95

References

(1]

(2]

(3]

[4]

(5]

(6]

C. Keppitiyagama and A. Wagner. Asynchronous MPI messaging on myrinePrdceedings 15th
International Parallel and Distributed Processing Symposium (IPDFERE, 2001.

D. Frye, R. Bryant, H. Ho, R. Lawrence, and M. Snir. An external user interface for scalable parallel
systems. Technical report, IBM highly parallel supercomputing systems laboratory, November 1992.

J. Dongarra, R. Hempel, A. Hey, and D. Walker. A proposal for a user-level, message-passing interface in
a distributed memory environment. Technical Report TM-12231, ORNL, June 1993.

J. Dongarra. MPI: A message passing interface standBiné. International Journal of Supercomputers
and High Performance Computing:165—-184, 1994,

J. Bruck, D. Doley, C. Ho, M. Rosu, and R. Strong. Efficient Message Passing Interface (MPI) for Parallel
Computing on Clusters of Workstations. Tith Annual ACM Symposium on Parallel Algorithms and
Architecturespages 64 — 73, Santa Barbara, California, July 1995.

G. Burns and R. Daoud. Robust MPI Message Delivery with Guaranteed Resources. MPI Developers
Conference at the University of Notre Dame, June 1995.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunde@¥M: Parallel Virtual

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

Machine: A Users’ Guide and Tutorial for Networked Parallel Computirggientific and engineering
computation. MIT Press, 1994.

R. Cypher and E. Leu. Repeatable and portable message-passing progrdh. of The Symposium
on the Principles of Distributed Computing (POD@pges 22-31, 1994.

R. Cypher and E. Leu. The semantics of blocking and nonblocking send and receive primitives. In
Proceedings of 8th IEEE International parallel processing symposium (IRRges 729-735, 1994.

B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, asynchronous, and causally ordered communica-
tion. Journal of Distributed Computin®(4):173-191, 1996.

L. Lamport. Time, clocks and the orderings of events in a distributed sys@wmmunications of the
ACM, 21:558-565, 1978.

K. JensenColoured Petri nets. Basic Concepts, Analysis Methods and Practicalalsene 1. Springer,
1992,

P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. Reachability trees for hihg-level Petheetst-
ical Computer Scien¢él5:261-292, 1985.

V. Anantharm. The optimal buffer allocation problemlEEE Transactions on Information Theory
35(4):721-725, 1989.

M. Reiman. The optimal buffer allocation problem in light traffic. IFEEE Conference on Decision and
Control, 1987.

T. Sheskin. Allocation of interstage storage along an automatic productiorAliB& Transactions8(1),
1975.

S. A. Cook. The complexity of theorem-proving procedures.Ptaceedings of the 3rd Annual ACM
Symposium on the Theory of Computipgges 151-158, 1971.

M. R. Garey and D. S. Johnso@omputers and Intractibility: A Guide to the Theory of NP-Completeness
W. H. Freeman and Company, New York, 1979.

J. Baekgaard Pedersen and A. Wagner. Sequential Debugging of Parallel ProgrBresebdings of the
international conference on communications in computing, CIC’2AEREA Press, June 2000.

J. Baekgaard Pedersen and A. Wagner. Correcting errors in message passing systems. In Frank Mueller,
editor, High-Level Parallel Programming Models and Sypportive Environments, 6th international work-
shop, HIPS 2001 San Francisco, CA, USAlume 2026 ofLecture Notes in Computer Sciengages
122-137. Springer Verlag, April 2001.

96 A. Brodsky et al. / The Complexity of Buffer Allocation

[21] J. Pedersen and A. Wagner. Protocol Verification in MillipedeCémmunicating Process Architectures
2001 10S Press, September 2001.

[22] G. Fox, M. Johnson, G. Lyzenga, S. Otto J. Salmon, and D. WalRetving problems on concurrent
processors. General techniques and regular problerakime 1. Prentice-Hall, Inc., 1988.

