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Focusing on Traces to LinkVCR and CSP

Marc L. SMITH
Department of Computer Science, Colby College, Waterville, Maine 04901-8858, USA

Abstract. View-Centric Reasoning (VCR) replaces CSP’s [1]perfect observerwith
multiple, possibly imperfect observers. To employ view-centric reasoning within ex-
isting CSP models [2] requires a bookkeeping change. Specifically,VCR [3] intro-
duces parallel events as a new primitive for constructing traces, and distinguishes two
types of traces: histories and views. Previously, we gave the operational semantics of
VCR [4], and demonstrated the utility of parallel traces to reason for the first time un-
ambiguously about the meaning of the Linda predicate operationsrdp() andinp() .
The choice of using an operational semantics to describeVCRmakes direct compari-
son with CSP difficult; therefore, work is ongoing to recastVCR denotationally, then
link VCR with the other CSP models within Hoare and He’sUnifying Theories of
Programming[5]. Initial efforts in this direction [6] led to a comparison ofVCR with
Lawrence’sHCSP [7]. In this paper, we present some recent insights and abstractions
– inspired by modern quantum physics – that have emerged whilst contemplating par-
allel traces in light of the unifying theories. These insights lead to a more natural
expression ofVCR traces, in the sense that they more closely resemble CSP traces,
thus forming a basis for linkingVCR and CSP.

1 Introduction

According to Hoare and He [5], a programming theory consists of elements from three or-
thogonal dimensions. First, there is a set of primitive concepts, oralphabet, at some desired
level of abstraction. Elements of an alphabet are those variables and constants that may be
used in the specification of, or observed during the execution of, a program. Second, the
signatureof a programming theory is the set of primitive statements, and rules for state-
ment composition, that may be used to specify programs. Third, a theory has a mathematical
foundation, with a corresponding set of provable equations, orlaws, that aid in the design
of programs with desired properties. To compare two or more programming theories, one
compares elements of their respective alphabets, signatures, and laws. Programming theories
are unified by their shared elements and differentiated by their unique (relative to each other)
elements. To link one theory of programming to another is to relate the two somehow, e.g., a
subset or refinement relationship.

The main thrust of Hoare and He’s Unifying Theories of Programming (UToP) [5] is to
develop links between different theories of programming, within the discipline of computing
science. Establishing these links between all theories of programming is the basis for Hoare
and He’s grand challenge of unification (in much the same way that Physics seeks to discover
a Grand Unified Theory that accounts for all four known fundamental forces in the universe).
UToP is thus not a completed body of work, but rather, a thorough and important starting
point for ongoing research. View-centric reasoning (VCR) [3] wasn’t initially developed with
UToP in mind; instead,VCR was based on CSP [1].VCR replaced CSP’s interleaved trace
of a single observer with theviews(traces of non-interleaved, parallel events) of multiple,
possibly imperfect observers. In support of this grand challenge of unification, the current
goal is to both defineVCR as its own programming theory and link it to existing CSP models
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within UToP. Indeed, CSP is one of the theories of programming illuminated in UToP, and it
is linked as a subtheory of other theories of programming.

The approach of this paper departs from Smith et al. [6], where the authors began to
establish links betweenVCR and Lawrence’sHCSP [7]. HCSP has merged events and
bags, similar in spirit toVCR’s parallel events. Our justification for this former approach
was that it made sense to link to a CSP model that hasVCR’s abstraction of parallel events.
However, linking toHCSP represented more work than linking to the Traces model of CSP,
T , andVCR’s abstractions were originally meant to extendT . The work to linkVCR toT is
ongoing, and not presented in this paper, but new insights into traces have emerged, consistent
with the approach of UToP and the theories of modern quantum physics UToP embraces, as
cited in UToP [5]. Ultimately, linkingVCR to T will satisfy the desire to characterizeVCR
in a way that is most accessible to the CSP community, thus permitting a more direct basis
for comparison.

The remainder of this paper is organized as follows. Section 2 gives background informa-
tion concerning UToP’s perspectives on observation of computation within an environment,
as well as the history and major tenets ofVCR. Section 3 contains the heart of this paper, de-
scribing a new characterization of traces. We conclude and discuss future work in Section 5.

2 Background

Before we present a new characterization of recording traces, some background informa-
tion is in order. Beyond the information presented in this section, the reader is encouraged
to consult the complete treatments of Hoare and He’s Unifying Theories of Programming
(UToP) [5] and Smith et al.’s View-Centric Reasoning (VCR) [8, 4]. Section 2.1 emphasizes
those aspects of UToP impacted by the inclusion of View-Centric Reasoning (VCR) into the
unifying theories. Pertinent aspects ofVCR are introduced in Section 2.2.

2.1 UToP Perspectives on Environment and Observation

Hoare and He present theories of reactive processes in their Unifying Theories of Program-
ming [5]. In terms of linking theories of programming, the theory of reactive processes is
a subtheory of the imperative theory of designs; CSP is a further subtheory of the theory of
reactive processes. The notion of environment is elucidated early in this presentation, as envi-
ronment is essential to theories of reactive processes, examples of which include CSP and its
derivative models. Essentially, the environment is the medium within which processes com-
pute. Equivalently, the environment is the medium within which processes may be observed.
The behavior of a sequential process may be sufficiently described by making observations
only of its inputs and corresponding outputs. In contrast, the behavior of a reactive process
may require additional intermediate observations.

Regarding these observations, Hoare and He borrow insight from modern quantum phys-
ics. Namely, they view the act of observation to be an interaction between a process and one
or more observers in the environment. Furthermore, the roles of observers in the environ-
ment may be (and often are) played by the processes themselves! As one would expect, an
interaction between such processes often affects the behavior of the processes involved.

A process, in its role as observer, may sequentially record the interactions in which it par-
ticipates. Recall participation includes the act of observation. Naturally, in an environment of
multiple reactive processes, simultaneous interactions may be observed. Hoare and He define
a traceas “the sequence of interactions recorded up to some given moment in time.” Thus a
trace represents an ongoing chronological record of observable events that occur within the
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environment of a program’s execution. Traditionally, simultaneous events are recorded in
some arbitrary order, since traces are considered partially, not totally, ordered. An event that
represents the synchronization of multiple processes is recorded once. It is sometimes useful
to consider the occurrence of an individual event to be synchronization with the environment.
Likewise, an observer could be the environment, or a process within the environment.

2.2 Origins and Evolution ofVCR

View-Centric Reasoning was inspired by Hoare’s CSP [1]. In particular, the central role
traces play in reasoning about the behavior of processes, and the metaphor of a computation’s
history being recorded by an idealized observer were the basis forVCR, before learning of
Hoare and He’s UToP. In its original form, view-centric reasoning was a parameterized op-
erational semantics for reasoning about properties of concurrency. That is,VCR was a meta
model, capable of individual instantiation via parameter specification: by passing in different
sets of parameter values toVCR’s operational semantics, theVCR semantics could assume
the characteristics of other existing models of concurrency. The idea of developing a meta
model was inspired by the author’s desire to discover abstractions common to all models of
parallel and distributed computation. The author does not claim to have discovered all com-
mon abstractions for concurrency, but indeed, many abstractions and parameters emerged,
andVCR was successfully instantiated for two very different models of concurrency: Agha’s
Actors [9] and Gelernter’s Linda [10]. For more information about early work onVCR, see
Smith [3] and more recently Smith et al. [4, 8].

From the beginning, the inspiration forVCR has been Hoare’s CSP [1], and the elegance
of using traces to reason about properties of computation. Still,VCR departed from CSP in
several noticeable ways: the operational semantics; multiple, possibly imperfect observers (in
contrast to CSP’s perfect observer, an imperfect observer is capable of occasionally ”blink-
ing,” and thus nondeterministically miss recording zero or more events); parallel events to
obviate the need for arbitrary interleaving; and the distinction of a computation’s history and
views. InVCR’s operational semantics, CSP’s rich process algebra was abstracted away;
processes were represented at a higher level of abstraction by their continuations. These
process continuations were interpreted by meaning functions, as part ofVCR’s transition
relation; that is, upon invocation, given a process’s continuation, a meaning function sim-
ulates computational progress, returning the process’s new continuation and any resulting
observable events of interprocess communication.VCR, not surprisingly, focused solely on
constructing a computation’s history and views to support view-centric reasoning. Using an
operational semantics forVCR was an excellent choice for reasoning at this level of abstrac-
tion.

Since the environment as well as the processes within the environment could all be ob-
servers of a program’s computation,VCR permits these multiple observers to each record
their own trace. Furthermore, to account for the multiple, possibly imperfect perspectives,
VCR introduces some bookkeeping changes. Recognizing the possibility of event simultane-
ity in the absence of synchronization, and the possibility for different perspectives among
observers, unordered and ordered parallel events become the new primitives for recording
traces inVCR. A parallel event is represented as a multiset of events. Furthermore, two
types of traces are distinguished: histories and views. A computation’s history is a trace that
consists of a sequence of unordered parallel events. Multiple views may be constructed from
a given history, in the form of traces that consist of sequences of correspondingly ordered
parallel events.

Around the time of Smith et al. [4] several points became clear. First, Hoare and He’s
Unifying Theories of Programming (UToP) [5] shared the goals ofVCR, but encompassed
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a far broader range of concerns. Next, UToP was more mature thanVCR, and already well
established. Finally, there were important benefits to linkingVCR with the other CSP theo-
ries of programming within UToP, and UToP explicitly addresses linking together theories of
programming. This last point revealed a notable disadvantage to continuing to developVCR
solely as an operational semantics. To drawVCR within the unifying theories, it would have
to be expressed in the alphabetized relational calculus, and so began the authors’ efforts to
do so in Smith et al. [6].

3 Revisiting the CSP Trace

The original CSP metaphor concerning traces involves an infallible observer who watches
a process performing a computation. Each time an observable event occurs, the observer
faithfully records the event’s name in a notebook. The events are recorded in the order they
occur; thus the trace is chronologically ordered. . . almost. We are instructed to disregard the
possibility that two or more events may occur simultaneously, since the observer will merely
record all such events in some arbitrary sequence. Thus, to be more precise, CSP traces are
partially ordered, chronologically. Consider the following example of a CSP trace:

tr = 〈a, b, c, d, e, f , g〉

The interpretation of tracetr is pronounced, ”a then b then c...”. But when reasoning
abouttr it is not clear which consecutive events occurred sequentially, and which consec-
utive events (if any) appeared to occur simultaneously from the olympian observer’s frame
of reference (true simultaneity, not just the perception of simultaneity by a single observer,
is problematic in light of relativity, and the inspiration for views inVCR). Sincetr is par-
tially ordered, rather than delimit the events oftr with commas, it might be clearer to delimit
tr’s events with the partial order relation,≤, thus representing both possibilities. For further
clarity, we could decorate this relation with a subscriptedc, ≤c, to reflect the chronological
nature of the partial order. Once again, the same CSP trace, newly delimited:

tr′ = 〈a≤c b≤c c≤c d≤c e≤c f ≤c g〉

The interpretation of tracetr′ is pronounced, ”a before-or-with b before-or-with c...”.
It is reasonable to wonder what is accomplished by substituting the event delimiters of the
trace. It would seem nothing, beyond the acknowledgment of two chronological possibilities
between consecutive events in the originaltr. If only we could look more closely at each
individual≤c relation intr′, and discern which of the two possibilities holds. Indeed, there
is a way. Recall the CSP observer: as each event occurs, the observerknowsin that instant
whether it occurred in sequence or simultaneously with other events. In other words, total
order knowledge existed even though it isn’t preserved in CSP’s partial order traces.

To overcome this obstacle, we borrow an abstraction from modern quantum physics:
superposition. Consider≤c to be aquantum relation, and instances of≤c in tr′ to be in a
state of superposition. That is, for each≤c in tr′, both”<c” and ”=c” remain possible states,
until one relation or the other is observed upon reasoning abouttr’. The observed underlying
state for each≤c relation would correspond to the CSP observer’s knowledge at the time its
related events were recorded. Once each≤c relation has been observed intr′, the partially
ordered trace becomes a total ordering (a ”strict” interleaving) and might for example look
like this:

tr′′ = 〈a <c b =c c <c d =c e=c f <c g〉
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The interpretation of tracetr′′ is pronounced, ”a before b-with-c before d-with-e-with-f be-
fore g.” It is straightforward to see that tracetr′′ would be equivalently expressed in aVCR
history trace like this:

tr′′ = 〈{a}, {b, c}, {d, e, f}, {g}〉
where event multisets represent parallel events. From either of the above two forms oftr′′,
VCR views of the other, possibly imperfect, observers (represented as lists of lists, or lists of
traces) could be generated. The inner traces inVCR are called ROPEs (Randomly Ordered
Parallel Events). Here are some of the many possible views oftr′′:

〈〈a〉, 〈b, c〉, 〈d, e, f 〉, 〈g〉〉
〈〈a〉, 〈b, c〉, 〈d, f , e〉, 〈g〉〉
〈〈a〉, 〈b, c〉, 〈f , e, d〉, 〈g〉〉
〈〈a〉, 〈b, c〉, 〈e, d, f 〉, 〈g〉〉
〈〈a〉, 〈c, b〉, 〈d, e, f 〉, 〈g〉〉
〈〈a〉, 〈c, b〉, 〈d, f 〉, 〈〉〉

Furthermore, the views oftr′′ could also be expressed in the strict interleaving form oftr′′,
thus avoiding the additional syntax required by a list of ROPEs:

〈a <c b =c c <c d =c e=c f <c g〉
〈a <c b =c c <c d =c f =c e<c g〉
〈a <c b =c c <c f =c e=c d <c g〉
〈a <c b =c c <c e=c d =c f <c g〉
〈a <c c =c b <c d =c e=c f <c g〉

〈a <c c =c b <c d =c f 〉
There is at least one disadvantage to this new form of views, namely, the ability to reason
about imperfect observation is limited in the case of empty ROPEs (compare the correspond-
ing last views, where eventg is missing).

Before we leave this new approach to recording traces, some overall characterization is
desirable. There is more than one way to proceed from here. Briefly, we describe two.

For the first characterization, let the Olympian CSP observer record the trace of a com-
putation, introducing no changes to existing CSP models. Thus, for some computing process
P, let

tr ∈ traces(P)

wheretr’s partially ordered elements are as before. Sincetr is partially ordered, chronolog-
ically, we can immediately represent the trace of events,tr′, delimited by≤c relations rather
than as a comma-separated list:

tr′ = 〈a≤c b≤c c≤c d≤c e≤c f ≤c g〉
Next, we could consider a focus oracle,focus(), whose domain is the set of partially

ordered CSP traces, and whose range is the set of totally ordered (strictly interleaved) traces,
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as before. The focus oracle magically reveals the state of each≤c relation that corresponds
to what the CSP observer witnessed when recordingtr. Thus,

focus(tr′) = 〈a <c b =c c <c d =c e=c f <c g〉
If the thought of utilizing the quantum physics abstraction of superposition seems trouble-
some, we offer one additional interpretation, from Computer Science: There is a sense in
which thetr′ trace is a lazy data structure, whose≤’s are not yet elaborated. Under this
premise, the focus oracle merely elaborates those parts of the trace not yet elaborated. The
oracle is still magic, and correctly focuses on the total ordering known to the CSP observer.

For the second characterization, let theenvironmentof P be a distinguished observer who
records traces directly as a total order with ”<” and ”=” to delimit recorded events, rather
than the comma-separated trace of the CSP observer. That is, the environment is implicitly
able to observe each quantum ”≤” and record the observed operator.

Conveniently, both approaches characterized are equally backward-compatible with CSP
simply by replacing ”<c”s and ”=c”s with commas in the totally ordered trace. Thus any
trace analyzed using view-centric reasoning is also analyzable with the other existing CSP
models.

4 Motivating Parallel Events

Given the unqualified success of CSP’s approach to representing concurrency via sequentially
interleaved traces, it is reasonable to ask, why introduce parallel events at all? One reason is
that it is not always possible to determine from an interleaved trace, or even the set of all such
possible traces, of a computation, whether two or more events occurred simultaneously (that
is, simultaneously from the CSP observer’s frame of reference). The best way to illustrate
this point is with a degenerate example. Consider the interleaved trace:

〈a, a, a, a, a〉
This is a degenerate example because the set of all possible traces of this computation would
be a singleton containing just the above trace. Now suppose what we wished to reason about
is the degree of parallelism that occurred during this computation. Using our new approach
to focusing on this trace, we quickly realize many actual possibilities exist. For example:

〈a <c a <c a <c a <c a〉
〈a =c a <c a <c a <c a〉
〈a =c a =c a <c a <c a〉
〈a <c a =c a =c a <c a〉
〈a =c a <c a =c a <c a〉

Clearly, these are not all the possibilities. Yet not one of these possibilities could be iden-
tified – with certainty – from the given comma-delimited, interleaved trace as the actual
corresponding computation recorded by the CSP observer.

Perhaps a more practical example deserves the attention ofVCR’s parallel event seman-
tics. I/O-PAR (and I/O-SEQ) are design patterns described by Welch, Martin and others
in [11, 12, 13, 14]. The reason these design patterns are appealing is becausearbitrary topol-
ogy networks of I/O-PAR processes are guaranteed to be deadlock/livelock free, and thus
they are desirable components for building systems (or parts of systems).
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Informally, a processP is considered I/O-PAR if it operates deterministically and cycli-
cally, such that, once per cycle, it synchronizes in parallel on all the events in its alphabet.
For example, processesP andQ, given by the following CSP equations, are I/O-PAR:

P = (a→ SKIP ||| b→ SKIP ); P

Q = (b→ SKIP ||| c→ SKIP ); Q

Using the focused trace notation presented in this paper, the traces ofP andQ are, re-
spectively, all prefixes oftrP andtrQ:

trP = 〈a =c b <c a =c b <c a =c b <c . . . 〉

trQ = 〈b =c c <c b =c c <c b =c c <c . . . 〉
Notice how elegantly these focused traces capture the essence of the behavior of processes

P andQ. If one were to attempt to represent the behavior ofP andQ using traditional comma-
separated traces, the effort would be more tedious and cumbersome.

5 Conclusions and Future Work

This paper presented recent insights into the nature of CSP’s traces that emerged while study-
ing Hoare and He’s Unified Theories of Programming. The goal of expressingVCR in the
alphabetized relational calculus and linking aVCR theory of programming to existing CSP
models in the unifying theories remains. However, we are much closer to our goal now that
we’ve identified ways to map from classic CSP traces to the parallel traces ofVCR, via the
focus() oracle. Furthermore, we can map back to CSP traces fromVCR traces and views.
Finally, we are encouraged by the relationship and resemblance of CSP’s traces to those of
VCR, and remain optimistic thatVCR will soon be linked within the unifying theories.

While the basis for linkingVCR to CSP is established, work remains to defineVCR
as a theory of programming given in the alphabetized relational calculus. Along this path,
a new goal has emerged, to extend parallel events from traces alone to the specification of
processes that engage directly in parallel events. For example, in Section 4, how would one
express processP in terms of parallel events? Furthermore, how would one represent the
process that results from pipeliningP into Q, and so on? In general, the semantic description
of I/O-PAR should benefit from such a desired algebra, one that is capable of manipulating
parallel events. Such an abstraction could ultimately help enhance our insights into the design
and verification of concurrent systems.
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