
Chapter 1

Communicating Sequential Processes
and Deadlock

Introduction

This chapter is concerned with laying the mathematical foundations for the thesis. In
order to construct rigorous design rules for program design, we must first define a pro-
gramming environment. This chapter introduces the CSP language of C. A. R. Hoare,
which stands for Communicating Sequential Processes [Hoare 1985]. It is a notation
for describing patterns of communication by algebraic expressions. These may be man-
ipulated and transformed according to various laws in order to establish important prop-
erties of the system being described.

Behind CSP lies a mathematical theory of failures and divergences. Here a process
is defined in terms of abstract sets representing circumstances under which it might be
observed to go wrong. The model supplies a precise mathematical meaning to CSP
processes, and is consistent with the algebraic laws which govern them.

The standard operational model of CSP is also described. Here processes are rep-
resented by transition systems which illustrate their inner machinery. There is a close
relationship between the operational model of CSP and the Failures-Divergences model
which means that the former may be used to prove properties of a system phrased in
terms of the latter.

Following this, the concept of deadlock is formalised and we introduce techniques
for deadlock analysis, developed by S.D.Brookes, A.W.Roscoe and N.Dathi. The prob-
lem of livelock is also considered.

CSP is not a programming language strictly speaking; it is a mathematical notation.
However there are a number of concurrent programming languages based on CSP, such
as occam and Ada, so theoretical results derived using this model are applicable to real
programming.

5

6 CHAPTER 1. CSP AND DEADLOCK

1.1 The CSP Language

The basic syntax of CSP is described by the following grammar

Process ����� STOP
���

SKIP
���

event � Process
���

Process � Process
���

Process �	� alph � alph
�� Process
���

Process ����� Process
���

Process
 Process
���

Process � Process
���

Process � event
���

���
Process �

���
name

���
� name � Process

Here event ranges over a universal set of events, � , alph ranges over subsets of � ,
�

ranges over a set of function names, and name ranges over a set of process names.
A process describes the behaviour of an object in terms of the events in which it

may engage. The simplest process of all is STOP. This is the process which represents
a deadlocked object. It never engages in any event. Another primitive process is SKIP
which does nothing but terminate successfully; it only performs the special event � ,
which represents successful termination.

An event may be combined with a process using the prefix operator, written � . The
process bang � UNIVERSE describes an object which first engages in event bang then
behaves according to process UNIVERSE. If we want to give this new process the name
CREATION we write this as an equation

CREATION � bang � UNIVERSE

Processes may be defined in terms of themselves using the principle of recursion.
Consider a process to describe the ticking of an everlasting clock.

CLOCK � tick � CLOCK

CLOCK is a process which performs event tick and then starts again. (This is a some-
what abstract definition. No information is given as to the duration or frequency of
ticks. We are simply told that the clock will keep on ticking.)

1.1. THE CSP LANGUAGE 7

In an algebraic sense CLOCK has been defined as the solution to an equation of the
form � ��� � � �
It is not always the case in mathematics that such equations have solutions (e.g. there
is no real solution to � � �������	��
). Fortunately the underlying mathematical theory
of CSP guarantees that solutions exist to all such equations. The reason for this will be
explained later. The solution to

� ��� � � � is written
��
 � � �
 �

where
 is a dummy process variable. Using this notation we could write CLOCK as
��
 � tick �

The recursive notation is commonly extended to a set of simultaneous equations
where a number of processes are defined in terms of each other. This is known as mutual
recursion, several examples of which will be found in later chapters.

There are a number of CSP operations which combine two processes to produce a
new one. The first of these that we shall consider is sequential composition.

UNIVERSE � EXPAND � CONTRACT

is the process which first behaves like EXPAND, but when EXPAND is ready to termi-
nate it continues by behaving like CONTRACT. However it may also be possible that
EXPAND will never terminate.

It is rather more complicated to compose two processes in parallel than in sequence.
It is necessary to specify a set of events for each process, known as its alphabet. The
process denoted

PANTOHORSE � FRONT
� ��� forward,backward,nod � ��� forward,backward,wag ��
 �

BACK

represents the parallel composition of two processes: FRONT with alphabet � forward,
backward,nod � and BACK with alphabet � forward,backward,wag � . Here each process
behaves according to its own definition, but with the constraint that events which are
in the alphabet of both FRONT and BACK, i.e. forward and backward, require their
simultaneous participation. However they may progress independently on those events
belonging solely to their own alphabet. If a situation were to arise where FRONT could
only perform event forward and BACK could only perform event backward then dead-
lock would have occurred.

Parallel composition may be extended to three or more processes; given a sequence
of processes � ��������������� �"!$# with corresponding alphabets �&%'�������(%	!�# we write their
parallel composition as

PAR
� � � �)�*+(, � � � + � % + �

8 CHAPTER 1. CSP AND DEADLOCK

Note that it is implicitly assumed that the termination event � requires the joint partic-
ipation of each process � + , whether or not it is included in their process alphabets.

An alternative form of parallel composition is interleaving, where there is no com-
munication between the component processes. In the parallel combination

BRAIN ��� � MOUTH

the two processes, BRAIN and MOUTH, progress independently of each other and no
cooperation is required on any event, except for � , the termination event. Any other
actions which are possible for both processes will only be performed by one process at
a time. Interleaving is a commutative and associative operation and so we may extend
the notation to various indexed forms, such as

��� � *+(, � � * � � ������� � � �

A useful feature of CSP is the ability to describe nondeterministic behaviour, which
is where a process may operate in an unpredictable manner. The process

BUFFER � TWOPLACE
 THREEPLACE

may behave either like process TWOPLACE or like process THREEPLACE, but there
is no way of telling which in advance. The purpose of the
 operator is to specify con-
current systems in an abstract manner. At the design stage, there is no reason to provide
any more detail than is necessary and, where possible, implementation decisions should
be deferred until later.

This operation is known as internal choice. CSP also contains an external choice
operator � which enables the future behaviour of a process to be controlled by other
processes running along side it in parallel, which, collectively, we call its environment.

The process
MW � DEFROST � COOK

may behave like DEFROST or like COOK. Its behaviour may be controlled by its envi-
ronment provided that this control is exercised on the very first event. If an initial event
button1 is offered by DEFROST that is not an initial event of COOK, then the environ-
ment may coerce MW into behaving like DEFROST, by performing button1 as its initial
event. If, however, the environment were to offer an initial event that is allowed by both
DEFROST and COOK then the choice between them would be nondeterministic.

Both the choice operators may be extended to indexed forms. We write

� ��� � � � � �

to represent the behaviour of an object which offers any event of a set % to its environ-
ment. Once some initial event � has been performed the future behaviour of the object
is described by the process � � . However, the process

 ��� � � � � �

1.1. THE CSP LANGUAGE 9

(where, for technical reasons, % must be finite) offers exactly one event � from % to its
environment, the choice being non-deterministic.

Sometimes it is useful to be able to restrict the definition of a process to a subset of
relevant events that it performs. This is done using the hiding operator (�). The process

CREATION � bang

behaves like CREATION, except that each occurrence of event bang is concealed. Note
that it is not permitted to hide event � .

Concealment may introduce nondeterminism into deterministic processes. It may
also introduce the phenomenon of divergence. This is a drastic situation where a process
performs an endless series of hidden actions. Consider, for instance, the process

CLOCK � tick

which is clearly a divergent process.
It is conventional to extend the notation to � � % , where % is a finite set of events.
Finally let us briefly consider process relabelling. Let

�
be an alphabet transfor-

mation function
� � � � � , which satisfies the property that only finitely many events

may be mapped onto a single event. Then the process
� � � � can perform the event

����� �
whenever � can perform event

�

. As an example consider a function new which maps
tick to tock. Then we have

new
�
CLOCK � � tock � new

�
CLOCK �

Some important algebraic laws which govern CSP processes are given in figures 1.1
and 1.2, which vary in complexity. They are taken from [Hoare 1985], [Brookes 1983],
and [Brookes and Roscoe 1985a]. (In some cases the syntax has been modified to con-
form to the version of CSP described above.) Note that this is not a complete list. The
following example illustrates the use of these laws.

Consider a process to describe a vending machine which sells tea for a price of one
coin and coffee for two coins.

VM � coin � � �
tea � VM � � �

coin � coffee � VM � �
After inserting a coin, a customer can control the future behaviour of the machine by

either inserting another coin, or taking a cup of tea.
We now define a process which describes a particular customer who loves tea and

is prepared to pay for it. Coffee he will tolerate, but only if it is provided free of charge.

TD � �
coin � tea � TD � � �

coffee � TD �

10 CHAPTER 1. CSP AND DEADLOCK

To illustrate the use of algebraic laws to simplify CSP process definitions, consider
what happens when the tea drinker tries to use the vending machine. Both processes
have alphabet � coin,coffee,tea � .

SYSTEM � VM � ��� coin,coffee,tea � � � coin,coffee,tea �
 � TD

�
��
�

�
coin � � �

tea � VM � � �
coin � coffee � VM � � �

� ��� coin,coffee,tea � ��� coin,coffee,tea ��
 �� �
coin � tea � TD � � �

coffee � TD � �

���
�

� coin �
��
�

� �
tea � VM � � �

coin � coffee � VM � �
� � � coin,coffee,tea � ��� coin,coffee,tea �
��

tea � TD

� �
�

using law 1.22 with
� � � coin � �
 � � coin,coffee � ��� � � coin �

� coin � tea � �
VM �	� � coin,coffee,tea � ��� coin,coffee,tea �
�� TD �

using law 1.22 with
� � � tea,coin � �
 � � tea � ��� � � tea �

� coin � tea � SYSTEM

The system has been reduced to a very simple sequential definition. We see that
although no coffee will be consumed in this situation, the system will never deadlock.

The account of the CSP language given here is incomplete. Only the core language
has been considered with certain ‘advanced’ operators omitted. The language described
corresponds to the modern version of CSP, as given in [Formal Systems 1993], which
differs slightly from the language presented in Hoare’s book [Hoare 1985].

1.1. THE CSP LANGUAGE 11

Figure 1.1: Laws of CSP I

SKIP � � � � � SKIP � � (1.1)

STOP � � � STOP (1.2)� � ����� ��� � � � � � ��� � (1.3)��� � � � ��� � � � � � ����� (1.4)� � � % ���
 ��� � � �	�	� � %
�� � (1.5)� �	� % ����

�
 � � � �	�	� ���
���� � � � � � � % �	�
 ��� � � � %
�� ���
 ��� (1.6)� � ����� � � ��� � � (1.7)� ��� � SKIP � � (1.8)� ����� � � ��� ��� � � � � ��� ��� � ��� ��� (1.9)�
 � � � (1.10)�
�� � �
 � (1.11)�
 � �
�� � � � �
����
�� (1.12)� � � � � (1.13)� ��� � � � � (1.14)� � � � ��� � � � � ��� � ��� (1.15)� �	� % �	�
 � � �
�� � � � � � � % �	�
 ��� �
 � � �	� % �	�
���� �
(1.16)� � � �
�� � � � � ��� �
 � � ��� � (1.17)�
 � � ��� � � � �
���� � � �
�� � (1.18)� � � � � � � � � ��� � � � � � �
 � � � ���

� � � � �
�� � (1.19)� � STOP � � (1.20)

� ��� ��� � � � � � STOP (1.21)

12 CHAPTER 1. CSP AND DEADLOCK

Figure 1.2: Laws of CSP II

Let � � � ��� � � � � �

� � ��� ����� � ���
Then � �	� % ���
 ��� � ��� �
	�� � � � ��
 � � % ���
�� ����
��

where � ��
 � � � � if ��� �
� otherwise

and � �
 � � ��� if ���

� otherwise

and � � � ���
 �
 � � � � �
 �
 � % �
assuming

��� % and
 �
� (1.22)

��� ��� ��� � � � � ��������� �! �#" � �$� � � � �%� ��� ��� � � � � ��� ���&� �! �'" � �(� � � � � �� ��� �! �#" � � �$� � �����%� ��� ��� � � � � � � � (1.23)

SKIP �'� � SKIP (1.24)

STOP �'� � STOP (1.25)� � �'� � � � � � � � � � � � (1.26)� � � � � �'� � � � � (1.27)� � � � � � � � � � � � � � � if �*)� � (1.28)� � � � � �'� � � � � � � � � � � � � (1.29)� � � � % ���
�� � � �'� � � �	� % ��� � � � ��
 � � � � � �
if �+)� % (1.30)� �
�� � �'� � � � � � �
 � � � � � (1.31)� � � � � � � � � � ��� � �'� � � � � � �
 � � � � � � � � � � � � �'� � � �
if �*)� � (1.32)���

STOP � � STOP (1.33)����� � � � � ��� � � � ��� � � (1.34)��� � � � � � ��� � � � � � � � if
�-, � � � � � � � � (1.35)��� � ��� ��� � � ��� � � ��� � ��� ��� (1.36)��� � ��� � � ��� � � � ��� ��� (1.37)��� �
�� � � ��� � �
 ��� ��� (1.38)� � � � � , � � � � � � ��� � � � � (1.39)

1.2. THE FAILURES-DIVERGENCES MODEL 13

1.2 The Failures-Divergences Model

In the preceding section the concept of communicating processes was introduced infor-
mally and the corresponding algebraic laws were stated without mathematical justifica-
tion. In this section a precise semantic definition of CSP processes is given from which
the laws can be deduced. This is known as the Failures-Divergences model. Here a
process is defined in terms of important observable properties – traces, failures and
divergences.

A trace of a process � is any finite sequence of events that it may initially perform.
For instance

� � coffee,coffee,coffee # � � coin,tea # ��� traces
����� �

The following useful operations are defined on traces

� Catenation: ���
	
� � ��� � � ������� ��� # � � 	 � � 	 � ������� 	 * # ��� � � ������� �
� � 	 � ����� � 	 * #

� Restriction: ���� � , trace � restricted to elements of set �
Example: � � � � � " ��� � � ��� � � # �� � � � � � " � � � � � � � " � � � � #

� Replication: � * trace � repeated � times.

Example: � � � � # � � � � � � � � � � #

� Count: ��� � number of occurrences of event � in trace �
Example: � � � � � � � � � � # � � ���

� Length: ��� � the length of trace � .
Example: � � � � � � " # � ���

� Merging: merge
� � � 	 � the set of all possible interleavings of trace � with trace	

Example: merge
� � � � � #�� � " # � � � � � � � � " # � � � � " � � # � � " � � � � # �

A complication to trace interleaving is that the � event requires the joint par-
ticipation of both traces. This means that a trace which contains � cannot be
interleaved with one that does not.

Examples: merge
� � � � � � � # � � " � � # � �

��� ��
� � � � � " � � # �
� � � " � � � � # �
� " � � � � � � #

� ��
��

merge
� � � � � � � # � � " # � � � �

14 CHAPTER 1. CSP AND DEADLOCK

The failures of a process describe the circumstances under which it might deadlock.
Each failure of a process � consists of a pair

� � � � � where � is a trace of � and
�

is
a set of events which if offered to � by its environment after it has performed trace � ,
might be completely refused. For instance

� � coin,tea,coin,tea,coin,coin #�� � tea,coin � � � failures
�
VM �

This describes a situation where the vending machine VM has dispensed two cups of
tea and then accepted two coins. At this point the machine is willing only to dispense
coffee. If a user arrives who wants tea, and is only prepared to take a cup of tea or to
insert another coin then deadlock will ensue.

The concept of failures is commonly used to write specifications for the behaviour
of CSP processes. Consider the following specification.

� � � � � � � failures
� � � � � � in � ��� out ��� out)�

�

This states that whenever process � has performed the event in more often than the
event out it must guarantee not to refuse event out. This might form part of the overall
specification for a buffer.

The divergences of a process are a list of the traces after which it might diverge, e.g.
� # � divergences

�
CLOCK � tick �

There are several further aspects of notation that are needed in order to define the
model which are as follows. The Power-Set of a set % , written � % , consists of all
subsets of % . The Finite Power-Set of % , written �

� % � , consists of all finite subsets of% . The set of all finite sequences (including �&#) that may be formed from elements of% is written %�� .
The Failures-Divergences model is based on a universal set of events � . Each CSP

process is uniquely defined by a pair of sets
� � � � � , corresponding to its failures and

divergences, such that
� �

� �	� � �� �
� �

There are seven axioms that such a pair of sets must satisfy in order to qualify as a
process. (Note that there are several versions of these in existence in the literature. This
version comes from [Brookes and Roscoe 1985a].)

(1)
� � #�� ��� � � �

(2)
� � � 	 � ��� � � � ��� � � � � � � � �

(3)
� � �
 � � ��
 � �
 ��� � � � � � � �

(4)
� � � � � � ��
 � � " �
 � � � � � � " # � � � �)� � � � ��� � � � �

 � � �

(5)
� �
 � � �

�
� � � � �
 � � � � ��� � � � � � � �

(6) � � �
 	 � � � ��� ��� 	 � �
(7) � � �
 ���

� ��� � � � � � � �

1.2. THE FAILURES-DIVERGENCES MODEL 15

Putting the first four axioms into words tells us that every process starts off with an
empty trace (axiom 1). In order to perform trace � , it must be able to perform any prefix
of � (axiom 2). A subset of a refusal set is also a refusal set (axiom 3). If the process
can refuse the events in

�
, and cannot perform any of the events in
 as its next step,

then it may also refuse
�

 (axiom 4). These are all basic intuitive properties of

processes.
Axiom 5 states that a set may be refused if all its finite subsets may be refused. This

is to allow for the possibility of � being an infinite set without complicating the theory.
Axioms 6 and 7 state that once a process diverges it may subsequently perform any

trace imaginable and will behave in a totally nondeterministic manner. This is a rather
harsh treatment of the phenomenon of divergence. If we put our CLOCK in a vacuum to
hide its ticking we would not expect such dramatic behaviour. It is, however, a conve-
nient means to make the theory work better based on the assumption that the possibility
of divergence is catastrophic (see [Roscoe 1994]).

There is a natural partial order (see appendix A) on the set of all processes given
by � � ��� � � ��� � � � �

�
� ��� � � ����� �

� ��� �
�

The interpretation of this is that process � � is worse than � � if it can deadlock or
diverge whenever � � can. This ordering is in fact a complete partial order. The bottom,
or worst, element � represents the process which always diverges, corresponding to
the decision to treat this form of behaviour as the least desirable. It is a chaotic process
which can do absolutely anything in a totally unpredictable manner. It is defined as
follows.

failures
� � � � � �	� � �

divergences
� � � � � �

The failures and divergences of the fundamental CSP terms are defined in figures
1.3 and 1.4. (These are the same as in [Brookes and Roscoe 1985a], except that the
definitions of parallel composition and interleaving are modified to reflect the fact that
in the modern version of CSP these operators implicitly require the cooperation of both
processes in performing the � event.) This covers all closed, non-recursive CSP terms.

All of the CSP operators can be shown to be well-defined. In other words, if you
apply any of them to existing CSP processes, the resulting object will itself be a process:
its failures and divergences obeying the seven axioms of the model. They are also con-
tinuous, with respect to � . This is important because it means that any recursive CSP
equation of the form

� � � � � � has a solution, by Tarski’s fixed point theorem (see
appendix A). The least solution is given by

� �
� � � � � �	� � � * � � � � � � N �

16 CHAPTER 1. CSP AND DEADLOCK

This means that if you want to find the solution to
� ��� � � � you start at the bottom

� and repeatedly apply the function � to it. For instance CLOCK is the limit of the
series

� � tick � � � tick � tick � � � tick � tick � tick � � �����
The failures and divergences of � �

� � � � � may be calculated as follows

divergences
� � �

� � � � � � � �
*�� N

divergences
� � * � � � �

failures
� � �

� � � � � � � �
*�� N

failures
� � * � � � �

This is how we define the meaning of recursion in CSP.
This approach may be extended to mutual recursion, where a number of processes

are defined by a system of simultaneous equations. The trick here is to let
�

be a vec-
tor of processes, satisfying an equation of the form

� � � � � � . The solution is then
defined as the least fixed point of � in the same way as before.

Whilst the fact that recursion is well-defined in CSP is crucial to the theory, it is
really only of technical interest to a designer of concurrent systems. Basically it allows
him to specify processes recursively, assured in the knowledge that it is a sound prac-
tice.

The failures-divergences model of CSP is used for formal reasoning about the be-
haviour of concurrent systems defined by CSP equations. The partial ordering of non-
determinism is very important to the stepwise refinement of concurrent systems. Start-
ing from an abstract non-deterministic definition, details of components may be inde-
pendently fleshed out whilst preserving important properties of the overall system such
as freedom from deadlock. This will be explained in more detail later.

1.2. THE FAILURES-DIVERGENCES MODEL 17

Figure 1.3: Denotational Semantics for CSP I

divergences
�
STOP � � � �

failures
�
STOP � � � � # � � � �

divergences
�
SKIP � � � �

failures
�
SKIP � � � � � # � � � � � � � � �

 � � � � # � � � � �
divergences

� � � � � � � � � # � � ��� � divergences
� � � �

failures
� � � � � � � � � #��

�
� �
� �

� � � � ���

 � � � � # � � � � � � � � � � � � failures

� � � �
divergences

� � ����� � divergences
� � �

� � � 	 � � � � � # � traces

� � �
 � � -free

 	 � divergences

� � � �
failures

� � ����� � � � � � � � � � � -free

� � � �
 � � # � � failures

� � � �

� � ���
	 � � � � ��� � � # � traces
� � �
 � � -free
� 	 � � � � failures
� ��� �

 � � � � � � ��� � divergences
� � � � � �

divergences� � �	� % �	�
 ��� �
�

�������� �������

� � 	 ��� � � %
 ��
 � � � � �
�����
�

� � �� � %
 � � � � � divergences
� � �
� �� � ��
 � � � � � traces

� ��� �� � ���� � �
 � � � � � divergences
� � �
� �� � %
 � � � � � traces

� � � �
� ����
�

� �������
�������

failures
� � �	� % �	�
 ����� �

�������� �������

� � � �

 � � � � � � %
 �
 � � � � �

��� � %
 � � � �

 � � �
 � � � �
� � � � � � %
 ��
 � � � � �

 � ���� � %
 � � � � �

�
� � failures

� � �

 � � �� � �
 � � � � �
 � � failures

� ���

� �������
�������

 � � � � � � ��� � divergences
� � � � % �	�
 ��� � �

18 CHAPTER 1. CSP AND DEADLOCK

Figure 1.4: Denotational Semantics for CSP II

divergences
� � ��������� �

��� �� � �
� 	 � � � merge

� � � 	 �
� � � � divergences
� � �
 	 � traces

� ��� � �
� � � traces

� � �
 	 � divergences
� � � � �

� ��
��

failures
� � ��� ��� � �

���������� ���������

� � � � � � � �
� 	 ������

�
� � � � � � � � � � � failures

� � �
� 	 � � � � failures
� � � � �� � � � � � � failures
� � �
� 	 � � � � � � � � failures

� � � �
������
�

� � merge
� � � 	 �

� ���������
���������

 � � � � � � ��� � divergences
� � ��� ��� � �

divergences
� �
���� � divergences

� � �
 divergences
� � �

failures
� �
�� � � failures

� � �
 failures
� � �

divergences
� � � ��� � divergences

� � �
 divergences
� � �

failures
� � ��� � �

��� ��
� � � � � � � � � � � � failures

� � �
�

failures
� ��� �� �)� � #

� � � � � � failures
� � �
 failures

� � � �
� ��
��

 � � � � � � ��� � divergences
� � ����� �

divergences
� � � � � �

��� ��
� ���� � � � � � � � � � 	 �� � � divergences

� � �� � � � � � � � � # * � traces
� � � � � �

� ��
��

failures
� � � � � � � � � �� � � � � � � � �

�
� � � � � �
 � � � � � failures

� � � �

 � � � � � � ��� � divergences

� � � � � � � �
divergences

����� � � � � � ��� � � 	 ��� � divergences
� � � �

failures
����� � � � � � ����� � � � � � � � � � � , � � � � � � failures

� � � �

 � � � � � � ��� � divergences

����� � � � �

1.3. OPERATIONAL SEMANTICS 19

1.3 Operational Semantics

So far we have encountered two ways of looking at communicating processes: firstly
as algebraic expressions and secondly in terms of abstract mathematical sets based on
their observable behaviour. There is no obvious way of seeing from either of these rep-
resentations how our processes might be realised on a machine. We need a more con-
crete approach – an operational model. The operational semantics of CSP is a mapping
from CSP expressions to state transition systems. A state transition system is a labelled
digraph where each vertex represents a state in which the process may rest. The out-
going arcs from each vertex represent the events that the process is ready to perform
when in the associated state. The destination vertex of each of these arcs represents
the new state that the process attains by performing the associated event. There is one
particular vertex that is marked as the initial state of the process. A special event � is
used to represent concealed events or internal decisions. States which have outgoing

� -labelled arcs are called unstable. Those which do not are called stable.
Transition systems for certain processes that we have previously encountered are

shown in figure 1.5. Note that recursion is represented here by the presence of circuits
in the digraphs.

Figure 1.5: State Transition Systems

T

tick CLOCK

tick tea

coffee

coin

coin

coin

coffee

tea

coin tea TD
coffee TD

coin
tea VM

coin coffee VM

tea VM
coin coffee VM

coffee VM

tea TD

VM

TD

CLOCK (
)

T

T

The operational semantics of CSP is defined by a set of inference rules which define
a mapping from closed CSP terms to transition systems. Each clause consists of a (pos-
sibly empty) set of assertions � % � ����� � % * � and a conclusion � presented in the form

% ����������% *
�

20 CHAPTER 1. CSP AND DEADLOCK

Consider, for example, the rules which define sequential composition.

� �� �
� � � � � �� � �
 � � �
�)� �

� �� �
� � � ������ �
The first clause states that if a process � can perform a certain event

�
, where

�
can be

any event except for � , and its subsequent behaviour is then described by the process�
 , then process � ��� can also perform
�

and its subsequent behaviour is described by�
 � � . The second clause tells us that if � can terminate straight away, by performing
event � , then � � � can perform an internal event � and then behave like � .

The full set of operational rules for the subset of the CSP language that we are
using is given in figures 1.6 and 1.7. These clauses are taken from [Roscoe 1988a]
and [Formal Systems 1993]. They may be used to systematically construct transition
digraphs from systems of CSP equations, as is done by the refinement checking pro-
gram FDR [Formal Systems 1993]. As an example, let us consider how the transition
digraph for process TD, figure 1.5, is constructed. First of all the defining CSP equation
is converted into a syntax tree as follows

TD�
coin � tea � TD � coffee � TD

�
coin � tea � TD coffee � TD

coin � coffee �
tea � TD TD

tea �
TD

The syntax tree shows how the defining CSP term for TD is composed from operators
acting on sub-processes. Each framed process term represents a potential state of TD
or a state of one of its sub-processes. We can expand some of these straight away using
the operational rule for event prefixing.

coin � tea � TD coin� tea � TD

tea � TD tea� TD

coffee � TD
coffee� TD

We are now ready to expand the external choice construct which gives us

coin � tea � TD � coffee � TD coin� tea � TD

1.3. OPERATIONAL SEMANTICS 21

coin � tea � TD � coffee � TD
coffee� TD

The rule for recursion enables us to make the following connection.

TD �� coin � tea � TD � coffee � TD

It may not be immediately obvious how this follows from the rule for recursion, which
is phrased in terms of the � operator. The reason that it does follow is that we are actu-
ally using TD as an abbreviation for

� � � coin � tea �
�

� coffee �
�

It is now the case that every state reachable from TD has been expanded, and together
they constitute a state-transition system for TD, which is

��������� ��������

TD �� coin � tea � TD � coffee � TD

coin � tea � TD � coffee � TD coin� tea � TD

coin � tea � TD � coffee � TD
coffee� TD

tea � TD tea� TD

� ��������
��������

(Note that states coin � tea � TD and coffee � TD are not reachable from TD.)
This gives us the finite state machine shown in figure 1.5. It is important to note that
not all CSP expressions have finite operational representations. Some simple examples
of infinite state processes are given in [Roscoe 1994].

It is straightforward to derive the failures and divergences of a process from its
state transition system. However there may be many operational representations of
a single process, just as there may be many algebraic representations. It is shown in
[Roscoe 1988a] that the denotational semantics of CSP, i.e. the failures-divergences
model, and the operational semantics are congruent. This means that if � is the map-
ping from operational semantics to failures and divergences, and op is the represen-
tation of a CSP operation in the operational model, and op is the representation of the
same CSP operation in the denotational model then for any process � in the operational
model we have

�
�
op

� � � � � op
�

�
� � � �

This means that the behaviour of a process predicted by its failures and divergences
will be the same as that which can be observed of its operational representation. So we
may use the operational semantics of CSP in order to prove properties of process behav-
iour which are phrased in the Failures-Divergences model. This feature turns out to be
particularly useful when the operational representation of a process is finite although
its failures and divergences are infinite, as is usually the case in practice. More on this
in chapter 3.

22 CHAPTER 1. CSP AND DEADLOCK

Figure 1.6: Operational Semantics for CSP I
Primitive processes:

SKIP
�
� STOP

Prefix:
��� � � � �� �

External choice: � �� �
� � ����� �� �

�)� �

� �� �
� � ��� � �� �

�)� �

� �� �
� � ��� � �� � �
 � ���
� �� �
� � ��� � �� � � ���
 �

Internal choice:
� �
�� ���� �
� �
���� �� �

Sequential Composition:

� �� �
� � � � � �� � �
 � � �
�)� �

� �� �
� � � ������ �

1.3. OPERATIONAL SEMANTICS 23

Figure 1.7: Operational Semantics for CSP II
Parallel Composition:

� �� �
� � � % �	�
�� � �� �
 �	� % ���
 ���
� � � % � � � � � � �
 � � �

� �� �
� � � % �	�
�� � �� � �	� % ���
�� �

� � � � � % � � � � �
 � � �

� �� �
 � �� �
� � � % ���
 ��� �� �
 �	� % �	�
�� �

� � � % �

� �
 � � �
Interleaving: � �� �
� � ����� �� �
 ��� ���

�)� �

� �� �
� � ����� �� � ��� � �

�)� �

� �� �
 �
�
� �

� � ��� �
�
� �
 ��� ���

Hiding: � �� �
� � � % � �� � �
 � % �
� � %
 � � �

� �� �
� � � % � �� � �
 � % �
�)� %
 � � �

Alphabet Transformation: � �� �

��� � �

���
���� ��� �
 �

Recursion:

� �
� � � � � �� � � � �

� � � � � �

24 CHAPTER 1. CSP AND DEADLOCK

1.4 Language Extensions

The core CSP syntax described above is very abstract, and lacks certain useful features
found in conventional sequential and parallel programming languages. The extensions
outlined below are useful for writing more detailed specifications.

Sometimes we define processes with parameters, such as

BUFF
�
in � out � � in � out � BUFF

�
in � out �

This is a process-schema, rather than an actual process. It defines a CSP process for
each combination of parameter values. CSP parameters may be integers, real numbers,
events, sets, matrices, etc.

A communication is a special type of event described by a pair
" ��� , where

"
is the

name of the channel on which the event takes place, and � is the value of the message
that is passed.

The set of messages communicable on channel
"

is defined

type
�#" � � � � � " ��� � �	�

Input and output are defined as follows. A process which first outputs � on channel"
, then behaves like � is defined

�#"�� � � � � � �#" ��� � � �
Outputs may involve expressions of parameters such as � � � � � "�� � � � � . The

expressions are evaluated according to the appropriate laws.
A process which is initially prepared to input any value � communicable on the

channel
"
, then behave like � � � � is defined.

�#"�� � � � � � � � � ��� � type
� � � �#" ��� � � � � � �

It is usual for a communication channel to be used by at most two processes at any
time: one for input and the other for output. However this restriction is not enforced in
the modern version of CSP.

Another important aspect to real programming languages is the use of conditionals.
Let

�
be a boolean expression (either true or false). Then

�	� ��
 � (“ � if
�

else � ”)

is a process which behaves like � if the value of expression
�

is true, or like � other-
wise.

These extensions are useful for specifying fine detail during the later stages of pro-
gram refinement. At the design stage we shall tend to stick to abstract, non-determinis-
tic definitions of processes. The deadlock issue will be addressed at this point. In this
way we shall build robust programs for which deadlock-freedom cannot be compro-
mised by implementation decisions made at a later stage.

1.5. DEADLOCK ANALYSIS 25

1.5 Deadlock Analysis

Terminology and Fundamental Results

The problem of the “deadly embrace” was first reported by E. W. Dijkstra relating to
resource sharing[Dijkstra 1965]. It has proved a popular topic of research ever since.
Most of the early work was presented in an informal manner, for instance [Chandy and
Misra 1979], largely due to the lack of a suitable mathematical model for concurrency at
the time. But in 1985-86, S.D.Brookes, A.W.Roscoe and N.Dathi presented some pow-
erful techniques for reasoning about deadlock based upon the solid mathematical foun-
dations of CSP. A major benefit of their approach is that it relies only on local analysis
of pairs of processes, and simple topological properties of the network configuration.
This makes it suitable for analysing networks of arbitrary size. The terminology intro-
duced here is taken from the following sources: [Brookes and Roscoe 1985b], [Roscoe
and Dathi 1986], and [Brookes and Roscoe 1991].

We consider a network, � , which is a list of processes ��� � ����� ��� * # . Associated
with each process � + is an alphabet � � + . The corresponding process,) *+(, � � � + � � � + � ,
is denoted PAR(�).

We view a network as consisting of a static collection of everlasting components.
Parallel programs do not need to terminate to produce useful results, and deadlock anal-
ysis is simplified if we can cast termination aside. Henceforth we shall only consider
processes which are non-terminating, i.e. they never perform the event � (although
they may still be constructed from sub-processes which do terminate).

A process � can deadlock after trace � if and only if
� � � � � � failures

� � � . We say� is deadlock-free if
� � � traces

� � � � � � � � �)� failures
� � �

Note that this definition of deadlock-freedom also excludes any process which can
diverge (by axiom 7 of the failures model), which seems reasonable as divergence is
every bit as undesirable a phenomenon as deadlock. Network � is said to be deadlock-
free if the process PAR(�) is deadlock-free.

The following lemma describes how individual sequential processes may be con-
structed free of deadlock. Used in conjunction with the algebraic laws of CSP, it also
enables us to prove deadlock-freedom for certain small networks of processes by man-
ipulation into a sequential form. Unfortunately this technique does not scale at all well
to large networks because the resulting CSP terms usually increase in length in a manner
exponentially proportional to the number of processes which constitute the network.

Lemma 1 (Roscoe-Dathi 1986) Suppose the definition of the process � uses only the
following syntax

Process � � � SKIP
���

event � Process
���

26 CHAPTER 1. CSP AND DEADLOCK

Process � Process
���

Process
 Process
���

Process � Process
���

���
Process �

���
name

���
� name � Process

where “name” denotes a process variable, but � contains no free process variables,
is divergence-free, and every occurrence of SKIP in � is directly or indirectly followed
by a “ � ” to prevent successful termination. Then � is deadlock-free �

If every component process � + of a network is deadlock-free we say that the net-
work is busy. A network is triple-disjoint if no event requires the participation of more
than two processes. We shall restrict our attention to networks which are both busy and
triple disjoint. This will enable us to analyse networks for deadlock-freedom purely by
the local analysis of neighbouring pairs of processes.

We observe the convention that communication channels are used in only one direc-
tion and between only two processes. We call this the I/O convention. This guarantees
that whenever two processes are ready to communicate on a particular channel then the
communication can go ahead. Sometimes, when we are not concerned about the data
which is communicated, it is convenient to substitute a channel name for communica-
tion events in a process description. For instance, we might write

� � SKIP instead of� � � � SKIP. This is known as abstraction. If we can prove freedom from deadlock
for an abstracted version of a network then the property will also hold for the original.
A formal treatment of this is given in [Roscoe 1995].

A network state of � is defined as a trace � of PAR(�), together with a sequence� � � ������� � * # of refusal sets
� + , such that for each

�
,

� � �� � � + � � + � � failures
� � + �

We say that a network state is maximal if each of its refusal sets is maximal, i.e.,
if

� � � � � � ����� � � * # � is a maximal state of � then for each process � + there is no failure� � �� � � + �
 � such that
� + �
 .

When we consider deadlock properties we find that all the relevant information is
carried by the maximal network states, as the more events that an individual process
refuses, the more likely deadlock becomes. So from now on all network states will be
taken to be maximal, as this simplifies the analysis.

There is a close relationship between a network state and the operational states of
the processes within. Suppose we visualise a network as a collection of state transition
systems – one representing each process. A network state is then rather like a cross-
section of the network. The trace � tells us what each process has done so far, and each

1.5. DEADLOCK ANALYSIS 27

refusal set
� + corresponds to a particular stable state of process � + , telling us exactly

what it is refusing to do on the next step. For instance the network

� VM � TD #
for which the transition systems are illustrated in figure 1.5, has a network state

� � coin # � � � coffee � � � coin,coffee � # �
which corresponds to the situation where the tea drinker has inserted a coin into the

vending machine. The vending machine is then in operational state tea � VM �
coin � coffee � VM, refusing event coffee and prepared to accept � coin, tea � . The
tea drinker is in operational state tea � TD, refusing � coin, coffee � and prepared only
to accept tea.

The following lemma characterises network states where deadlock is present.

Lemma 2 (Roscoe-Dathi 1986) PAR(�) can deadlock after trace � if and only if there
is a network state

� � � � � � ����� � � * # � such that

*�
+(, � �

� + �
� � + � � *�

+(, � � � +

�
This follows easily from the definitions. Such a state is called a deadlock state.

Suppose that, in a particular state � � � � � � � � ������� � * # � there is a process � + which
is ready to communicate with ��� , i.e.

�
� � + � � + �

�
� ���)� � �

We say that � + is making a request to ��� in state � , which is written

� +��� � � �
We say that this request is ungranted if also � � refuses to respond to � + ’s request: i.e.

� � + �
� � � � � +

� �
This is written � +��� � ��� �
The set of shared events within a network is known as its vocabulary, written � .

� � �
+
	, �

�
� � + �

� ��� �
Sometimes we are only interested in ungranted requests from � + to � � when neither

process is able to communicate outside the vocabulary of the network, i.e. in addition
to the above �

� � + � � + �
 �
� � � � � � �

�
� �

28 CHAPTER 1. CSP AND DEADLOCK

Then we say that � + is making an ungranted request to ��� with respect to � . We write

� + ��� �� � � � �
We say that � + is blocked in network state � of � if

�
� � � + �� � � and � + �� ��� ��� � + ��� �� � ���

which means that � + is ready to engage in a communication with at least one other
process, but no process that � + wishes to communicate with is able to do so. Neither� + nor any process that it wishes to communicate with is able to perform any event
outside the vocabulary of � .

The following lemma is derived from the above definitions:

Lemma 3 (Roscoe-Dathi 1986) If � is a state of a triple disjoint, busy network � ,
then � is a deadlock state if, and only if, every process in � is blocked in state � �

This result may be interpreted graphically. We define the wait-for digraph of a net-
work state as follows. It is a digraph which has a vertex for every process � + , and arcs
from any blocked process to each process for which it is waiting. Figure 1.8 shows
examples of wait-for digraphs, which illustrate lemma 3.

Figure 1.8: Wait-for Digraphs

No deadlock (��� and �
	 can run)

P

P

P P

P

1

2 3 4

5

Deadlock (all processes blocked)

P

P

P P

P

1

2 3 4

5

We may deduce an interesting feature of deadlock states. Consider a deadlock state
of a busy, triple-disjoint network � . By lemma 3 there is at least one ungranted request
from every process, with respect to the vocabulary of � . So starting with any process� +�� , we may build an arbitrarily long sequence of ungranted requests as follows:

� + � �
� �� � � +�� �
� �� � � +�� ���

1.5. DEADLOCK ANALYSIS 29

As there are only a finite number of processes, � + , this sequence must eventually arrive
back at a process that it has already visited, i.e there is a cycle of ungranted requests

� +�� �
� �� � � + � � � �
� �� � ��� �
� �� � � + � ��� �
� �� � � +��

Hence we have proved the following result.

Theorem 1 In any deadlock state of a triple disjoint, busy network there is a cycle of
ungranted requests with respect to its vocabulary � .

Roscoe and Dathi made use of this fact to establish a method for investigating deadlock
properties of networks which involves only local checking. The crucial idea behind this
technique is as follows. If a function is defined on the states of processes in a network
which is strictly decreasing along any chain of ungranted requests, then there can never
be a cycle of ungranted requests and hence no deadlock. An example of using this tech-
nique will be given in the next chapter.

Theorem 2 (Roscoe-Dathi 1986) Let � � ����� �����(� � * # be a busy, triple-disjoint net-
work with vocabulary � . If there exist functions

� + , from the failures of each process � +
to a strict partial order

��� � � � such that whenever � � � � � � � + � � � # � is a state of the
subnetwork � � + ��� � #

� + �
� �� � ��� ��� � + � � � �� � � + � � + � � � � � � � ���� � ��� � � � � �
then � is deadlock-free. Or if there exist similar functions � + , such that

� + �
� �� � ��� ��� � + � � ���� � � + � � + � �	�
� � � � ���� � ����� � � � �
then any deadlock state � � � � � � � � ������� � * # � of � contains a cycle of ungranted

requests, � +��
� � �� � � + � � � �� � ����� +���� � �� � � +��
such that

� + � � � ���� � � + � � � + � � � � � + � � � � �� � � +�� � � +�� � � � ��� � � + � � � ���� � � + � � � + � � � �
The existence of a cycle of ungranted requests does not always mean deadlock has

occurred. The cycle might subsequently be broken by the intervention of a process from
outside the cycle.

Deadlock-free networks exist that sometimes develop cycles of ungranted requests
and this theorem is not sufficiently powerful to prove them so. Dathi’s thesis contains
a hierarchy of stronger techniques, together with a classification of different levels of
deadlock-freedom which they may be used to establish [Dathi 1990].

30 CHAPTER 1. CSP AND DEADLOCK

By treating cycles of length two as a special case we can arrive at a useful extension
to theorem 1. We say that two processes � + and � � are in conflict with respect to � in
network state � if each one is trying to communicate with the other, but cannot agree
on which event to perform, i.e.

� + �
� �� � ���
 ��� �
� �� � � +
A conflict is basically a cycle of ungranted requests of length two. It is said to be strong
if one of the processes is able to communicate only with the other process. i.e.

� �
� � + � � + �

�
� � � � � � �

� � � � � � �
�

� � + �
We call a network where strong conflict can never occur strong conflict-free.

Theorem 3 (Brookes-Roscoe 1991) In any deadlock state of a triple disjoint, busy,
strong conflict-free network there is a cycle of ungranted requests with respect to its
vocabulary of length greater than two.

Proof. Consider the wait-for digraph of a deadlock state � of such a network. Starting
at any node � +�� we can form a sequence of arbitrary length

� + � �
� �� � � +�� �
� �� � � +�� ���
with the property that � + � , � + � � � , and � + � � � are all distinct for each

�
. For if � + � � � has an

ungranted request back to � + � the two processes are in conflict and as this cannot be a
strong conflict � + � � � must also have an ungranted request to some other process, which
may then be selected as � + � � � . This sequence will eventually cross itself which means
that there must be a cycle of ungranted requests of length greater than two � .

The property of strong conflict-freedom may be established by pairwise analysis of
processes in the network and in this way may be checked for networks of arbitrary size.

Brookes and Roscoe used this result to develop another technique for proving dead-
lock freedom by showing that a cycle of ungranted requests cannot occur. This relies
on the processes in the network obeying a rather special condition and so is somewhat
in the nature of a design rule.

Theorem 4 (Brookes-Roscoe 1991) Let � � ����� ����� � !$# be a busy, triple-disjoint,
strong-conflict-free network such that whenever a process � has an ungranted request
to another process � then � has previously communicated with � , and has done so
more recently than with any other process. It follows that � is deadlock-free.

Proof. Consider a deadlock state � of a strong-conflict-free network � . By theorem 3
there must exist a cycle of ungranted requests, of length at least three, as follows:

� + � �
� �� � � +�� �
� �� � ��� � + � �
� �� � � + �

1.5. DEADLOCK ANALYSIS 31

Now suppose that the most recent communication between two consecutive elements
of this cycle was between � +�� and � +�� � � (where addition is modulo

�
– the length of

the cycle). Consider the ungranted request from � +���� � to � +�� . � +�� has communicated
with � +�� � � more recently than it has with � +���� � . This means that any strong-conflict-
free network which deadlocks does not satisfy the conditions of the theorem. It follows
that a network which obeys the conditions of the theorem is deadlock-free � .

This result has been used by Roscoe to develop a complex and sophisticated mes-
sage routing algorithm [Roscoe 1988b]. A generalisation of the theorem is given in
[Roscoe 1995].

Livelock

In high level concurrent programming languages, such as occam, it is conventional for
communication channels between two processes to be concealed from the environment.
This can potentially cause a form of divergence known as livelock. We say that a net-
work is livelock-free if it can never perform an infinite sequence of internal or hidden
actions, i.e.

divergences
�
PAR

� � � � � � � � �
Roscoe discovered a useful technique (detailed in [Dathi 1990]) for establishing this
important property. It is described here in a slightly simplified form.

Theorem 5 (Roscoe 1982) Suppose � � � ����������� �"!�# is a triple-disjoint network of
non-divergent processes such that for every � + in �

� + � �
 ��� + � � � + �
� ��� � � is divergence-free

then PAR
� � � � � is divergence-free �

In other words, if no process in a network can ever perform an infinite sequence of
communications with its predecessors then the network is livelock-free. (This can be
proved by induction.) This theorem is found to be useful in many cases, although it
requires careful ordering of the processes within the network to be effective.

Network Decomposition

The communication architecture of a triple-disjoint network may be represented by a
communication graph. This consists of a vertex to represent each process and an edge
to connect each pair of processes with overlapping alphabets. The next theorem des-
cribes how deadlock analysis of a network may be broken down into the analysis of a
collection of smaller components by the removal of disconnecting edges (see appendix
B) from the communication graph.

32 CHAPTER 1. CSP AND DEADLOCK

Theorem 6 (Brookes-Roscoe 1991) Consider the communication graph of a network
� with a set of disconnecting edges which separates the network into components

� � � ����� � � � #
If each pair of processes joined by a disconnecting edge is conflict-free with respect to
� and each subnetwork � � is deadlock-free, then so is � � .

A proof of this theorem is given in [Brookes and Roscoe 1991].
This result is useful for the hierarchical construction of networks. It offers a safe

way of connecting subsystems together without introducing any risk of deadlock.

Hiding

An important feature of reasoning with CSP is the use of the concealment operator,
which enables us to hide those events that we are not interested in. This can greatly
simplify deadlock analysis of a network.

Lemma 4 If � � � is deadlock-free, then � is deadlock-free �
Used with CSP law 1.30, this result enables us to add extra external communications

to the component processes of a deadlock-free network. Deadlock freedom will be pre-
served as long as the behaviour of each component is unchanged when these events are
concealed.

Lemma 5 Suppose � is a network ��� � ������� � * # . Let �
 be a network � � �
 ������� � *
 # ,
such that

� +
 � �
� � +
 � � � + � ��� +

�)� � ��� �
� � +
 � � � + �

�
� ���
 � ���

then

PAR
� � � � PAR

� �
 � �
*�
+(, � � � � +
 � � � + �

Furthermore, if � is deadlock-free then so is �
 .
Proof.

PAR
� � � �)�*+(, � � � + � � � + �

�) *+(, � � � +
 � �
� � +
 � � � + � � � � + �

� �)�*+(, � � � +
 � � � +
 � � �
*�
+(, � � � � +
 � � � + � by application of law 1.30

� PAR
� �
 � �

*�
+(, � � � � +
 � � � + �

It now follows from lemma 4 that �
 inherits deadlock-freedom from � �

1.5. DEADLOCK ANALYSIS 33

Refinement

CSP processes are related by a complete partial order � , which we described in section
1.2. � � � means that every behaviour pattern that is possible for � is also possible
for � . We say that � is a specification for � , and that � is a refinement of � .

The operation of parallel composition with any particular process is known to be
monotonic, i.e. order-preserving, with respect to this partial ordering (in fact all CSP
operations are). This leads us to the following observation.

Lemma 6 Suppose that � � ������������� � !�# and �
 � ���
� ����� ���
! # are networks where

� � � �
 ����� ��� � � � + � �
+
then PAR

� � � � PAR
� �
 � �

In particular this means that if � is deadlock-free then so is �
 . Similarly if � is
livelock-free then so is �
 .

This result makes an important statement about the way in which we should design
and build concurrent systems, which has already been hinted at. At the design stage we
should specify each of our components in as abstract a manner as is possible. Impor-
tant properties of the system as a whole which are shown to hold at this stage, such as
freedom from deadlock and divergence, will be preserved as we gradually refine each
component into the finished product.

