The n-Calculus for SoS:

Novel n-Calculus for the Formal Modeling of
Software-intensive Systems-of-Systems

Flavio Oquendo

flavio.oquendoQ@irisa.fr
http://people.irisa.fr/Flavio.Oquendo/

UNIVERSITE Communicating Process Architectures 2016
BRETAGNE (CPA 2016)

&:IRISA

Introduction: Motivation to conceive the n-Calculus for SoS
= Need of formal description techniques to model SoS architectures

= Limitations of current formal description techniques

Problematics

= Needs for a novel process calculus for SoS
Formal Approach for Conceiving the n-Calculus for SoS

= Novel process calculus meeting SoS needs: The n-Calculus for SoS
Formal Definition of the n-Calculus for SoS

= Formal transition system defining the n-Calculus for SoS
Validating the Formal Operational Semantics of the
n-Calculus for SoS

Conclusion

S The Talk

Introduction: Software-intensive System-of-Systems

= Software-intensive Systems-of-Systems (SoS)

= Systems are independently developed, operated, managed, evolved
and eventually retired

= |ncreasingly, networks make communication and cooperation possible
among these independent systems

= These networked systems evolved to form Systems-of-Systems

= Systems-of-Systems are evolutionary developed from independent
systems to achieve missions not possible by a constituent system alone

= SoS creates emergent behavior

= Systems-of-Systems have
evolutionary architectures Cyber-Physical Sys

Software-intensive
Internet of ThinQSSystems-of-Systems

Cioud
Computing

(70}
O
(/7]
1.
L
[72]
=
=}
L
©
Q
=3
Q
<
pre=)
()
2
(0]
(8)
=
(o]
(8)
[e]
=]
c
(o]
=
()
>
=
O
=
E
(@)
=
(8)
=}
©
o
)
=

&:IRISA 3

Introduction: System-of-Systems Architecture

= Software-intensive Systems
= were simple and became complicated: needs engineering
= are becoming complex as SoS: needs architecture

= complexity poses the need for separation of concerns
between architecture and engineering

= architecture: focus on reasoning about interactions of
parts and their emergent properties
= [ssues:
= Do the process calculi constituting the formal foundations of ADLs

for single systems provide enough expressive power for modeling
SoS architectures?

= Beyond the process calculi underlying single system ADLs, are
there other process calculi that would be suitable for describing
SoS architectures?

&:IRISA

I Introduction: Motivation to conceive the n-Calculus for SoS

Limitations of the state-of-the-art ADLs for

describing SoS Architectures

= Software Architecture Description Language (ADL)
= Subject of intensive research in the last 20 years

* Proposal of several ADLs for formally describing Software
Architecture (see IFIP/IEEE ICSA, ECSA, QoSA...; IEEE TSE, ACM
TOSEM, JSS, FGCS, IEEE Software...)

Dynamlc WRIGHT
2 CHAM-ADLS
) z UNICON-2°
= ADLs for Single Systems SWRIGHT
= None of those ADLs has the expressive power to describe the
Software Architecture of a Software-intensive SoS
* Formal foundations of these ADLs are too limited to describe SoS
Architectures

= A novel formal foundation is needed for representing,
analyzing and evolving SoS Architectures

! = Need of a novel formal foundation to describe SoS Architectures
©:IRISA

META-H

Sl Introduction: Motivation to conceive the nt-Calculus for SoS

=
5
PID

—]
=
10y
ARA

=

Dynamlc ACME

Formal Foundations of ADLSs for Single Systems:

Process Calculi

= Formal foundations for describing the Architecture of Single
Systems are mostly based on Process Calculi

= FSP: the formal foundation of Darwin ADL
= CSP: the formal foundation of Wright ADL

= n-Calculus: the formal foundation of n-ADL
= Process Calculi
= Mathematical theory for formally modeling concurrent
communicating systems
= provide a formalism for the description of communicating processes

= provide algebraic laws that allow process descriptions to be
manipulated and analyzed

= enable formal reasoning about equivalences between processes
* The Process Calculus of reference

* The n-Calculus (ACM Turing Award for Robin Milner in 1991)
&:IRISA

28 Problematics: SoS calls for an Enhanced n-Calculus

Formal Foundations of ADLs for Single Systems:

The n-Calculus

= r-Calculus

chann_el binding

process b

process

= Basic concepts e channel name
" Processes (single and composite processes)

= Channels (interaction points) — channels support the binding of
interaction points in concurrent processes

* Names (including channel names)

= Mobility (channels are used to send and receive names that may be
channels)

= n-Calculus has shown to be a suitable formal foundation for
describing and analyzing the architecture of software-
intensive single systems

= However, n-Calculus as well as other process calculi, e.qg.

o] I§ISS§/CSP, are too limited to cope with SoS architecture needs

Rl Problematics: SoS calls for an Enhanced n-Calculus

Formal Foundations of ADLSs for Single Systems:

Process Calculi

= Different process calculi were applied for formally describing
the architecture of single software-intensive systems

= |ncluding different variants of the n-Calculus
= Bindings in all these process calculi for the architecture

description of single software-intensive systems are:

= endogenously decided at design-time
= extensionally declared at design-time
= unconstrained by local environments
= unmediated between constituents
= Expressive power of these process calculi based on design-
time decisions do not cope with SoS defining characteristics

= Research question:

* How to enhance the n-Calculus for formally describing SoS
architectures?

Sl Problematics: SoS calls for an Enhanced n-Calculus

&:IRISA

Differences of Description Needs between Single

Systems and Systems-of-Systems

" None of the existing n-Calculi provides a suitable basis for
formally describing and analyzing SoS architectures

= Needs related to SoS Architecture Description
= Representing systems as processes

= Representing mediators between communicating processes via
inferred channel bindings

* In SoS, the binding between channels must be exogenous
= Problem: In the n-Calculus binding is endogenous

* In SoS, the binding must be constrained by local contexts
* Problem: In the n-Calculus binding is unconstrained

* In SoS, the binding between channels must be intentional
= Problem: In the n-Calculus binding is extensional

* In SoS, the binding between channels must be mediated

* Problem: In the n-Calculus binding is unmediated
&:IRISA

Sl Problematics: SoS calls for an Enhanced n-Calculus

Formal Approach for Describing SoS Architectures:

The n-Calculus for SoS

= Design decisions for the n-Calculus for SoS

= Generalization of the n-Calculus with mediated constraints
= Subsuming the original n-Calculus
= Coping with uncertainty

= In SoS, partial information n-Calculus

contributes to uncertainty, in additic DONCHICHE
Constraints

to the uncertainty of emergent behavior
= Definition of an enhanced n-Calculus
based on Inferred
. . Bindings

* Concurrent interacting processes
= Concurrent constraints on interactions
* Inferred bindings from concurrent processes
and constraints: exogenous, constrained, intentional, mediated

= Emergent behavior

= Drawn from constrained interactions n-Calculus for SoS
©:IRISA

g the nt-Calculus for SoS

Formal Approach for Describing SoS Architectures:

The n-Calculus for SoS

= The n-Calculus for SoS: meeting the needs of SoS
architecture description

= the n-Calculus for SoS generalizes the n-Calculus with the
notion of computing with partial information based on
concurrent constraints

= A constraint represents partial information on the state of the
environment as perceived by mediated constituent systems

= During the computation, the current state of the environment is
specified by a set of told constraints

" Processes can change the state of the environment by telling
information

= tell new constraints or untell existing constraints

" Processes can synchronize by entailing information from the
environment

= ask whether a given constraint can be inferred from the told
constraints in the environment

g the nt-Calculus for SoS

&:IRISA

Abstract Syntax of the n-Calculus for SoS

= The formal definition of the
n-Calculus for SoS
encompasses its formal
abstract syntax and formal
semantics

= formal operational semantics
of n-Calculus for SoS is defined
by means of a formal transition
system, expressed by labelled
transition rules

g e T - N T—

c—« .¢C

where side conditions

Transition rule:

&:IRISA

Abstract syntax of z-Calculus for SoS
constrainedBehavior ::= behavior;
| restriction . constrainedBehavior, -- Constrained Behavior
| behavior name, (valuey ..., value,) is { behavior, } -- Definition
| constraint name; is { constraint, } -- Constraint Definition
| compose { constrainedBehaviory ... and constrainedBehavior, }
behavior ::=baseBehavior,

| restrictions . behavior, -- Unconstrained Behavior

| repeat { behavior } - Repeat

| apply name; (valuey ..., value,) -- Application

| compose { behavior; ... and behavior, } -- Composition
baseBehavior ::= action, . behavior, -- Sequence

| choose { action,. baseBehavior, -- Choice

or action, . baseBehavior; ... or action, . baseBehavior, }
| if constraint; then { baseBehavior } else { baseBehavior; }

| done -- Termination
action ::= baseAction,

| tell constraint, - Tell

| untell constraint, -- Unsaid

| check constraint; -- Check

| ask constraint, -- Ask

baseAction ::= via connection; send value, -- Output

| via connection, receive namey : type, - Input

| unobservable -- Unobservable
connection ::= connection name;
restriction ::= value name, = value, | connection,

M Formal Definition of the n-Calculus for SoS

Formal Semantics of Actions in the n-Calculus for SoS

Actions:

= send value via
connection

= receive value via
connection

= unobservable
internal actions

= tell constraint to
local environment

= untell constraint
from local
environment

= check if
constraint is
consistent with
local environment

= ask if constraint

can be entailed
from local
environment

&:IRISA

Formal semantics of z-Calculus for SoS: labeled transition rules for actions

Output.
constrainto..n i i . .
compose i) . via connection: send values compose{constralnto..n and behaV|or1}
and (via connection1 send value1. behavior1)
Input.
traint constrainto..n
constrainto..n .) .
compose : .) . via connection1 receive valuet compose] and (value = value1)
and (via connection1 receive value.behavior1) .
and behavior1

where (constrainto..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together
with constrainto..n

Unobservable:

compose {constrainto..n and (unobservable. behavior1)} —I— compose {constrainto..n and behavior1}

Tell:

compose {constrainto..m and (tell constraintn. behaviom)} — - compose {constrainto..m and constraintn and behavior1}

where (constrainto.m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constrainto..m

Untell:

compose{constrainto..n and (untell constraintm. behavior1)} —’—>compose{(constraint0..n - constraintm) and behavior1}

where (constrainto..n — constraintm) is consistent, i.e. constraintm can be consistently retracted from constrainto..n

Check:
compose {constrainto..n and (check constraintm. behavior1)} —T— compose {constrainto..n and behavior1 }

where (constrainto.n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constrainto..n

Ask: compose{constrainto..m and (ask constraintn. behavior1)} — compose{constrainto..m and behavior1}

®® Formal Definition of the n-Calculus for SoS

where constrainto..m |- constraintn, i.e. constraintn can be derived from constrainto..m 1

Formal
Semantics of

Behaviors in n-

Calculus for SoS

Behaviors:

restriction of value to
local behavior

communication of
value via connection
between behaviors

= synchronization
between send and

receive
= equality constraint

extrusion of value to
another behavior
(open restriction &
close communication)

nondeterministic
choice among
behaviors

conditional choice
between behaviors

repetition of behavior

composition of
concurrent behaviors

&:IRISA

Formal semantics of n-Calculus for SoS: labeled transition rules for behaviors
Restriction:

constrainedBehavior1 — 219" constrainedBehaviort'

value value1 . constrainedBehavior1 —24%" . yalue value1 . constrainedBehaviort'

where value1 & names(action1),i.e. value1 is not among the names used in action1

Communication:
behavior1 via connection1 send value1 behaviort' behaviorz —¥i2 connectionz receive value behavior2'
constrainto..n constrainto..n

compose{and (connection1 =connection2)} —*— compose {and (connection1 = connection2)
and behavior1 and behavior2 and (value = value1) and behavior1' and behavior2'

where connection1= connectionz, i.e. (connection1= connection2) is a binding resulting from an extrusion or unification

Restriction-Open:

via connectiont send value1 constrainedBehavior1*

via connectiont send valuet

constrainedBehavior1

value value1 . constrainedBehavior1 constrainedBehavior1'
where value1 # connection1, i.e. value1cannot be used for connection as it is restricted

Communication-Close:

value connection . via connectiont send connection via connectionz receive value

behavior1 behavior1' behavior2 behavior2'

constrainto..n

and (connection1=connection2)
and (value = connection)

and behavior1' and behavior2'

constrainto..n
compose ; and (connection1=connection2) ——> value connection.compose
and behavior1 and behavior2

where value & free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1

Choice:
constrainto..n and (actioni . behaviori) —2°"_ constrainto..' and behavior
compose constrainto.n action’_, ¢ompose constrainto..n’
and choose{actiono.behavioro‘...or actionm.behaviorm'} and behaviori

where i € 0..m, i.e. only one of the actions actiono..m is performed

Conditional-Then:

behavior1 —2%°M_, hehaviort' constraint = true

compose{constrainto..n and (if constraint then behavior1 else behaviorz)}ﬂ—) compose {constrainto..n and behavior1

Conditional-Else:

behaviorz —24%2_, hehaviorz' constraint = false

compose {constrainto..n and (if constraint then behavior1else behaviorz)}ﬂ) compose {constrainto..n and behavior2'

Repetition:

behaviort —219M__, hehavior1’

repeat{behaviom} —adion_, hohaviort' . repeat{behavion}

where behavior1' . behavior1 is a sequential composition, i.e. behavior1' must be performed before behavior1

Composition:
constrainedBehaviori —2<©°", constrainedBehaviorr
constrainedBehavioro ... constrainedBehavioro ...
compose-<and constrainedBehaviori &compose and constrainedBehavior/

and constrainedBehaviorn and constrainedBehaviorn

where i € 1..n and bound(actioni) N free(constrainedBehavioro..n-i)= &,
i.e. restricted names in actioni are not restricted elsewhere

'S Formal Definition of the n-Calculus for SoS

Communication:

Understanding the

via connection1 send value1 via connectionz receive value

behavior2'

behavior1' behavior2

behavior1

3 constrainto.n and (connection1 =connection2)| - constrainto..n and (connection1 = connection2)
m compose —— compose
Se a“tlcs Of the P {and behaviort and behavior2 } P {and (value = value1) and behavior1' and behaviorz'}
n-Calculus for SoS

Output.
constrainto..n i i . .
compose ;] . via connection send valuer compose{constralnto..n and behavior1 }
and (via connection1 send value1. behavior1)
- . .
COI I " : lu n 'Catl 0 n Input constrainto..n via connection1 receive valuet constrainto..n and (value = value1)
PUL compose l . . . compose ;
and (via connection1 receive value .behavior1) and behavior1

where (constrainto..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together with constrainto..n

transmitters[1] : mediator
Transmitter(distancebetweengates:Distance) is { ..
behavior transmitting is {
via location::fromCoordinate receive sendercoordinate |
via location::toCoordinate receive receivercoordinate
ask sendercoordinate: :distance(receivercoordinate)
< distancebetweengates

repeat {

via transmit::fromSensors receive measure

via transmit::towardsGateway send measure

Sensors[1] : system Sensor(lps=Coordinate::(10,10)) is { ..
behavior sensing is {
value sensorcoordinate is Coordinate = lps
tell sensorlocation is {sensorcoordinate = 1lps}
| via location::coordinate send sensorcoordinate
via energy: :threshold receive powerthreshold
repeat {
via energy::power receive powerlevel
if (powerlevel > powerthreshold) then {

tell powering is {powerlevel > powerthreshold} 1 a
choose{ . 3 A oordinate
via measurement::sense receive data 1

via measurement::measure send
tuple{coordinate=1ps,depth=data: :convert(O}
}or{
via measurement::pass receive data
via measurement::measure send data

(70}
O
(/p)
1.
o)
[72]
=
=
L
©
<
R
Q
<
pre=
Y
(o]
[=
O
:-;

toGateway

transmitters[1]:
Transmitter

} = Equality from coalition

constraint {sensors[1]::location::coordinate = transmitters[1]::location::fromCoordinate}

&:IRISA

Communication:

via connection1 send value1 via connectionz receive value

behavior2'

behavior1' behavior2

behavior1

3 constrainto.n and (connection1 =connection2)| - constrainto..n and (connection1 = connection2)
m compose —— compose
Se a“tlcs Of the P {and behaviort and behavior2 } P {and (value = value1) and behavior1' and behaviorz'}
n-Calculus for SoS

Understanding the

Output.
constrainto..n i i . .
compose ;] . via connection send valuer compose{constralnto..n and behavior1 }
and (via connection1 send value1. behavior1)
- . .
COI I " : lu n 'Catl 0 n Input constrainto..n via connection1 receive valuet constrainto..n and (value = value1)
PUL compose l . . . compose ;
and (via connection1 receive value .behavior1) and behavior1

where (constrainto..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together with constrainto..n

transmitters[1] : mediator
Transmitter(distancebetweengates:Distance) is { ..
behavior transmitting is {
via location::fromCoordinate receive sendercoordinate |
via location::toCoordinate receive receivercoordinate
ask sendercoordinate: :distance(receivercoordinate)
< distancebetweengates

repeat {

via transmit::fromSensors receive measure

via transmit::towardsGateway send measure

Sensors[1] : system Sensor(lps=Coordinate::(10,10)) is { ..
behavior sensing is {
value sensorcoordinate is Coordinate = lps
tell sensorlocation is {sensorcoordinate = 1lps}
| via location::coordinate send sensorcoordinate
via energy: :threshold receive powerthreshold
repeat {
via energy::power receive powerlevel
if (powerlevel > powerthreshold) then {

tell powering is {powerlevel > powerthreshold} 1 e
choos'e{ . 1 Al oordinate
via measurement::sense receive data 1

via measurement::measure send
tuple{coordinate=1ps,depth=data: :convert(O}
}or { Sensor
via measurement::pass receive data
via measurement::measure send data

, } = Equality from commun@aﬁr@n MNenrenins
1 ¥ constraint {transmittersgllz:sendercoordinate = Coordinate::(10,10)}
} = Equality from coalition
constraint {sensors[1]::location::coordinate = transmitters[1]::location::fromCoordinate}

(70}
O
(/p)
1.
o)
[72]
=
=
L
©
<
R
Q
<
pre=
Y
(o]
[=
O
=
[=
=
()
(]
©
£
[
(o]
(T8

&:IRISA

Validating the Formal Operational Semantics of

SosADL: WSN-based Urban River Monitoring SoS

ot

s

= Monjolinh

= The Urban River Monitoring SoS is
based on two kinds of constituent
systems:

= wireless river sensors (for measuring river
level depth via pressure physical sensing)

= a gateway base station (for analyzing
variations of river level depths and warning
on the risk of flash flood)

Santa Maria\'\
Madalena Creek\-\

erational Semantics of n-Calculus for SoS by Example

Monjolinho
Creek

@)
©
£
o
o
w

&:IRISA

Applying n-Calculus for SoS: Urban River Monitoring

= Sensor motes are operated by different City Councils in the
Urban area

= Operational independence of constituent systems

= Each sensor mote operates in a way that is independent of other sensor
motes (which may belong to different organizations and have different
missions, e.g. pollution control, water supply, ...)

= Managerial independence of constituent systems

= Each sensor mote has its own strategy for transmission vs. energy
consumption

= Geographical distribution of constituent systems
= Sensor motes are geographically distributed along the river
= Evolutionary development of system-of-systems

= New sensor motes may be installed, existing sensor motes may
changed or uninstalled without any control from the SoS
= Emergent behavior of system-of-systems

= Sensor motes together, with the gateway, will make
&) : 1R £merge the behavior of flood detection

lllustrating the Formal Operational Semantics of

SosADL: WSN-based Urban River Monitoring SoS

coordinate

system Sensor(lps: Coordinate) is { ..
behavior sensing is { - = =
value sensorcoordinate is Coordinate = 1ps
tell sensorlocation is {sensorcoordinate = lps} !
via location::coordinate send sensorcoordinate j
via energy::threshold receive powerthreshold
repeat {
via energy::power receive powerlevel
if (powerlevel > powerthreshold) then {
tell powering is {powerlevel > powerthreshold}
choose{
via measurement::sense receive data
via measurement: :measure send
tuple{coordinate=1ps,depth=data: :convert()}

I
measurement,

I
|
i
! Sensor (:Coordinate) pass
i
|

}or {
via measurement::pass receive data
via measurement: :measure send data

erational Semantics of n-Calculus for SoS by Example

@)
©
£
o
(o]
w

}

(9% IRivA Flavio Oquendo — IRISA — http://people.irisa.fr/Flavio.Oquendo/ 19

lllustrating the Formal Operational Semantics of

SosADL: WSN-based Urban River Monitoring SoS

fromSensors D—{t] transmit transmit H towardsGateway

\ Transmitter(:Distance) |
|

fromCoordinate BF——{] location location H toCoordinate

77

mediator Transmitter(distancebetweengates:Distance) is { ..
behavior transmitting is {
via location::fromCoordinate receive sendercoordinate
via location::toCoordinate receive receivercoordinate
ask sendercoordinate: :distance(receivercoordinate)
< distancebetweengates

repeat {

via transmit::fromSensors receive measure

via transmit::towardsGateway send measure

erational Semantics of n-Calculus for SoS by Example

Formal O

&:IRISA 20

Urbain River Monitoring SoS Architecture:

Concretion (snapshot)

T coordinate

@

T coordinate

‘ medsure

fromSgnsors
transmitters[1]:

Transmitter

toGateway

coordin atef

. toGateway
transmitters[4]:

Transmitter

gateway:

Gateway

sensors[1]: sensors[6]:
Sensor Sensor ass
sense
nsors toGateway
transmitters[1]:
Transmitter
fcoordinate fcoordinate
fromSénsors
sensors[2]: mgésure sensors[4]. @ LTSS
Sensor ass Sensor ass
sense sense
X toGateway
transmitters[2]:
Transmitter
fcoordlnate Tcoordinate
31- . toGateway
sensors(3]: transmitters[3]:
Sensor Transmitter Sensor

nsors toGateway
transmitters[5]:

Transmitter

erational Semantics of n-Calculus for SoS by Example

Formal O

Validation through Real Application Cases

= Urban River Monitoring SoS

=" Flood Monitoring and Emergency Response SoS

&:IRISA

Monjolinho river crossing the city of Sao Carlos
= XBee motes, ZigBee transmissions, Solar panels...

Wireless River Sensors
Telecommunication Gateways
Unmanned Aerial Vehicles (UAVs)
Vehicular Ad Hoc Networks (VANETs)
Meteorological Centers

Fire and Rescue Services
Hospital Centers

Police Departments

Short Message Service Centers
Social Networks

Validation of the t-Calculus for SoS

Toolset for n-Calculus for SoS

= SosADE (SoS Architecture Development Environment)
for supporting the application of SosADL based on the
n-Calculus for SoS for description and analysis of SoS
Software Architectures
Architecture

= Plugins eclipse Sl
(DEVS)

Architecture
Reconfigurator

ey P Architecture
e C Statistical
Model Checker

(Plasma Lab)

Architecture

Description
Editor (r-Calculus

(Xtext & Sirius) for SoS)

=)
c
(]
£
c
8
>
c
w
)
c
Q
£
(J
o
()
>
()
(]
()
.
=1
e
()
Q
=
i
()
.
<
(70}
(e}
(/7]
Q
L
|_

&:IRISA

Conclusion: Novel n-Calculus coping with SoS needs

= r-Calculus for SoS

= Enhances the expressiveness of the n-Calculus with Mediated
Concurrent Constraints for coping with SoS characteristics

= exogenous, intentional, constrained and mediated channel
bindings subject to uncertainty

= Provides a novel n-Calculus as formal foundation for SosADL

n-Calculus for SoS
n-Calculus
‘ enhanced with
CCnr-Calculus Mediated
|
‘ nF-Calculus
|

Concurrent
‘ Fusion-Calculus

Constraints for
SoS

n-Calculus

$:IRISA 24

c
9
(2]
3
3}
c
o
®)

Conclusion: Novel n-Calculus coping with SoS needs

= m-Calculus for SoS provides a formal foundation having the
expressiveness to address the challenge of describing
architectures of Software-intensive SoSs

= The n-Calculus for SoS supports automated verification of correctness
properties of SoS architectures

= The n-Calculus for SoS supports validation through executable
specifications

* Including simulation to validate and discover emergent behaviors
= n-Calculus for SoS provided the formal foundation of a novel
ADL for SoS: SosADL
= |t was applied for architecting a Flood Monitoring and
Emergency Response SoS in the Monjolinho river crossing
the City of Sao Carlos
= Several new applications are on the way with DCNS, IBM,

ICMC, SEGULA... for formal modeling SoS Architectures
&:IRISA 25

c
9
(2]
3
3}
c
o
®)

Thank You

Questions?

&:IRISA 26

The n-Calculus for SoS:

Novel n-Calculus for the Formal Modeling of
Software-intensive Systems-of-Systems

Flavio Oquendo

flavio.oquendoQ@irisa.fr
http://people.irisa.fr/Flavio.Oquendo/

UNIVERSITE Communicating Process Architectures 2016
BRETAGNE (CPA 2016)

