
Communicating Process Architectures 2016
(CPA 2016)

¡ Introduction: Motivation to conceive the π-Calculus for SoS
§ Need of formal description techniques to model SoS architectures
§ Limitations of current formal description techniques

¡ Problematics
§ Needs for a novel process calculus for SoS

¡ Formal Approach for Conceiving the π-Calculus for SoS
§ Novel process calculus meeting SoS needs: The π-Calculus for SoS

¡ Formal Definition of the π-Calculus for SoS
§ Formal transition system defining the π-Calculus for SoS

¡ Validating the Formal Operational Semantics of the
π-Calculus for SoS

¡ Conclusion

2

T
h

e
 T

a
lk

¡ Software-intensive Systems-of-Systems (SoS)
§ Systems are independently developed, operated, managed, evolved

and eventually retired
§ Increasingly, networks make communication and cooperation possible

among these independent systems
§ These networked systems evolved to form Systems-of-Systems
§ Systems-of-Systems are evolutionary developed from independent

systems to achieve missions not possible by a constituent system alone
▪ SoS creates emergent behavior

§ Systems-of-Systems have
evolutionary architectures

3

In
tr

o
d

u
c

ti
o

n
: M

o
ti

va
ti

o
n

 t
o

 c
o

n
c

e
iv

e
 t

h
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

¡ Software-intensive Systems
§ were simple and became complicated: needs engineering

§ are becoming complex as SoS: needs architecture

▪ complexity poses the need for separation of concerns
between architecture and engineering

▪ architecture: focus on reasoning about interactions of
parts and their emergent properties

¡ Issues:
§ Do the process calculi constituting the formal foundations of ADLs

for single systems provide enough expressive power for modeling
SoS architectures?

§ Beyond the process calculi underlying single system ADLs, are
there other process calculi that would be suitable for describing
SoS architectures?

4

In
tr

o
d

u
c

ti
o

n
: M

o
ti

va
ti

o
n

 t
o

 c
o

n
c

e
iv

e
 t

h
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

¡ Software Architecture Description Language (ADL)
§ Subject of intensive research in the last 20 years

§ Proposal of several ADLs for formally describing Software
Architecture (see IFIP/IEEE ICSA, ECSA, QoSA…; IEEE TSE, ACM
TOSEM, JSS, FGCS, IEEE Software...)

¡ ADLs for Single Systems
§ None of those ADLs has the expressive power to describe the

Software Architecture of a Software-intensive SoS
▪ Formal foundations of these ADLs are too limited to describe SoS

Architectures
¡ A novel formal foundation is needed for representing,

analyzing and evolving SoS Architectures
§ Need of a novel formal foundation to describe SoS Architectures

5

In
tr

o
d

u
c

ti
o

n
: M

o
ti

va
ti

o
n

 t
o

 c
o

n
c

e
iv

e
 t

h
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

¡ Formal foundations for describing the Architecture of Single
Systems are mostly based on Process Calculi
§ FSP: the formal foundation of Darwin ADL

§ CSP: the formal foundation of Wright ADL

§ π-Calculus: the formal foundation of π-ADL
¡ Process Calculi

§ Mathematical theory for formally modeling concurrent
communicating systems
▪ provide a formalism for the description of communicating processes
▪ provide algebraic laws that allow process descriptions to be

manipulated and analyzed
▪ enable formal reasoning about equivalences between processes

§ The Process Calculus of reference
▪ The π-Calculus (ACM Turing Award for Robin Milner in 1991)

6

P
ro

b
le

m
at

ic
s:

 S
o

S
c

a
lls

 fo
r

a
n

 E
n

h
a

n
c

e
d

 π
-C

a
lc

u
lu

s

¡ π-Calculus

§ Basic concepts
▪ Processes (single and composite processes)
▪ Channels (interaction points) – channels support the binding of

interaction points in concurrent processes
▪ Names (including channel names)
▪ Mobility (channels are used to send and receive names that may be

channels)
¡ π-Calculus has shown to be a suitable formal foundation for

describing and analyzing the architecture of software-
intensive single systems

¡ However, π-Calculus as well as other process calculi, e.g.
FSP/CSP, are too limited to cope with SoS architecture needs

7

P
ro

b
le

m
at

ic
s:

 S
o

S
c

a
lls

 fo
r

a
n

 E
n

h
a

n
c

e
d

 π
-C

a
lc

u
lu

s

¡ Different process calculi were applied for formally describing
the architecture of single software-intensive systems
§ Including different variants of the π-Calculus

¡ Bindings in all these process calculi for the architecture
description of single software-intensive systems are:
§ endogenously decided at design-time
§ extensionally declared at design-time
§ unconstrained by local environments
§ unmediated between constituents

¡ Expressive power of these process calculi based on design-
time decisions do not cope with SoS defining characteristics

¡ Research question:
§ How to enhance the π-Calculus for formally describing SoS

architectures?
8

P
ro

b
le

m
at

ic
s:

 S
o

S
c

a
lls

 fo
r

a
n

 E
n

h
a

n
c

e
d

 π
-C

a
lc

u
lu

s

¡ None of the existing π-Calculi provides a suitable basis for
formally describing and analyzing SoS architectures

¡ Needs related to SoS Architecture Description
§ Representing systems as processes
§ Representing mediators between communicating processes via

inferred channel bindings

▪ In SoS, the binding between channels must be exogenous

▪ Problem: In the π-Calculus binding is endogenous

▪ In SoS, the binding must be constrained by local contexts

▪ Problem: In the π-Calculus binding is unconstrained
▪ In SoS, the binding between channels must be intentional

▪ Problem: In the π-Calculus binding is extensional

▪ In SoS, the binding between channels must be mediated

▪ Problem: In the π-Calculus binding is unmediated
9

P
ro

b
le

m
at

ic
s:

 S
o

S
c

a
lls

 fo
r

a
n

 E
n

h
a

n
c

e
d

 π
-C

a
lc

u
lu

s

10
π-Calculus for SoS

Inferred
Bindings

Concurrent
Constraints

π-Calculus

Fo
rm

a
l A

p
p

ro
a

ch
 fo

r
C

o
n

c
e

iv
in

g
 t

h
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

¡ Design decisions for the π-Calculus for SoS
§ Generalization of the π-Calculus with mediated constraints
▪ Subsuming the original π-Calculus
▪ Coping with uncertainty
▪ In SoS, partial information

contributes to uncertainty, in addition
to the uncertainty of emergent behavior

§ Definition of an enhanced π-Calculus
based on
▪ Concurrent interacting processes
▪ Concurrent constraints on interactions
▪ Inferred bindings from concurrent processes

and constraints: exogenous, constrained, intentional, mediated

§ Emergent behavior
▪ Drawn from constrained interactions

¡ The π-Calculus for SoS: meeting the needs of SoS
architecture description
§ the π-Calculus for SoS generalizes the π-Calculus with the

notion of computing with partial information based on
concurrent constraints
▪ A constraint represents partial information on the state of the

environment as perceived by mediated constituent systems
▪ During the computation, the current state of the environment is

specified by a set of told constraints
▪ Processes can change the state of the environment by telling

information
▪ tell new constraints or untell existing constraints

▪ Processes can synchronize by entailing information from the
environment
▪ ask whether a given constraint can be inferred from the told

constraints in the environment
11

Fo
rm

a
l A

p
p

ro
a

ch
 fo

r
C

o
n

c
e

iv
in

g
 t

h
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

¡ The formal definition of the
π-Calculus for SoS
encompasses its formal
abstract syntax and formal
semantics
§ formal operational semantics

of π-Calculus for SoS is defined
by means of a formal transition
system, expressed by labelled
transition rules

Fo
rm

a
l D

e
fi

n
it

io
n

 o
f

th
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

12

 Transition rule:
P1 α1

⎯ →⎯⎯⎯⎯⎯⎯⎯ P1' ... Pn αn
⎯ →⎯⎯⎯⎯⎯⎯⎯ Pn'

C α
⎯ →⎯⎯⎯⎯⎯⎯⎯ C'

where side conditions

Abstract syntax of π-Calculus for SoS
constrainedBehavior ::= behavior1

 | restriction1 . constrainedBehavior1 -- Constrained Behavior

 | behavior name1 (value0 …, valuen) is { behavior1 } -- Definition
 | constraint name1 is { constraint1 } -- Constraint Definition
 | compose { constrainedBehavior0 … and constrainedBehaviorn }

behavior ::= baseBehavior1
 | restriction1 . behavior1 -- Unconstrained Behavior

 | repeat { behavior1 } -- Repeat
 | apply name1 (value0 …, valuen) -- Application
 | compose { behavior0 … and behaviorn } -- Composition

baseBehavior ::= action1 . behavior1 -- Sequence
 | choose { action0 . baseBehavior0 -- Choice
 or action1 . baseBehavior1 … or actionn . baseBehaviorn }
 | if constraint1 then { baseBehavior1 } else { baseBehavior2 }
 | done -- Termination

action ::= baseAction1

 | tell constraint1 -- Tell
 | untell constraint1 -- Unsaid

 | check constraint1 -- Check

 | ask constraint1 -- Ask

baseAction ::= via connection1 send value0 -- Output
 | via connection1 receive name0 : type0 -- Input
 | unobservable -- Unobservable

connection ::= connection name1
restriction ::= value name1 = value0 | connection1

13

Actions:
§ send value via

connection

§ receive value via
connection

§ unobservable
internal actions

§ tell constraint to
local environment

§ untell constraint
from local
environment

§ check if
constraint is
consistent with
local environment

§ ask if constraint
can be entailed
from local
environment

Fo
rm

a
l D

e
fi

n
it

io
n

 o
f

th
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

Formal semantics of π-Calculus for SoS: labeled transition rules for actions
Output:

compose
constraint0..n
and (via connection1 send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose constraint0..n and behavior1{ }

Input:

compose
constraint0..n

and (via connection1 receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose

constraint0..n

and (value = value1)
and behavior1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together
with constraint0..n

Unobservable:
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }

Tell:

compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

Untell:

compose constraint0..n and (untell constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

Check:
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

Ask: compose constraint0..m and (ask constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m

14

Behaviors:
§ restriction of value to

local behavior

§ communication of
value via connection
between behaviors
▪ synchronization

between send and
receive

▪ equality constraint

§ extrusion of value to
another behavior
(open restriction &
close communication)

§ nondeterministic
choice among
behaviors

§ conditional choice
between behaviors

§ repetition of behavior
§ composition of

concurrent behaviors Fo
rm

a
l D

e
fi

n
it

io
n

 o
f

th
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors
Restriction:

constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ value value1 . constrainedBehavior1 '

where value1 ∉ names(action1), i.e. value1 is not among the names used in action1

Communication:
behavior1 via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n
and (connection1 = connection2)
and behavior1 and behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯ compose

constraint0..n
and (connection1 = connection2)
and (value = value1) and behavior1' and behavior2'

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or unification

Restriction-Open:

constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1 '

where value1 ≠ connection1, i.e. value1 cannot be used for connection as it is restricted

Communication-Close:

behavior1 value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n
and (connection1=connection2)
and behavior1 and behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯ value connection . compose

constraint0..n

and (connection1=connection2)
and (value = connection)
and behavior1' and behavior2'

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉ free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1

Choice:
constraint0..n and (actioni . behaviori') actioni ⎯ →⎯⎯⎯ constraint0..n' and behaviori'

compose
constraint0..n

and choose action0 . behavior0' ... or actionm . behaviorm'{ }
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni⎯ →⎯⎯⎯ compose

constraint0..n'
and behaviori'

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 0..m, i.e. only one of the actions action0..m is performed

Conditional-Then:

behavior1 action1⎯ →⎯⎯⎯ behavior1' constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior1'{ }

Conditional-Else:

behavior2 action2⎯ →⎯⎯⎯ behavior2' constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior2'{ }

Repetition:

behavior1 action1 ⎯ →⎯⎯⎯ behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯ behavior1 ' . repeat behavior1{ }
where behavior1' . behavior1 is a sequential composition, i.e. behavior1' must be performed before behavior1

Composition:

constrainedBehaviori actioni ⎯ →⎯⎯⎯ constrainedBehaviori'

compose
constrainedBehavior0 ...
and constrainedBehaviori
and constrainedBehaviorn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 actioni ⎯ →⎯⎯⎯ compose

constrainedBehavior0 ...
and constrainedBehaviori''
and constrainedBehaviorn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

where i ∈ 1..n and bound(actioni) ∩ free(constrainedBehavior0..n - i) = ∅,
i.e. restricted names in actioni are not restricted elsewhere

§ Communication

15

Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors
Restriction:

constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ value value1 . constrainedBehavior1 '

where value1 ∉ names(action1), i.e. value1 is not among the names used in action1

Communication:

behavior1 via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n and (connection1 = connection2)
and behavior1 and behavior2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 τ⎯ →⎯ compose constraint0..n and (connection1 = connection2)

and (value = value1) and behavior1' and behavior2'

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or unification

Restriction-Open:

constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1 '

where value1 ≠ connection1, i.e. value1 cannot be used for connection as it is restricted

Communication-Close:

behavior1 value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n
and (connection1=connection2)
and behavior1 and behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯ value connection . compose

constraint0..n

and (connection1=connection2)
and (value = connection)
and behavior1' and behavior2'

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉ free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1

Choice:

constraint0..n and (actioni . behaviori') actioni ⎯ →⎯⎯⎯ constraint0..n' and behaviori'
compose constraint0..n and choose action0 . behavior0' ... or actionm . behaviorm'{ }{ } actioni⎯ →⎯⎯⎯ compose constraint0..n' and behaviori'{ }
where i ∈ 0..m, i.e. only one of the actions action0..m is performed

Conditional-Then:

behavior1 action1⎯ →⎯⎯⎯ behavior1' constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior1'{ }

Conditional-Else:

behavior2 action2⎯ →⎯⎯⎯ behavior2' constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior2'{ }

Repetition:

behavior1 action1 ⎯ →⎯⎯⎯ behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯ behavior1 ' . repeat behavior1{ }
where behavior1' . behavior1 is a sequential composition, i.e. behavior1' must be performed before behavior1

Composition:

constrainedBehaviori actioni ⎯ →⎯⎯⎯ constrainedBehaviori'

compose
constrainedBehavior0 ... and constrainedBehaviori
and constrainedBehaviorn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni ⎯ →⎯⎯⎯ compose constrainedBehavior0 ... and constrainedBehaviori''

and constrainedBehaviorn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 1..n and bound(actioni) ∩ free(constrainedBehavior0..n - i) = ∅, i.e. restricted names in actioni are not restricted elsewhere

Formal semantics of π-Calculus for SoS: labeled transition rules for actions
Output:

compose
constraint0..n
and (via connection1 send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose constraint0..n and behavior1{ }

Input: compose constraint0..n

and (via connection1 receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose

constraint0..n and (value = value1)
and behavior1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together with constraint0..n

Unobservable:
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }

Tell:
compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

Unsaid: compose constraint0..n and (unsaid constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

Check:
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

Ask: compose constraint0..m and (ask constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m

 Sensors[1] : system Sensor(lps=Coordinate::(10,10)) is { …
 behavior sensing is {
 value sensorcoordinate is Coordinate = lps
 tell sensorlocation is {sensorcoordinate = lps}
 via location::coordinate send sensorcoordinate
 via energy::threshold receive powerthreshold
 repeat {
 via energy::power receive powerlevel
 if (powerlevel > powerthreshold) then {

 tell powering is {powerlevel > powerthreshold}
 choose{
 via measurement::sense receive data

 via measurement::measure send
 tuple{coordinate=lps,depth=data::convert()}

 } or {
 via measurement::pass receive data
 via measurement::measure send data
 }
 }
 }
 }
 }

transmitters[1] : mediator
 Transmitter(distancebetweengates:Distance) is { …
 behavior transmitting is {
 via location::fromCoordinate receive sendercoordinate
 via location::toCoordinate receive receivercoordinate
 ask sendercoordinate::distance(receivercoordinate)
 < distancebetweengates
 repeat {
 via transmit::fromSensors receive measure
 via transmit::towardsGateway send measure
 }
 }
 }

constraint {sensors[1]::location::coordinate = transmitters[1]::location::fromCoordinate}

§ Equality from coalition

Fo
rm

a
l D

e
fi

n
it

io
n

 o
f

th
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

§ Communication

16

Formal semantics of π-Calculus for SoS: labeled transition rules for behaviors
Restriction:

constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 action1 ⎯ →⎯⎯⎯⎯ value value1 . constrainedBehavior1 '

where value1 ∉ names(action1), i.e. value1 is not among the names used in action1

Communication:

behavior1 via connection1 send value1⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n and (connection1 = connection2)
and behavior1 and behavior2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 τ⎯ →⎯ compose constraint0..n and (connection1 = connection2)

and (value = value1) and behavior1' and behavior2'

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where connection1 = connection2, i.e. (connection1 = connection2) is a binding resulting from an extrusion or unification

Restriction-Open:

constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1'

value value1 . constrainedBehavior1 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ constrainedBehavior1 '

where value1 ≠ connection1, i.e. value1 cannot be used for connection as it is restricted

Communication-Close:

behavior1 value connection . via connection1 send connection⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior1' behavior2 via connection2 receive value⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ behavior2'

compose
constraint0..n
and (connection1=connection2)
and behavior1 and behavior2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
 τ⎯ →⎯ value connection . compose

constraint0..n

and (connection1=connection2)
and (value = connection)
and behavior1' and behavior2'

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

where value∉ free(behavior2), i.e. value is not restricted in behavior2 while connection is restricted in behavior1

Choice:

constraint0..n and (actioni . behaviori') actioni ⎯ →⎯⎯⎯ constraint0..n' and behaviori'
compose constraint0..n and choose action0 . behavior0' ... or actionm . behaviorm'{ }{ } actioni⎯ →⎯⎯⎯ compose constraint0..n' and behaviori'{ }
where i ∈ 0..m, i.e. only one of the actions action0..m is performed

Conditional-Then:

behavior1 action1⎯ →⎯⎯⎯ behavior1' constraint ≡ true

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior1'{ }

Conditional-Else:

behavior2 action2⎯ →⎯⎯⎯ behavior2' constraint ≡ false

compose constraint0..n and (if constraint then behavior1 else behavior2){ } action1 ⎯ →⎯⎯⎯ compose constraint0..n and behavior2'{ }

Repetition:

behavior1 action1 ⎯ →⎯⎯⎯ behavior1 '

repeat behavior1{ } action1 ⎯ →⎯⎯⎯ behavior1 ' . repeat behavior1{ }
where behavior1' . behavior1 is a sequential composition, i.e. behavior1' must be performed before behavior1

Composition:

constrainedBehaviori actioni ⎯ →⎯⎯⎯ constrainedBehaviori'

compose
constrainedBehavior0 ... and constrainedBehaviori
and constrainedBehaviorn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 actioni ⎯ →⎯⎯⎯ compose constrainedBehavior0 ... and constrainedBehaviori''

and constrainedBehaviorn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where i ∈ 1..n and bound(actioni) ∩ free(constrainedBehavior0..n - i) = ∅, i.e. restricted names in actioni are not restricted elsewhere

Formal semantics of π-Calculus for SoS: labeled transition rules for actions
Output:

compose
constraint0..n
and (via connection1 send value1 . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 send value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose constraint0..n and behavior1{ }

Input: compose constraint0..n

and (via connection1 receive value . behavior1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 via connection1 receive value1 ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ compose

constraint0..n and (value = value1)
and behavior1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where (constraint0..n and (value = value1)) is consistent, i.e. binding (value = value1) can be consistently asserted together with constraint0..n

Unobservable:
compose constraint0..n and (unobservable . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }

Tell:
compose constraint0..m and (tell constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and constraintn and behavior1{ }
where (constraint0..m and constraintn) is consistent, i.e. constraintn can be consistently asserted with constraint0..m

Unsaid: compose constraint0..n and (unsaid constraintm . behavior1){ } τ⎯ →⎯ compose (constraint0..n −constraintm) and behavior1{ }
where (constraint0..n −constraintm) is consistent, i.e. constraintm can be consistently retracted from constraint0..n

Check:
compose constraint0..n and (check constraintm . behavior1){ } τ⎯ →⎯ compose constraint0..n and behavior1{ }
where (constraint0..n and constraintm) is consistent, i.e. constraintm is checked to be consistent with constraint0..n

Ask: compose constraint0..m and (ask constraintn . behavior1){ } τ⎯ →⎯ compose constraint0..m and behavior1{ }
where constraint0..m |- constraintn, i.e. constraintn can be derived from constraint0..m

 Sensors[1] : system Sensor(lps=Coordinate::(10,10)) is { …
 behavior sensing is {
 value sensorcoordinate is Coordinate = lps
 tell sensorlocation is {sensorcoordinate = lps}
 via location::coordinate send sensorcoordinate
 via energy::threshold receive powerthreshold
 repeat {
 via energy::power receive powerlevel
 if (powerlevel > powerthreshold) then {

 tell powering is {powerlevel > powerthreshold}
 choose{
 via measurement::sense receive data

 via measurement::measure send
 tuple{coordinate=lps,depth=data::convert()}

 } or {
 via measurement::pass receive data
 via measurement::measure send data
 }
 }
 }
 }
 }

transmitters[1] : mediator
 Transmitter(distancebetweengates:Distance) is { …
 behavior transmitting is {
 via location::fromCoordinate receive sendercoordinate
 via location::toCoordinate receive receivercoordinate
 ask sendercoordinate::distance(receivercoordinate)
 < distancebetweengates
 repeat {
 via transmit::fromSensors receive measure
 via transmit::towardsGateway send measure
 }
 }
 }

constraint {sensors[1]::location::coordinate = transmitters[1]::location::fromCoordinate}

§ Equality from coalition

constraint {transmitters[1]::sendercoordinate = Coordinate::(10,10)}

§ Equality from communication

Fo
rm

a
l D

e
fi

n
it

io
n

 o
f

th
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

17

Fo
rm

a
l O

p
e

ra
ti

o
n

a
l S

e
m

a
n

ti
c

s
o

f
π-

C
a

lc
u

lu
s

fo
r

S
o

S
b

y
E

xa
m

p
le¡ Monjolinho river crossing the city of Sao Carlos

¡ The Urban River Monitoring SoS is
based on two kinds of constituent
systems:
§ wireless river sensors (for measuring river

level depth via pressure physical sensing)
§ a gateway base station (for analyzing

variations of river level depths and warning
on the risk of flash flood)

¡ Sensor motes are operated by different City Councils in the
Urban area

¡ Operational independence of constituent systems
§ Each sensor mote operates in a way that is independent of other sensor

motes (which may belong to different organizations and have different
missions, e.g. pollution control, water supply, …)

¡ Managerial independence of constituent systems
§ Each sensor mote has its own strategy for transmission vs. energy

consumption
¡ Geographical distribution of constituent systems

§ Sensor motes are geographically distributed along the river
¡ Evolutionary development of system-of-systems

§ New sensor motes may be installed, existing sensor motes may be
changed or uninstalled without any control from the SoS

¡ Emergent behavior of system-of-systems
§ Sensor motes together, with the gateway, will make

emerge the behavior of flood detection 18

Fo
rm

a
l O

p
e

ra
ti

o
n

a
l S

e
m

a
n

ti
c

s
o

f
π-

C
a

lc
u

lu
s

fo
r

S
o

S
b

y
E

xa
m

p
le

19

 system Sensor(lps: Coordinate) is { …
 behavior sensing is {
 value sensorcoordinate is Coordinate = lps
 tell sensorlocation is {sensorcoordinate = lps}
 via location::coordinate send sensorcoordinate
 via energy::threshold receive powerthreshold
 repeat {
 via energy::power receive powerlevel
 if (powerlevel > powerthreshold) then {

 tell powering is {powerlevel > powerthreshold}
 choose{
 via measurement::sense receive data

 via measurement::measure send
 tuple{coordinate=lps,depth=data::convert()}

 } or {
 via measurement::pass receive data
 via measurement::measure send data
 }
 }
 }
 }
 }
 Flavio Oquendo – IRISA – http://people.irisa.fr/Flavio.Oquendo/

Fo
rm

a
l O

p
e

ra
ti

o
n

a
l S

e
m

a
n

ti
c

s
o

f
π-

C
a

lc
u

lu
s

fo
r

S
o

S
b

y
E

xa
m

p
le

20

 mediator Transmitter(distancebetweengates:Distance) is { …
 behavior transmitting is {
 via location::fromCoordinate receive sendercoordinate
 via location::toCoordinate receive receivercoordinate
 ask sendercoordinate::distance(receivercoordinate)
 < distancebetweengates
 repeat {
 via transmit::fromSensors receive measure
 via transmit::towardsGateway send measure
 }
 }
 }

Fo
rm

a
l O

p
e

ra
ti

o
n

a
l S

e
m

a
n

ti
c

s
o

f
π-

C
a

lc
u

lu
s

fo
r

S
o

S
b

y
E

xa
m

p
le

21

Fo
rm

a
l O

p
e

ra
ti

o
n

a
l S

e
m

a
n

ti
c

s
o

f
π-

C
a

lc
u

lu
s

fo
r

S
o

S
b

y
E

xa
m

p
le

22

¡ Urban River Monitoring SoS
§ Monjolinho river crossing the city of Sao Carlos
▪ XBee motes, ZigBee transmissions, Solar panels…

¡ Flood Monitoring and Emergency Response SoS
§ Wireless River Sensors
§ Telecommunication Gateways
§ Unmanned Aerial Vehicles (UAVs)
§ Vehicular Ad Hoc Networks (VANETs)
§ Meteorological Centers
§ Fire and Rescue Services
§ Hospital Centers
§ Police Departments
§ Short Message Service Centers
§ Social Networks

 Wireless Sensor Networks for Flood Monitoring in Brazil

Proceedings of the 10th International ISCRAM Conference – Baden-Baden, Germany, May 2013
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and L. Yang, eds.

 4

Figure 1 - Prototype Interface.

The objective of this study concerned mapping out the river levels in the town of São Carlos with the aim of
determining the existence of flooding in critical regions. Among the challenges encountered, both in hardware
and software development, the greatest challenge came from the wireless sensor network. Brazil has the
characteristic of rivers of great length, thus hampering the use of some sensors. Initially, it was developed a
prototype using Sunspot motes, however the prototype did not succeed to enable communication between a
node (a mote located on the banks of the river) and base station, making the project unviable due to the
characteristics of the Brazilian rivers.

Another disadvantage found in the use of Sunspot motes was the high battery consumption. Thus, we proposed
the use of a new sensor that has a greater range and yet a lower consumption battery. In order to prolong battery
life, a solar panel was employed to replenish the backup battery that is located inside the airtight box prototype,
being benefited by the Brazilian tropical climate conditions.

The two sensor nodes installed in the city of São Carlos, are already collecting data regarding the water levels,
which are being used by the developed application in an interoperable and flexible way, a characteristic that has
been achieved by the reliance on the OGC standards.

Performance tests were conducted to check the efficiency of the server and the feasibility of using the SOS web
service which took into account the response time to the request. Simple requests, using the operation
GetCapabilites from a public SOS service found at the Internet, were made. These tests sought information
about the most recent values with regard to temperature and water levels, which were returned in an XML file.

First of all, an observation was carried out involving the server of tests made available by terrestris GmbH &
Co. KG (Terrestris, 2012), which disseminated data relative to the local temperature in all the towns and cities in
Germany. It was verified that the average time for the reply to a test in a single observation was 697.75
milliseconds. Following this test, new measurements were employed, this time using the SOS 52North server
that we implemented locally, within our internal network. From these new tests, we obtained an average time of
39.5 milliseconds for communication and 32.5 milliseconds for processing overhead.

When these results are examined, it is not possible to make a direct comparison between the two services
because we do not know the details of how the implementation was made available by terrestris GmbH & Co.
KG. In the case of the local tests, both the 52North server and the spatial database (PostGIS) are hosted in the
same computer/server, which greatly reduces the communications overheads. In any case, the tests conducted
showed that the implemented server performance is acceptable and the overheads imposed by the use of XML
schemas via web services pay off in face of the gains obtained in interoperability.

V
a

lid
at

io
n

 o
f

th
e

 π
-C

a
lc

u
lu

s
fo

r
S

o
S

23

SosADL

(π-Calculus
for SoS)

Architecture
Description

Editor
(Xtext & Sirius)

Architecture
Statistical

Model Checker
(Plasma Lab)

Architecture
Simulator

(DEVS)
Architecture

Reconfigurator
(Alloy)

…

T
h

e
 S

o
S

A
rc

h
it

e
c

tu
re

 D
ev

e
lo

p
m

e
n

t
E

n
vi

ro
n

m
e

n
t

¡ SosADE (SoS Architecture Development Environment)
for supporting the application of SosADL based on the
π-Calculus for SoS for description and analysis of SoS
Software Architectures
§ Plugins eclipse

24

π-Calculus

Fusion-Calculus

πF-Calculus

CCπ-Calculus

π-Calculus for SoS
π-Calculus
enhanced with
Mediated
Concurrent
Constraints for
SoS

C
o

n
cl

u
si

o
n

¡ π-Calculus for SoS
§ Enhances the expressiveness of the π-Calculus with Mediated

Concurrent Constraints for coping with SoS characteristics

▪ exogenous, intentional, constrained and mediated channel
bindings subject to uncertainty

§ Provides a novel π-Calculus as formal foundation for SosADL

¡ π-Calculus for SoS provides a formal foundation having the
expressiveness to address the challenge of describing
architectures of Software-intensive SoSs
§ The π-Calculus for SoS supports automated verification of correctness

properties of SoS architectures
§ The π-Calculus for SoS supports validation through executable

specifications
▪ Including simulation to validate and discover emergent behaviors

¡ π-Calculus for SoS provided the formal foundation of a novel
ADL for SoS: SosADL

¡ It was applied for architecting a Flood Monitoring and
Emergency Response SoS in the Monjolinho river crossing
the City of Sao Carlos

¡ Several new applications are on the way with DCNS, IBM,
ICMC, SEGULA… for formal modeling SoS Architectures

25

C
o

n
cl

u
si

o
n

26

Communicating Process Architectures 2016
(CPA 2016)

