

OLL Compiler Project
–

Status at 201516

Barry M Cook
Independent project

Barry@hmh.f2s.com

OLL – What is it?

● The latest iteration of a ~20-year experiment
● A Compiler for a language supporting

concurrency
● Targeting various platforms …

– 1995: C

– 2000: VHDL = Hardware (FPGA)

– 2013: ARM

– 2015: JVM, ARM, VHDL

Another Language?

Thesis:
● A large number of programming errors are

caused by a mismatch between the problem
being coded and the features of the language
being used.
– The coder loses sight of the problem when forcing

it to fit a mismatched implementation language

Application Specific Languages

● Can include application specific shortcuts,
rules, etc.

● Can optimise better for being constrained
● Are easier to use
● Reduce coding time
● Are more likely to produce error-free code

Application Areas

● For example:
– Education

– Business

– Scientific

– Engineering
● Electronic
● Chemical
● ...

– Web / internet

– Embedded

Concurrency and Compilation

● Why concurrency?
– Natural way to express algorithms

● Why a compiler?
– Can choose syntax

– Greater control than library
● Error detection can be better
● Better optimisation leads to faster code

My Application Area

● Embedded systems
– Must keep running … No run-time errors

● Protocols
– Between PC, Microcontroller, Hardware

– Want ONE piece of code – not 2 or 3 which may
not behave exactly the same way

● Time is very important
● ? Education ?

– Concurrency is easy (etc.)

Main Goals

● Match my application area (easy to use)
● Prevent (i.e. detect the possibility at compile

time)
– Subscript-out-of-bounds

– Numerical overflow

– Deadlock

– Mismatched units in calculations

– ...

My Targets

● SAME source code for all targets
(Hardware/Software “SameDesign”)
– JVM

● For user interaction / portability
– Also easy to instrument / display operation

– VHDL – for hardware (FPGA)
● Naturally concurrent = fast

– ARM (Cortex M3)
● Widely used

● Need to take a subset of everything possible
● e.g. Dynamic allocation is harder in hardware … omit or

defer it

Personal Preferences

● I'm writing the compiler so I don't need to follow
the usual conventions …
– No reserved words

– Source as lines – error containment

– Subscript range checking at compile time

– Create new data types
● e.g. Fruit is Orange, Apple, Pear

– Array slices

– Array index other than integer

– Units on values

– Predictable numerical accuracy

More Personal Preferences

– SEQ by default

– Indented (like Python)

– One loop

– One choice

– Any bracket shape is OK (no need to remember which one to use)

● [{x + ([a+b] * [c+d])} / {x - ([a+b] * [c+d])}]
● ((x + ((a+b) * (c+d))) / (x - ((a+b) * (c+d))))

– Deliberately chosen different words – reduce mis-choice

– Real numbers after Gustafson's UNUM's (?)

Reminder

● This is a personal voyage of discovery
● The result is intended to make MY life easier

for what I do
● Things are still changing – I'm trying things

and rejecting more than I keep
– (Because I can) I'm changing the words / syntax /

features to help with usage, optimisation AND
making the compiler easier to write

● What you see today might be different next month

Credits

● I've taken things from many existing languages
– and rejected even more things from them
– The most notable contributors, in alphabetical

order, are
● Ada, Algol60, Algol68, Assemblers (many), BASIC,

BCPL, C, COBOL, FORTRAN, Java, occam, Pascal,
Verilog, VHDL

– Each of the above has at least one thing I like –
and at least one thing that I dislike.

First example program

Program eg1 (* context information *)

 Let display := “Hello World!”

Hello World!

Second example program

Program eg2 (* context information *)

 SEQ i = 10..1

 Let display := i'“%d”; newline

 Let display := “BANG!”

10

9

8

...

1

BANG!

Timed example program

Program eg3 (* context information *)

 SEQ i = 10..1 @ 1s

 Let display := (i'“%d”; newline)

 Let display := “BANG!”

10

9

8

...

1

BANG!

UART Transmitter

SEQ @ baud rate

 LET tx := 0; data[0..7]; 1

An Example of Data Typing

● An integer is NOT an array of bits
● Conversion needs specification

– LET integer := array'UNSIGNED

TYPE short = 0..2^8-1
TYPE bit = 0, 1
TYPE word index = 0..15
TYPE word = bit (word index)
 FIELD ms(short) = (15..8)'UNSIGNED
 FIELD ls(short) = (7..0)'UNSIGNED

VAR X (word) := initial value
LET X.ms := 255 - X.ls

One-place buffer
PROC buffer1(IN input(type), OUT output(type))
 VAR buffer(type)
 TYPE states = empty, full
 VAR state(states) := empty
 SEQ ..
 ALT
 WHEN state
 IS empty
 AWAIT buffer := input
 LET state := full
 IS full
 AWAIT output := buffer
 LET state := empty

One-place buffer
PROC buffer1(IN input(type), OUT output(type))
 VAR buffer(type)
 SEQ ..
 LET buffer := input
 LET output := buffer

Or

PROC buffer1(IN input(type), OUT output(type))
 SEQ ..
 LET output := input

Choice
WHEN x
 IS 1
 (*...*)
 IS 2,4,6
 (*...*)
 NOT 0..10
 (*...*)
 ELSE (* 0,3,5,7,8,9,10 *)
 (*...*)

Exactly one path must selected

(Unless as a guard in an ALT, when it is also acceptable for no
path to be selected)

Buffer (1 of 2)
PROC FIFO(IN input(type), OUT output(type),
 CONST size[1..] := 1000)

 TYPE Buffer address = 0..buffer size
 ATTRIBUTE NEXT(Buffer address)
 WHEN $ (* this *)
 IS buffer size: RETURN 0
 ELSE : RETURN $ + 1

 TYPE BUFFER = type[Buffer address]

 VAR buffer (BUFFER)
 VAR write address (Buffer address) := 0
 VAR read address (Buffer address) := 0

Buffer (2 of 2)
 SEQ ..
 ALT
 WHEN read address
 NOT write address (* not empty *)
 AWAIT output := buffer[read address]
 LET read address :=
 read address'NEXT

 WHEN write address'NEXT
 NOT read address (* not full *)
 AWAIT buffer[write address] := input
 LET write address :=
 write address'NEXT

Commstime (1 of 2)
PROGRAM commstime @ context

 TYPE INT = 0..2^30-1
 ATTRIBUTE NEXT(INT)
 WHEN $ (* this *)
 IS INT'MAX: RETURN 0
 ELSE : RETURN $ + 1

 CHAN to_delta (INT)
 CHAN to_inc (INT)
 CHAN to_prefix (INT)
 CHAN to_reporter (INT)

Commstime (2 of 2)
 PAR
 SEQ (* Prefix *)
 LET to_delta := 0
 SEQ ..
 LET to_delta := to_prefix

 SEQ .. (* Delta *)
 LET n := to_delta
 PAR
 LET to_inc := n
 LET to_reporter := n

 SEQ .. (* Inc *)
 LET to_prefix := to_inc 'NEXT

 SEQ (* Reporter *)
 (* read from to_reporter and time things *)
 SKIP

Commstime - Performance

● Hand-compiled to Java then JDK to runnable (Java
1.7.0.03 on i7-4770 at 3.4GHz)
– Java code similar to that described in “A Fast C Kernel

for Portable occam Compilers” (Cook) at WoTUG-18
(1995)

– 68 ns / iteration (~231 clock cycles)

– 17 ns / communication (~58 clock cycles)

– 8.5 ns / context switch (~29 clock cycles)

● ~350 times the speed of JCSP on the same
machine

[We could use a few more benchmarks]

Summary

● Ongoing work, still a long way to go and taking
far longer than I'd like

● Output for the 3 targets (JVM, ARM, FPGA)
shown to be feasible

● (Performance) Results are encouraging

Barry@hmh.f2s.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

