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OLL – What is it?

● The latest iteration of a ~20-year experiment
● A Compiler for a language supporting 

concurrency
● Targeting various platforms …

– 1995: C

– 2000: VHDL = Hardware (FPGA)

– 2013: ARM

– 2015: JVM, ARM, VHDL



  

Another Language?

Thesis:
● A large number of programming errors are 

caused by a mismatch between the problem 
being coded and the features of the language 
being used.
– The coder loses sight of the problem when forcing 

it to fit a mismatched implementation language



  

Application Specific Languages

● Can include application specific shortcuts, 
rules, etc.

● Can optimise better for being constrained
● Are easier to use
● Reduce coding time
● Are more likely to produce error-free code



  

Application Areas

● For example:
– Education

– Business

– Scientific

– Engineering
● Electronic
● Chemical
● ...

– Web / internet

– Embedded



  

Concurrency and Compilation

● Why concurrency?
– Natural way to express algorithms

● Why a compiler?
– Can choose syntax

– Greater control than library
● Error detection can be better
● Better optimisation leads to faster code



  

My Application Area

● Embedded systems
– Must keep running … No run-time errors

● Protocols
– Between PC, Microcontroller, Hardware

– Want ONE piece of code – not 2 or 3 which may 
not behave exactly the same way

● Time is very important
● ? Education ?

– Concurrency is easy (etc.)



  

Main Goals

● Match my application area (easy to use)
● Prevent (i.e. detect the possibility at compile 

time)
– Subscript-out-of-bounds

– Numerical overflow

– Deadlock

– Mismatched units in calculations

– ...



  

My Targets

● SAME source code for all targets 
(Hardware/Software “SameDesign”)
– JVM

● For user interaction / portability
– Also easy to instrument / display operation

– VHDL – for hardware (FPGA)
● Naturally concurrent = fast

– ARM (Cortex M3)
● Widely used

● Need to take a subset of everything possible
● e.g. Dynamic allocation is harder in hardware … omit or 

defer it 



  

Personal Preferences

● I'm writing the compiler so I don't need to follow 
the usual conventions …
– No reserved words

– Source as lines – error containment

– Subscript range checking at compile time

– Create new data types
● e.g. Fruit is Orange, Apple, Pear

– Array slices

– Array index other than integer

– Units on values

– Predictable numerical accuracy



  

More Personal Preferences

– SEQ by default

– Indented (like Python)

– One loop

– One choice

– Any bracket shape is OK (no need to remember which one to use)

● [{x + ([a+b] * [c+d])} / {x - ([a+b] * [c+d])}]
● ((x + ((a+b) * (c+d))) / (x - ((a+b) * (c+d))))

– Deliberately chosen different words – reduce mis-choice

– Real numbers after Gustafson's UNUM's (?)



  

Reminder

● This is a personal voyage of discovery
● The result is intended to make MY life easier 

for what I do
● Things are still changing – I'm trying things 

and rejecting more than I keep
– (Because I can) I'm changing the words / syntax / 

features to help with usage, optimisation AND 
making the compiler easier to write

● What you see today might be different next month 



  

Credits

● I've taken things from many existing languages 
– and rejected even more things from them
– The most notable contributors, in alphabetical 

order, are
● Ada, Algol60, Algol68, Assemblers (many), BASIC, 

BCPL, C, COBOL, FORTRAN, Java, occam, Pascal, 
Verilog, VHDL

– Each of the above has at least one thing I like – 
and at least one thing that I dislike.



  

First example program

Program eg1 (* context information *)

  Let display := “Hello World!”

Hello World!



  

Second example program

Program eg2 (* context information *)

  SEQ i = 10..1

    Let display := i'“%d”; newline

  Let display := “BANG!”

10

9

8

...

1

BANG!



  

Timed example program

Program eg3 (* context information *)

  SEQ i = 10..1 @ 1s

    Let display := (i'“%d”; newline)

  Let display := “BANG!”

10

9

8

...

1

BANG!



  

UART Transmitter

SEQ @ baud rate

  LET tx := 0; data[0..7]; 1



  

An Example of Data Typing

● An integer is NOT an array of bits
● Conversion needs specification

– LET integer := array'UNSIGNED

TYPE short      = 0..2^8-1
TYPE bit        = 0, 1
TYPE word index = 0..15
TYPE word       = bit ( word index )
  FIELD ms(short) = (15..8)'UNSIGNED
  FIELD ls(short) = ( 7..0)'UNSIGNED

VAR X (word) := initial value
LET X.ms := 255 - X.ls



  

One-place buffer
PROC buffer1(IN input(type), OUT output(type))
  VAR  buffer(type)
  TYPE states        = empty, full
  VAR  state(states) := empty
  SEQ ..
    ALT
      WHEN state
        IS empty
          AWAIT buffer := input
            LET state := full
        IS full
          AWAIT output := buffer
            LET state := empty



  

One-place buffer
PROC buffer1(IN input(type), OUT output(type))
  VAR buffer(type)
  SEQ ..
    LET buffer := input
    LET output := buffer

Or

PROC buffer1(IN input(type), OUT output(type))
  SEQ ..
    LET output := input



  

Choice
WHEN x
  IS 1
    (*...*)
  IS 2,4,6
    (*...*)
  NOT 0..10
    (*...*)
  ELSE           (* 0,3,5,7,8,9,10 *)
    (*...*)

Exactly one path must selected

(Unless as a guard in an ALT, when it is also acceptable for no 
path to be selected)



  

Buffer (1 of 2)
PROC FIFO(IN input(type), OUT output(type),
          CONST size[1..] := 1000          )

  TYPE Buffer address = 0..buffer size
    ATTRIBUTE NEXT(Buffer address)
      WHEN $  (* this *)
        IS buffer size: RETURN 0
        ELSE          : RETURN $ + 1
        
  TYPE BUFFER         = type[Buffer address]
  
  VAR  buffer         ( BUFFER         )
  VAR  write address  ( Buffer address ) := 0
  VAR  read  address  ( Buffer address ) := 0
  



  

Buffer (2 of 2)
  SEQ ..
    ALT
      WHEN read address
        NOT write address       (* not empty *)
          AWAIT output := buffer[read address]
            LET read address :=
                             read address'NEXT
            

      WHEN write address'NEXT
        NOT read address         (* not full *)
          AWAIT buffer[write address] := input
            LET write address :=
                              write address'NEXT

  



  

Commstime (1 of 2)
PROGRAM commstime @ context

  TYPE INT         = 0..2^30-1
    ATTRIBUTE NEXT(INT)
      WHEN $  (* this *)
        IS   INT'MAX: RETURN 0
        ELSE        : RETURN $ + 1

  CHAN to_delta    ( INT )
  CHAN to_inc      ( INT )
  CHAN to_prefix   ( INT )
  CHAN to_reporter ( INT )
  



  

Commstime (2 of 2)
  PAR
    SEQ (* Prefix *)
      LET to_delta := 0
      SEQ ..
        LET to_delta := to_prefix
        
    SEQ .. (* Delta *)
      LET n := to_delta
      PAR
        LET to_inc      := n
        LET to_reporter := n

    SEQ .. (* Inc *)
      LET to_prefix := to_inc 'NEXT
      
    SEQ (* Reporter *)
      (* read from to_reporter and time things *)
      SKIP

  



  

Commstime - Performance

● Hand-compiled to Java then JDK to runnable (Java 
1.7.0.03 on i7-4770 at 3.4GHz)
– Java code similar to that described in “A Fast C Kernel 

for Portable occam Compilers” (Cook) at WoTUG-18 
(1995)

– 68 ns / iteration                (~231 clock cycles)

– 17 ns / communication (  ~58 clock cycles)

– 8.5 ns / context switch (  ~29 clock cycles)

● ~350 times the speed of JCSP on the same 
machine

[We could use a few more benchmarks]



  

Summary

● Ongoing work, still a long way to go and taking 
far longer than I'd like

● Output for the 3 targets (JVM, ARM, FPGA) 
shown to be feasible

● (Performance) Results are encouraging

Barry@hmh.f2s.com
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