
Øyvind Teig
www.teigfam.net/oyvind/home

Autronica Fire and Security AS, Trondheim, Norway. Autronica is a part of UTC Building & Industrial Systems, a unit of United Technologies Corporation

Not that concurrent!

@CPA 2015 fringe http://www.wotug.org/cpa2015/

)

http://www.teigfam.net/oyvind/home

But less or more concurrent?

Based on the blog note «How much concurrency?" by Øyvind Teig.
See http://www.teigfam.net/oyvind/home/technology/093-how-much-concurrency/

http://www.teigfam.net/oyvind/home/technology/092-not-so-blocking-after-all/

1. Concurrency is, in the literature often used as an adjective: there
is more or less concurrency, it is more or less limited - it may
even be seen described as complete.

2. In trying to discuss multi-threaded programming with
programmers who state that they program single-threaded it is
important to communicate that they may program less concurrent,
but probably not as non-concurrent as they believe.

3. What are the factors that increase concurrency and which factors
are orthogonal to degree of concurrency?

Abstract (1/2)

4. Does a golang goroutine increase it and is a C++ object
orthogonal?

5. Will the CSP paradigm generally enable increased concurrency?
• Is the CSP paradigm of communication by synchronisation

itself orthogonal to degree of concurrency?
6. It is also important to understand the term parallel slackness,

does it introduce or enable more concurrency?
7. And what about atomicity?
8. This presentation will raise more questions that it is able to

answer. However, some lines of reasoning are suggested.
9. Finally; is it at all meaningful to raise the awareness of

concurrent as an adjective?

Abstract (2/2)

The first time I discovered about this “degreeness” was in the Clojure
concurrency documentation:

commute. Must be called in a transaction. ... Thus fun should be commutative,
or, failing that, you must accept last-one-in-wins behavior. commute allows for
more concurrency than ref-set

«More concurrency»

Then I asked about what the “metric of concurrency” was in a Clojure
discussion group thread. Here’s from the answer by Leon Grapenthin:

How much happens at the same time in contrast to being queued up.
Remember that only successful transactions affect the outside world. E. g.: Of
two successful transactions, one had to be restarted because of the other having
completed during its first try => The two successful transactions didn’t happen
in parallel. Using commute reduces the potential of a retry and thus allows
more successful transactions in parallel => more concurrency

Metric of concurrency?

From Kogan and Petrank’s paper “Wait-free queues with multiple enqueuers
and dequeuers”:

Abstract: The queue data structure is fundamental and ubiquitous. Lock-free
versions of the queue are well known. However, an important open question is
whether practical wait-free queues exist. Until now, only versions with limited
concurrency were proposed.

«Limited concurrency»

In a paper by Micheal and Scott:

Lamport [.] presents a wait-free algorithm that restricts concurrency to a single
enqueuer and a single dequeuer. ... Valois [..] presents a list-based non-blocking
algorithm that avoids the contention caused by the snapshots of Prakash et al.’s
algorithm and allows more concurrency by keeping a dummy node at the head..
...The algorithm employs separate Head and Tail locks, to allow complete
concurrency between enqueues and dequeues.

«Complete concurrency»

«Architectural» levels?

• Has degree of concurrency?
• Degree of concurrency is no issue?
• Degree of concurrency is void?

• Has degree of concurrency?
• Degree of concurrency is no issue?
• Degree of concurrency is void?It’s about semantics?!

It’s about semantics?!parallel?

concurrent?

1. A single-threaded application where one work task blocks progression of other
tasks has less concurrency than one the never blocks (also related to how long)

2. A multi-threaded application has more concurrency the more the number of
thread relates to number of work tasks

3. An implementation of a CSP systems does need to do any busy-polling to build
the primitives. So it is more concurrent than one system that uses busy polling

4. Java has notifyAll which means that a Java thread may be notied just in case: there
may not be anything important to be notied about. The system wouldn’t know. So it
is less concurrent than one system that hits all the time

5. SDL and some other message driven systems are not allowed to stop an event when
the task is not really able to treat it, so it has to be stored with a save command. So
it is less concurrent than systems where messages may be ltered in a dierent way

6. occam and Go may stop listening on channels to keep disturbances out. So they are
more concurrent than systems that can’t

Has degree of concurrency?

7. Erlang and core.async has ways to filter even on contents. So they are more
concurrent than systems that can’t

8. A global critical region to implement something is less concurrent than if only parts
of the system was necessary to protect

9. Not needing a critical region is more concurrent than the opposite

10. A non-blocking type atomic variable where one is not 100% sure that an
unprotected change was correct at first trial is less concurrent than one where one
would be certain

11. A system that has much caching will be less concurrent than one where the same
problem is solved without caching (speed, only the degree to which one disturbs when
it would be better not to disturb)

12. A system that has stop-the-world garbage collectors (as in Go) is less concurrent
than (..one that doesn’t use that kind of garbage collection?)

13. A system that needs to tune its garbage collection (like Java) to get performance is
less concurrent than one that (...) doesn’t use dynamic memory

14. A system that doesn’t create garbage is more concurrent than one that does

Has degree of concurrency?

15. A serial line interrupt that delivers a character per interrupt is more concurrent than one
that treats frames and delivers a full message. (Less time per interrupt and receiver has time
to pick up each byte vs. more time spent in interrupt because scheduling of receiver (driver,
process, thread, task) is rather late, so needs a framed message)

16. Rewrite of some of the quotes above

1. Clojure concurrent programming commute allows for more concurrency than ref-set.

2. Using commute reduces the potential of a retry and thus allows more successful

3. transactions in parallel => more concurrency

4. Wait-free queues give more concurrency than lock-free queues

5. A system without explicit locks at application level but requiring locks at lower level is

6. more concurrent than one that has locks at application level (only) (Erlang quote)

7. A non-blocking algorithm that avoids the contention caused by the snapshots of Prakash

8. et al.’s algorithm allows more concurrency (Lamport, Valois)

Has degree of concurrency?

1. CSP with channels that are non-buffered (synchronous) or buffered
(asynchronous until full) (the process algebra concept)

2. Formally verified also with respect functional, but also temporal
requirements (some blog here)

3. Systems with deterministic guarantees with regard to response times, like
rate-monotonic scheduling (hard real-time systems)

4. State transitions systems (includes SDL and CSP)

5. Rewrite of a quote from above

• The algorithm employs separate Head and Tail locks, to allow complete
concurrency between enqueues and dequeues (Lamport, Valois) (Complete
but with two locks!)

Degree of concurrency is no issue?

1. The property of being able to not fulll the specication

2. The property of being able to deadlock

3. The property of being able to livelock

4. The property of being able to not meeting a deadline

Degree of concurrency is void?

1. Synchronous parallel

2. Alphabetized parallel (in CSPm)

3. Interleaving / unsynchronized parallel (in CSPm)

4. Generalized parallel / interface parallel / sharing (in CSPm)

5. Linked parallel (in CSPm)

6. occam PAR

Is it about the semantics of parallels?

Is it about the semantics of parallels?

1. Synchronous parallel

2. Alphabetized parallel (in CSPm)

3. Interleaving / unsynchronized parallel (in CSPm)

4. Generalized parallel / interface parallel / sharing (in CSPm)

5. Linked parallel (in CSPm)

6. occam PAR

7. «Degree of concurrency?»

