
1 CPA'15 Kent

24 August 2015

Discrete event-based neural
simulation using the

SpiNNaker system
Andrew Brown

University of Southampton
adb@ecs.soton.ac.uk

Kier Dugan

University of Southampton
kjd1v07@ecs.soton.ac.uk

Steve Furber

University of Manchester
steve.furber@manchester.ac.uk

Jeff Reeve

University of Southampton
jsr@ecs.soton.ac.uk

2

What is SpiNNaker?

• It is not:

• It is:

Just another massive parallel machine

A large number of relatively small cores

embedded in a powerful bespoke hardware

communication fabric

1,000,000
64k:32k D:I memory,

ARM 9, no floating point

Bisection bandwidth
250 Gb/s

1,000,000
64k:32k D:I memory,

ARM 9, no floating point 1,000,000

Bisection bandwidth
250 Gb/s

64k:32k D:I memory,

ARM 9, no floating point

CPA'15 Kent

24 August 2015

3

Bio-inspiration: BIMPA

• How can massively parallel computing
resources accelerate our understanding of
brain function?

• How can our growing understanding of brain
function point the way to more efficient
parallel, fault-tolerant computation?

CPA'15 Kent

24 August 2015

4

Outline

• The SpiNNaker system

• Configuration

• Time models itself

• Neural simulation

CPA'15 Kent

24 August 2015

5

Machine architecture

• Triangular
mesh of nodes

CPA'15 Kent

24 August 2015

• 1 engine =
256x256 toroid =
65536 nodes

• 1 node =
18 cores

+ comms

+ 128M SDRAM

• 1 core =
ARM9

+ 64k DTCM

+ 32k ITCM

6

A Spinnaker node

• 6 bi-directional

comms links

• Core farm
• (1 monitor)

• System...
• NoC

• RAM

• Watchdogs

• Off-die SDRAM

CPA'15 Kent

24 August 2015

7

102

machine

18 cores

CPA'15 Kent

24 August 2015

8

Physical construction

103 machine

48 nodes:

48 nodes x

18 cores

= 864 cores

CPA'15 Kent

24 August 2015

9

Physical construction

104 machine

24 boards:

24 boards x

48 nodes x

18 cores

= 20736 cores

CPA'15 Kent

24 August 2015

10

Physical
construction

105 machine

5 racks:

5 racks x

24 boards x

48 nodes x

18 cores

= 103680 cores

CPA'15 Kent

24 August 2015

11

…and the machine yet
to be assembled:

103 machine: 864 cores, 1 PCB, ~75W 104 machine:20,736 cores, 1 rack, ~1900W
(24 PCBs, operation without aircon)

105 machine: 103,680 cores, 1 cabinet, ~9kW

106 machine: 1M cores, 10 cabinets, ~90kW CPA'15 Kent

24 August 2015

12

Scalable system ...
... arbitrary topology

• We like tori

• But the node topology is

almost arbitrary

CPA'15 Kent

24 August 2015

13

Outline

• The SpiNNaker system

• Configuration

• Time models itself

• Neural simulation

CPA'15 Kent

24 August 2015

14

A conventional multi-
processor program:

Problem: represented as a network of

programs with a certain behaviour...

...embodied as data

structures and

algorithms in code...

...compile, link...

...binary files

loaded into

instruction

memory...

MPI farm (or

similar)
Myranet (or

similar)

Messages addressed at

runtime from arbitrary

process to arbitrary process

Interface presented to the

application is a homogenous set of

processes of arbitrary size;

process can talk to process by

messages under application

software control

CPA'15 Kent

24 August 2015

15

...and you might
reasonably expect:

• Blocking and non-blocking send/receive

• Probing the queues

• Broadcasting

• Scatter-gather

• Parallel I/O

• Remote memory access

• Dynamic process management

CPA'15 Kent

24 August 2015

16

On SpiNNaker...

• The problem (Circuit under Simulation) is

defined as a graph

• Torn into two components:

– CuS topology

• Embodied as hardware route tables in the nodes

– Circuit device behaviour

• Embodied as software event handlers running on cores

CPA'15 Kent

24 August 2015

17

On SpiNNaker:

Problem: represented as

a network of devices with

a certain behaviour...

...behaviour of each device

embodied as an interrupt

handler in code...

...compile, link...

...binary files loaded into

core instruction memory...

Messages

launched at

runtime take a

path defined by

the firmware

router

...problem

is split into

two parts...

...problem topology

loaded into firmware

routing tables...

...abstract problem

topology...

The code says "send message" but has no

control where the output message goes -

the route tables in each node decide
CPA'15 Kent

24 August 2015

18

OS, S/W environment

• What you expect:

– File I/O

– Console output

– Memory management

– Interactive debug

– Libraries

– The time

• What each handler gets:
– Read access to 72 bits of the

packet that woke it

– Knowledge of incoming port

(0..5) - not very useful

– I/O to its own memory map

– Ability to send packets

– Knowledge of local node and

core identifier

– Coarse interval signal

And that's all, folks

CPA'15 Kent

24 August 2015

19

SpiNNaker configuration

Maps each individual neuron to a

SpiNNaker core

Defines the router tables for each node
Connectivity of neural topology is

distributed throughout the system in the

routing tables

Defines the index structures necessary

in each core to allow fast retrieval of

neuron and synapse state

Defines the packet handling code

(interrupt handlers)

1000 neurons per processor

Offline configuration software maps neurons:cores (~1000:1)

CPA'15 Kent

24 August 2015

20

SpiNNaker configuration

Neurons communicate via spikes traveling

along axons/dendrites

Cores (and hence the neuron models resident

within them) communicate via 72-bit hardware

packets traveling through the routing structure,

hopping from node to node as directed by the

routing tables in each node

Biology

SpiNNaker

CPA'15 Kent

24 August 2015

21

Event handlers? Interrupts?

• Packet arrives at a core:

– Hardware invokes an interrupt handler

• Tied to a neuron

– Handler modifies neuron state

• May/may not launch packets as a consequence

• Handlers are tiny; they execute; they stop

And that's all you have to play with

CPA'15 Kent

24 August 2015

22

What exactly is a packet?

– Hardware

• Fixed bit length

– Address event representation (AER)

– Packets delivered from source neuron to

target neuron

• Source node address|source core address|source

neuron address

– Physical route embodied in route tables

• Distributed

CPA'15 Kent

24 August 2015

23

Outline

• The SpiNNaker system

• Configuration

• Time models itself

• Neural simulation

CPA'15 Kent

24 August 2015

24

Time

Axonal delay O(ms) –

fn(biological geometry)

Biology:

Neuron processing time O(ms) –

fn(biology & state(history))

CPA'15 Kent

24 August 2015

25

Time

Neuron-neuron wallclock delay

maximum O(10us) – fn(graph mapping,

traffic density & engine size)

Node-node wallclock hop

delay O(100ns) – fn(graph

mapping & traffic density)

Axonal delay stored as parameter in

synapse state local to neuron model

Neuron-core mapping –

fn(graph mapping software)

SpiNNaker

CPA'15 Kent

24 August 2015

26

There are different
sorts of interrupts

• Each core
– Packet handling interrupt

• Invoked by incoming packet

• Each node
– Biological clock tick handling interrupt

– Clocks are not phase locked

– Slow O(kHz)

– '(Biological) time is passing' signal

– Asserted on every core

CPA'15 Kent

24 August 2015

27

Back to biology

A
B

• A fires when it fires

• Pulse propagates to B

• Arrives when it arrives

• B integrates incoming pulse(s)

• Fires when it fires

No synchronising clock

Event driven

Data push

CPA'15 Kent

24 August 2015

28

Back to SpiNNaker

In parallel with (and not

synchronised to) this:

Biological clock ticks

Triggers an interrupt with

each tick

A

B

A fires when it fires

Launches a packet to B

Arrives O(us) later

Triggers 'packet arrived' interrupt

CPA'15 Kent

24 August 2015

29

A closer look at the
interrupt handlers

Packet arrival handler Clock tick handler

Remove packet from

router;

Store in buffer in

synapse (age = 0)

Increment age of buffered

packets;

If any 'arrived' (age ==

synapse delay), assert

onto neuron state

equations;

Integrate (one timestep)

neuron state equations

CPA'15 Kent

24 August 2015

30

Neural simulation

sn

s2

s1

Σs

clock

Individual message

frequencies < real-

time clock

Superposition of all inputs: exact timing =

fn(neuron:core) i.e. independent of CuS (bad)

BUT message latency << CuS time constants

(so it doesn't matter)

Change of neuron state derived locally,

stored until next (biological) timestep

Change of neuron state broadcast (or

not) at next (biological) timestep

CPA'15 Kent

24 August 2015

31

And this works because:

• Biological wallclock time modelled locally at each node
– (and thus each neuron modelled within it)

• At each time tick
– Inputs added if age suitable

– Equations integrated

– States updated

• Wallclock packet transit delay is negligible and ignored

• Biological delay captured in target synaptic model state

• Differential equations controlling neuron model
behaviour are not stiff
– All time constants >> biological clock tick

– Forward Euler / Runge/Kutta stable

CPA'15 Kent

24 August 2015

32

Limitations

• SpiNNaker designed to operate in real time

– Simulation 'speed' a hard metric to interpret

• Communication via hardware packets

– 16 bits/node => 65536 nodes/machine

– 4 bits/core => 16 cores/node

– 10 bits/neuron => 1024 neurons/core

• Hard limit of 1,073,741,825 neurons
CPA'15 Kent

24 August 2015

33

Outline

• The SpiNNaker system

• Configuration

• Time models itself

• Neural simulation

CPA'15 Kent

24 August 2015

34

Comparisons

• LIF

• Izhikevich

CPA'15 Kent

24 August 2015

35

Norman the nematode

• C. elegans

– ~300 neurons

– Chemotaxic

Bessereau Laboratories

CPA'15 Kent

24 August 2015

36

Of worms and environments

• Worm locomotion defined by interaction with

the environment

• Motor neuron is proprioceptive (bidirectional)

• To move, Norman interacts with ambient on a

distance scale comparable to stride length
[viscosity/locomotion studies]

CPA'15 Kent

24 August 2015

37

To do useful science.....

• If Norman is in a virtual environment

• Coupling at granularity level requiring

~1 connection/motor neuron

• NOT a few connections/animal

CPA'15 Kent

24 August 2015

38

Norman abstracted

Muscle

Chemosensor

(sensilla) Head

Body

segment

Motor

neuron

Around 25

stages

Nervous

system ~ 300

neurons

The physical animal - hosted by

conventional computing environment
The neurological animal -

hosted by SpiNNaker

Coupling

bandwidth

~50 neurons

CPA'15 Kent

24 August 2015

39

Neuronscape

– A neurophysiological workbench:

• Can provide this level of interaction

• Move the focus to a finer level of granularity in the local

environment

• Requires ~ 50 links/animal

– SpiNNaker can do this

• Group dynamics ~5000 animals

• Replace mechanical linkage in the virtual environment

– Non-neural physical interactions

– Brokered by SpiNNaker packets

CPA'15 Kent

24 August 2015

40

Neuronscape - concept

Artificial environments

De facto technique for neural development studies

Controlled environment -

Real time interaction with :

● Other Beasties hosted on SpiNNaker

● Other Beasties hosted on conventional machines

● Humans - Turing test

CPA'15 Kent

24 August 2015

41

Neuronscape internals

Environment server

"World"
- Generate visual stimuli

- Manage physics

Observation and manipulation

"Lab bench"

 Current Historical Agents eye Neuron activity

 world state positions view (tools from UoM)

Neuron-environment interaction

"Body"

Muscle

model

Neuron simulation

"Brain"
Photo

receptors

Neuron-environment interaction

"Body"

Muscle

model

Photo

receptors

Neuron simulation

"Brain"

Neuron-environment interaction

"Body"

Muscle

model

Neuron simulation

"Brain"
Photo

receptors

Neuron-environment interaction

"Body"

Muscle

model

Photo

receptors

Neuron simulation

"Brain"

Neuron-environment interaction

"Body"

Muscle

model

Neuron simulation

"Brain"
Photo

receptors

Neuron-environment interaction

"Body"

Muscle

model

Photo

receptors

Neuron simulation

"Brain" Visual stimulus

Forces

PyNN to SpiNNaker

PyNN network

CPA'15 Kent

24 August 2015

42

Group dynamics

Topological network mapped to

physical platform

SpiNNaker node

Putting it all together

void ihr() {

Recv(val,port);

ghost[port] = val;

oldtemp = mytemp;

mytemp = fn(ghost);

if (oldtemp==mytemp) stop;

Send(mytemp);

}

Handler (awoken by arrival of

changed neighbour state)

Neuron (can see

only logical

neighbours)

Discrete neural

aggregate

SpiNNaker platform

Neuronscape

CPA'15 Kent

24 August 2015

