
Lambda Calculus ���
in Core Aldwych ���

���
CPA 2015, University of Kent

Matthew Huntbach
School of Electronic Engineering and Computer Science

Queen Mary, University of London
matthew.huntbach@qmul.ac.uk

An Abstract Model for Computation ���
with Agents acting Concurrently

•  The universe consists of Agents which have
shared access to Variables

•  Each variable must have exactly one agent which
can write to it (single writer)

•  A variable may have any number of agents which
can read it (but see linearity later)

•  Once a variable has been written to, it cannot be
written to again (single assignment)

Processes
•  A process is an agent defined by a set of rules
•  A rule has a left hand side (lhs) consisting of

matches to variables which the process has read
access to

•  A rule has a right hand side (rhs) which must put
all variables to which it has write access in a write
position

•  A process commits to a rule when all the rule’s lhs
matches are made, it converts to the rule’s rhs

•  A process commits to one rule and cannot
backtrack

Compound Agents
•  A process is one form of agent
•  An assignment is one form of agent, it cannot be reduced

further
•  An alias is an agent which links a variable in read position

to another in write position
•  A collection of agents is itself an agent, termed a

compound agent
•  If a variable is in a read position in one component of a

compound agent and in a write position in another, it may
be purely internal to the compound agent

•  A variable designated as linear must be internal if it in a
read and write position in a compound agent

Assignment and Aliasing
•  The values assigned to variables are tuples,

consisting of a tag and further variables
•  When an agent assigns a tuple to a variable, a

variable in the tuple may be a new variable, in
which case it must set up an agent to write it

•  When an agent reads a variable, it obtains read
access to the variables in the tuple and may pass
on that read access in its own assignments

•  An agent may directly assign a variable the value
of another variable (aliasing)

Passing Read Access
agent(in1, in2)‑>out
{
 …
 in1=tagA(x) || out=tagB(in2,x);
 …
}

A reader of out then becomes a reader of in2 and x,
communication with the writers of in2 and x are set up.
There is no requirement that x or in2 have already been
written to.
No agents are created, so the agent terminates.

New Variable and Agent
agent(in1, in2)‑>out
{
 …
 in2=tagC(x) || out=tagD(in1,y), sub(x)‑>y;
 …
}

A reader of out then becomes a reader of in1 and y.
As y is a new variable, a new agent is set up to write to it.
There is no requirement that x or in1 have already been
written to.
The assignment to out takes place before y has been
assigned a value, the ordering of the rhs has no relevance.

Indeterminacy
agent(in1, in2)‑>out
{
 …
 in1=tagA(x) || out=tagB(in2,x);
 in2=tagC(x) || out=tagD(in1,y), sub(x)‑>y;
 …
}

Both rules could be applicable, the choice of which to use is
then indeterminate.
If in1 has been assigned, the agent can choose the first rule
without waiting to see if the second rule becomes applicable
and vice versa

Multiple Reads (1)
agent(in1, in2)‑>out
{
 …
 in1=tagA(x), in2=tagC(y) ||

out=tagD(z), sub(x,y)‑>z;
 …
}

The rule is applicable only if both in1 and in2 have been
appropriately assigned.

Multiple Reads (2)
agent(in1, in2)‑>out
{
 …
 in1=tagE(x,in1a), in1a=tagF(y) ||

out=tagG(z), sub(x,y)‑>z;
 …
}

The rule is applicable only if in1 has been appropriately
assigned, and the second variable in the tuple to which it has
been assigned has also been appropriately assigned. The lhs
can be written in1=tagE(x,tagF(y)) as shorthand

Internal Assignment
agent(in1, in2)‑>out
{
 …
 in1=tagE(x,tagF(y)) || z=tagG(x), sub(z,y)‑>out;
 …
}

The lhs can be written sub(tagG(x),y)->out as shorthand.
In normal evaluation there is no interaction between
z=tagG(x) and sub(z,y)‑>out until the rule is committed
to. Speculative evaluation (see later) would allow it.

Passing Write Access
agent(in1, in2)‑>out
{
 …
 in1=tagH(x) || sub1(x)‑>y, sub2(y)‑>out;
 …
}

The variable out is not directly assigned, instead a new
process is set up to write to it.
The variable in2 is ignored, but the variable out must be
written to directly or indirectly

Multiple Writes
agent(in1, in2)‑>(out1, out2)
{
 …
 in1=tagH(x,y) || out2=tagI(z),

sub1(x)‑>(w,out1), sub2(in2,y,w)->z;
 …
}

The variable out2 is directly assigned, but out1 is not.

Duplication
agent(in1, in2)‑>out
{
 …
 in1=tagJ || sub3(in2)‑>y, sub4(in2,y)‑>out;
 …
}

Read access to the variable in2 is duplicated here.
The tuple with tag tagJ has no internal variables.
Linear input variables cannot be ignored or duplicated.

Aliasing
agent(in1, in2)‑>out
{
 …
 in1=tagK || out<-in2;
 …
}

Read access to the in2 is passed to the readers of out.
Or write access to out is passed to the writer of in2.

Continuation
agent(in, state)‑>out
{
 …
 in=tagL(x,in1) ||

out=tagM(y,out1),
agent(in1,state1)->out1,
sub5(x,state)‑>(y,state1);

 …
}

A recursive process is created, it may be regarded as a
continuation with state change from in2 to in2a.

Anonymity and List Notation
(in, state)‑>out
{
 …
 in=[] || out=[];
 in=[x|in1] || out=[y|out1],

*(in1,state1)->out1,
(x,state)‑>(y,state1) {

 …
}

 …
}

Message Sending
(in, state)‑>(out1, out2)
{
 …
 in=[] || out=[];
 in=[tag1(x)|in1] || out1=[tag2(y)|out11],

*(in1,state1)->(out11,out2),
process1(x,state)->(state1,y);

 in=[tag3(x,y)|in1] || out2=[tag4(z)|out21],
*(in1,state1)->(out1,out21) ,
process2(x,y,state)->(state1,z);

 …
}

Stream Merging
(in1, in2)‑>out
{
 in1=[] || out<-in2;
 in2=[] || out<-in1;
 in1=[mess|in11] || out=[mess|out1],

*(in11,in2)->out1;
 in2=[mess|in21] || out=[mess|out1],

*(in1,in21)->out1;
}

Variables can only have a single writer, but this gives the
effect of a stream with multiple writers

Back Communication
•  As described so far, the agent which assigns a

tuple to a variable must provide writers to the
variables in the tuple, directly or indirectly

•  With back communication, a variable may be
assigned a tuple where the reader of the tuple
becomes the writer of variables in the tuple.

•  The writer of the tuple becomes the reader of these
“back communication” variables.

•  To maintain the single-writer property, a tuple
with back communication variables must have
exactly one reader.

Linear Variables
•  As described so far, all variables must have

exactly one writer but may have any number of
readers: 0, 1 or more than 1.

•  A linear variable (indicated by initial upper case
letter) must have exactly one writer and also
exactly one reader.

•  An assignment of a tuple with back
communication must be to a linear variable

•  An assignment of a tuple which contains linear
variables must be to a linear variable even if it has
no direct back communication

Output of Tuple with ���
Back Communication

agent(In1, In2)‑>Out
{
 …
 In1=tagA(x)->y || Out=tagB(z,In2)->y, sub(x)->z;
 …
}

The reader of Out becomes the reader of In2, a reader of z
and the writer of y.
As y is a back communication variable, it must be in a write
position in the rhs.

Input of Tuple with ���
Back Communication

agent(In1, In2)
{
 …
 In1=tagC(x)->y || sub(x,In2)->y;
 …
}

The agent becomes the writer of y, and the writer of In1 is
the reader of y.
The variable In2 must have a single reader to be the writer of
back communication variables in a tuple it is assigned to.
The agent does not need any direct output variables.

Input of Tuples with ���
Back Communication

agent(In1, In2)
{
 …
 In1=tagD(x), In2=tagE->y || y<-x;
 In1=tagF(X), In2=tagG->Y || Y<-X;
 …
}

The first rule provides one-way communication between the
writer of In1 and the writer of In2 as it is through a non-linear
variable.
The second rule provides potential two-way communication.

Aldwych
•  The model of computation described, “Core

Aldwych”, originated from concurrent logic
programming

•  Aldwych was an attempt to add syntactic sugar to
concurrent logic programming to provide a richer
structure to make it easier to use (“Aldwych turns
into Strand”)

•  The concurrent language Erlang had a similar
origin

Core Aldwych
•  Core Aldwych is an executable programming

language
•  Core Aldwych breaks down the unification of

logic programming into single variables
assignments and matches

•  Concurrent logic programming did not take the
final step of enforcing the single writer property
throughout by the use of linear variables

•  The possibility of multiple writers of variables
was a major factor preventing the development of
clear semantics for concurrent logic programming

Nothing Global
•  The behaviour of any Aldwych agent has no depenency on

external factors apart from assignments to variables to
which it has read access

•  There is no global clock, a process may commit to its rhs
whenever it has a rule with an empty lhs (all matches
made), but may wait an arbitrary amount of time before
doing so

•  There is no sequential composition
•  There is no priority ordering on processes
•  There is no global namespace, variables are defined by

their readers and writers
•  There is no global namespace for processes, all agents can

be defined using anonymous rule sets and recursion

Factory Processes (1)
•  The following replaces the need for an explicit named set

of rules to append lists:
   (S)
   {
   S=[];
   S=[(In1,In2)->Out|S1] || *(S1),
   (In1,In2)->Out {
   In1=[] || Out<-In2;
   In1=[H|T] || Out=[H|Rest], *(T,In2)->Rest
   }
   }

•  S=[(A,B)->C|S1] could be used rather than
append(A,B)->C

Factory Processes (2)
If S were read by the following process:
   (S)
   {
   S=[] || ;
   S=[(In1,In2)->Out|S1] || *(S1),
   (In1,In2)->Out {
   In1=[] || Out<-In2;
   In2=[] || Out<-In2;
   In1=[H1|T1], In2=[H2|T2] ||
   Out=[H1,H2|Rest], *(In1,In2)->Rest
   }
   }

then S=[(A,B)->C|S1] would give a different sort of stream
joining, so setting a particular reader of S gives a higher order
effect

Synchronisation
Synchronisation can be implemented by back communication.
The following process zips together two input streams of
numbers, adding together their respective elements:
   (In1,In2)->Out
   {
   In1=[] || Out<-In2;
   In2=[] || Out<-In1;
   In1=[(x1)->ret1|In1a], In2=[(x2)->ret2|In2a] ||
   ret1=done, ret2=done, Out=[(x)->ret|Outa],
   (x1,x2,In1a,In2a)->(x,Outa) {
   ret=done || x<-x1+x2, **(In1a,In2a)->Outa;
   }
   }

Same example as used by Michael Goldsby at CPA 2015

Asynchronous version
The following process zips together two input streams of
numbers, adding together their respective elements:
   (In1,In2)->Out
   {
   In1=[] || Out<-In2;
   In2=[] || Out<-In1;
   In1=[(x1)|In1a], In2=[(x2)|In2a] ||
   Out=[(x)|Outa], x<-x1+x2,
   *(In1a,In2a)->Outa;
   }

Unlike the previous version, this process will zip the numbers
without waiting for their sums to be read.
Following examples more attempts to replicate example in
Michael Goldsby’s paper.

“Normal Form”
   (In1,In2)->Out
   { || done1=false, done2=false, x1=0, x2=0,
   (In1,In2,x1,x2,done1,done2)->Out {
   In1=[] || Out<-In2;
   In2=[] || Out<-In1;
   In1=[(x1a)|In1a], done1=false || done1a=true,
   *(In1a,In2,x1a,x2,done1a,done2)->Out;
   In2=[(x2a)|In2a], done2=false || done2a=true,
   *(In1,In2a,x1,x2a,done1,done2a)->Out;
   done1=true, done2=true ||
   Out=[(x)|Outa], x<-x1+x2, x1a=0, x2a=0,
   done1a=false, done2a=false,
   *(In1,In2,done1a,done2a,x1a,x2a)->Outa;
   }
   }

Synchronous Normal Form
(In1,In2)->Out
{ || done1=false, done2=false, x1=0, x2=0, ret=done,
   (In1,In2,x1,x2,done1,done2,ret)->Out {
   In1=[] || Out<-In2;
   In2=[] || Out<-In1;
   In1=[(x1a)->ret1|In1a], done1=false, ret=done ||
   done1a=true, ret1=done,
   *(In1a,In2,x1a,x2,done1a,done2,ret)->Out;
   In2=[(x2a)->ret2|In2a], done2=false ||
   done2a=true, ret2=done,
   *(In1,In2a,x1,x2a,done1,done2a,ret)->Out;
   done1=true, done2=true, ret=true ||
   Out=[(x)->reta|Outa], x<-x1+x2, x1a=0, x2a=0,
   done1a=false, done2a=false,
   *(In1,In2,done1a,done2a,x1a,x2a,reta)->Outa;
   }
   }

Model of Computation
•  Core Aldwych is not suggested as a language for

direct programming
•  It is suggested as a model of computation for

concurrent programming
•  A model of computation is used to provide a

semantics for more complex languages
•  A model of computation sacrifices usability in

order to gain simplicity: full and accurate
description of its behaviour is very short

•  Features which make code easier to understand in
human terms are translated to the model

Translations to Models
•  Translation of higher level features to models of

computation establish precisely what those
features mean

•  The translation may identify possible variations of
the features

•  The model should be able to cover identified
variations of the higher level features, so that a
different choice in the feature behaviour gives a
different translation

•  Operational rules on the model should reflect
operational rules on the higher level language

Models of Concurrent Computation
•  Introducing concurrency into computation means

assumptions based on sequential behaviour no
longer apply

•  Classic example with mutable variables:
{var x=0; x=x+1, x=x+2; return x}

   could return 1, 2 or 3
•  A model of concurrent computation would need

to be able to show this
•  It would need to cover variations in the exact

handling of mutable variables which would vary
the possible behaviour

Core Aldwych Representation ���
of Mutable Variables

A variable is represented by a process which inputs a stream
of messages representing get and set operations on the
variable, and outputs a stream of messages representing
access to the value it holds:
   (S)‑>Val
   {
   S=[] || Val=[];
   S=[()‑>Val1|S1] || Val=[], *(S1)‑>Val1;
   S=[(Val1)|S1] || merge(Val1,Val2)->Val,
   *(S1)->Val2;
   }

The second rule handles a set message, the third rule
handles a get message, the first rule terminates the variable.

General Core Aldwych Representation
•  An entity is represented by an agent which inputs

a stream of messages representing
communications sent to the entity by other entities

•  It has an output stream for each of the entities
which form part of it

•  Shared access to entities is represented by joining
separate input streams to them

•  Concurrent access is represented by indeterminate
merger of streams to it

•  Sequential access is represented by appending
streams to it

Variation Example
The following is a slight variation on the previous
representation of a mutable variable:
   (S)‑>Val
   {
   S=[] || Val=[];
   S=[()‑>Val1|S1] || Val=[], var(S1)‑>Val1;
   S=[(Val1)|S1] || append(Val1,Val2)->Val,
   *(S1)->Val2;
   }

The merger of streams to the representation of the variable’s
value is replaced by an append. The consequence is that
when a value is obtained from a variable more than once,
each access locks it from other accesses through the same
variable.

Operational and ���
Denotational Semantics

•  Running Core Aldwych code with an interpreter
which allows explicit choice of options in
indeterminacy reveals all possible code behaviour

•  A smarter way of doing this is to employ code
transformation to reduce Core Aldwych code to a
normal form

•  For example, the initial Core Aldwych code for
{var x=0; x=x+1, x=x+2; return x}

   reduces to the simplest code for indeterminately
returning 1, 2 or 3.

Partial Evaluation
•  Partial evaluation is executing code with some

variables unbound, this is a normal aspect of Core
Aldwych’s behaviour, halting only when a
variable needs its value matched

•  The operational model of Core Aldwych involves
“assignment absorption”, a process which requires
more than one assignment to commit is modified
when it has received just one

•  To obtain all-solutions code, a process should only
commit if it has only one possible rule, otherwise
it suspends with an empty-lhs rule

Speculative Evaluation
•  Speculative evaluation means evaluating all

possibilities before a commitment is made, so the
code on the rhs of each rule in the suspended
process is similarly evaluated

•  Assignment absorption brings assignments into
the rhs, possibly allowing it to be reduced

•  Recognising an assignment absorption as identical
in all but variable names to a previous one enables
it to be replaced by the rules of the previous one,
or by a recursive call if it is internal to those rules

Composition
•  Two process may be composed into one which has the read

and write variables of both less linear variables which one
reads and the other writes, these become inner variables

•  The rules of the composed process are the rules of the two
processes with any rule which has a match to an internal
variable removed, and each rule from one process has the
call to the other process added to its rhs

•  Recognising a composition as identical in all but variable
names to a previous one enables it to be replaced by the
rules of the previous one, or by a recursive call if it is
internal to those rules

•  Our aim is to combine partial evaluation, speculative
evaluation and composition to transform any compound
agent to a normal form (its denotational semantics).

Lambda Calculus
•  Lambda calculus is recognised as the standard model for

sequential computation
•  Lambda calculus resembles Core Aldwych in having no

defined order of reduction (so potentially parallel), and no
global nameset

•  Unlike Core Aldwych, lambda calculus makes no
distinction between processes and values, a variable may
be set to a function, and functions passed as arguments to
other functions (higher order functions)

•  Lambda calculus is based on computation as about taking
input and evaluating to a result rather than interaction

•  Lambda calculus does not have indeterminacy, an
individual function application cannot choose alternatives

Higher Order Programming
•  A criticism of logic programming, which applies

to Core Aldwych, is that as the process rules are
separate from the process values, it does not offer
the flexibility of higher order programming

•  Showing that lambda calculus can be represented
in Core Aldwych shows there is no need to
complicate the model with higher order aspects

•  The factory process technique gives the effect of
higher order programming

•  A function is passed to a Core Aldwych process in
the form of a back communication variable used
as a stream of calls to the function

Representing a lambda expression
The lambda expression λx.exp, where exp contains a
single free variable is represented by L where the reader of
L is as below, and V represents the free variable (a stream
read by the process which represents its value):
(L)—>V
{
 L=[] || V=[];

 L=[Call|L1], Call=(Res)—>X ||
exp(Res)—>(X,V1),
*(L1)—>V2, merge(V1,V2)—>V;

}

Then (λx.exp) n is given by R in L=[(R)—>N|L1] where N
represents n, with L1 used for λx.exp subsequently.

Higher order lambda expression
The lambda expression λx.λy.exp, where exp contains a
single free variable is represented by:
 (L)—>V
 {
 L=[] || V=[];

 L=[Call|L1], Call=(Res)—>X ||
 (Res)->(X,V1) {

 Res=[] || X=[], V1=[];
 Res=[C|Res1], C=(R)->Y ||
 exp(R)—>(X1,Y,V3), *(Res1)—>(X2,V4),

 merge(X1,X2)->X, merge(V3,V4)—>V1;
 },

 *(L1)—>V2, merge(V1,V2)—>V;
 }

Input-Output Reversal
•  An expression is represented by a process which inputs a

stream of messages, each message representing an
individual access to the expression

•  Access to that expression is then represented by output of
streams which are merged to form the input stream

•  If a process represents a function, the form of the message
sent to it representing a call to the function is(Res)->Arg

•  Here Arg is an output of messages to the representation of
the argument, and Res is an input of messages to the
process created which represents the result of the function
call

Y Combinator
•  The Y combinator is used to give recursion in

lambda calculus. It is defined as a function Y
where Y f, that is Y applied to f, evaluates to the
expression f (Y f).

•  If F represents a λ-expression f, or more strictly F
is a variable set to a stream read by the process
which represents f, then Y f is represented by the
stream R with:

F=[(R1)->F1], merge(F1,R)->R1

Lazy Evaluation
•  F=[(Z)‑>X] represents Z set to a call of the function

represented by F with X its argument and no continuation
for further calls to that function

•  If we have
   lazyapply(Res)‑>(F,X)
   {
   Res=[] || F=[], X=[];
   Res=[Mess|Res1] || F=[(Z)‑>X], Z=[Mess|Res1];
   }

   then lazyapply(Z)->(F,X) is the call applied lazily, F
will only be sent a message if the result of the call is
accessed.

Representation of Expressions
With lazy evaluation let z=x+y in exp end is represented by:
   (Z)->(X,Y)
   {
   Z=[] || X=[], Y=[];
   Z=[M|Z1] || X=[()->xval], Y=[()->yval],
   zval<-xval+yval, constant([M|Z1],zval);
   },
   exp(E)->(Z,…)

where exp(E) represents exp, with … its free variables, and:
   constant(S,val)
   {
   S=empty() || ;
   S=[Mess|S1], Mess=()->ret || ret<-val, *(S1,val);
   }

Types
•  The representation of constants as a process which takes

messages of the form ()->val maintains the principle that
all entities are represented by processes which take a
stream of messages, but it is clearly inefficient

•  Partial evaluation can transform to more efficient code
•  The messages that can be sent on a stream indicate the type

of expression it represents
•  A function takes messages of the form (Res)->Arg but

if it is a function from integers to integers both Res and
Arg must be lists of tuples of the form ()->val where
val must be an integer.

Message Order (1)
The lambda expression λx.λy.(f x)+(f y) is represented by:
 (L)—>F
 {
 L=[] || F=[];

 L=[Call|L1], Call=(Res)—>X ||
 (Res)->(X,F1) {

 Res=[] || X=[], F1=[];
 Res=[C|Res1], C=(R)->Y ||
 F3=[(Fx)->X1,(Fy)->Y],
 Fx=[()->vfx], Fy=[()->vfy],
 sum<-vfx+vfy, constant(R,sum),
 *(Res1)—>(X2,F4),

 merge(X1,X2)->X, merge(F3,F4)—>F1;
 },

 *(L1)—>F2, merge(F1,F2)—>F;
 }

Message Order (2)
•  Inside this process, the assignment:

F3=[(Fx)->X1,(Fy)->Y]
   represents the calls f x and f y.
•  However, this imposes an order on the calls, they would be

made the other way round if it were:
F3=[(Fy)->Y,(Fx)->X1]

•  With the general format given previously it should be:
F5=[(Fx)->X1], F6=[(Fy)->Y], merge(F5,F6)->F3

•  Does it matter?
•  Not in lambda calculus where a function applied to a

particular argument always gives the same value (except if
a function application is non-terminating, and lazy
evaluation is being used)

Interaction
•  We have already seen how Core Aldwych can represent

mutable state, with the mutable variable representation
•  More generally, Core Aldwych can interact with anything,

so long as it has a Core Aldwych interface (through single-
writer single-assignment variables)

•  Lambda calculus is a closed system, Core Aldwych is an
open system

•  The order of messages is an issue when the messages may
be interacting with a mutable world

•  As already seen, in some cases we would want to replace
the indeterminate merger of streams with appending
streams to give closer control

Y Combinator Revisited (1)
•  With the Y combinator representation suggested previously

where Y f is represented by the stream R with:
F=[(R1)->F1], merge(F1,R)->R1

   when a call is made to the recursive function Y f it is done
through a message sent on R which is passed to R1 then read
through F which generates further messages through F1.

•  So when Y f is applied to x, the recursive calls it generates
are mixed up with Y f applied to other arguments and the
recursive calls those applications generate

•  We could not use
F=[(R1)->F1], append(F1,R)->R1

   as there could be deadlock with the append process waiting
for F1 to be assigned and that requiring R1 to be assigned

Y Combinator Revisited (2)
•  The following works to represent Y f where the stream R is

used to send messages to Y f and the function f is given by
the reader of the stream F:

   (R)->F
   {
   R=[] || F=[];
   R=[Call|More] || R1=[Call|F1],
   F=[(R1)->F1|F2],
   *(More)->F2;
   }

•  The more general point is that this suggests Core Aldwych
as a more fundamental model as it captures variations in
behaviour which lambda calculus does not

Summary
•  Core Aldwych is presented here as a model of computation

comparable with other widely used models of computation
•  Its distinguishing factor is interaction between processes

expressed through shared single-writer single-assignment
variables

•  As lambda calculus is the longest established and most
widely used model of computation, it is important to show
that Core Aldwych can model lambda calculus

•  Lambda calculus assumes computation is determinate with
a single end goal, interesting questions are raised when it is
put into an environment involving interaction and
indeterminacy

Current work
•  A sequential implementation of Core Aldwych exists as an

executable programming language with simulated
concurrency

•  A representation in Core Aldwych of procedural
programming with mutable variables has been
implemented

•  A representation of lambda calculus in Core Aldwych has
been implemented, with several variants such as optional
lazy evaluation

•  A representation of channel-based computation has also
been implemented in Core Aldwych

Future work
•  The original aim of Aldwych was to provide a practical

language for concurrent programming, with Erlang (which
has a similar background) its nearest equivalent

•  It would be good to experiment with Core Aldwych on real
concurrent architecture

•  Some experimentation has been done with partial
evaluation of Core Aldwych, originally to deal with
efficiency issues in translation from Aldwych

•  If partial evaluation could be brought to the point where
any Core Aldwych program could be translated to a
normal form, it would provide an effective denotational
semantics for concurrent programming

