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An Abstract Model for Computation ���
with Agents acting Concurrently

•  The universe consists of Agents which have 
shared access to Variables

•  Each variable must have exactly one agent which 
can write to it (single writer)

•  A variable may have any number of agents which 
can read it (but see linearity later)

•  Once a variable has been written to, it cannot be 
written to again (single assignment)



Processes
•  A process is an agent defined by a set of rules
•  A rule has a left hand side (lhs) consisting of 

matches to variables which the process has read 
access to

•  A rule has a right hand side (rhs) which must put 
all variables to which it has write access in a write 
position

•  A process commits to a rule when all the rule’s lhs 
matches are made, it converts to the rule’s rhs

•  A process commits to one rule and cannot 
backtrack



Compound Agents
•  A process is one form of agent 
•  An assignment is one form of agent, it cannot be reduced 

further
•  An alias is an agent which links a variable in read position 

to another in write position
•  A collection of agents is itself an agent, termed a 

compound agent
•  If a variable is in a read position in one component of a 

compound agent and in a write position in another, it may 
be purely internal to the compound agent

•  A variable designated as linear must be internal if it in a 
read and write position in a compound agent



Assignment and Aliasing
•  The values assigned to variables are tuples, 

consisting of a tag and further variables
•  When an agent assigns a tuple to a variable, a 

variable in the tuple may be a new variable, in 
which case it must set up an agent to write it

•  When an agent reads a variable, it obtains read 
access to the variables in the tuple and may pass 
on that read access in its own assignments

•  An agent may directly assign a variable the value 
of another variable (aliasing)



Passing Read Access
agent(in1, in2)‑>out
{
 …
 in1=tagA(x) || out=tagB(in2,x);
 …
}

A reader of out then becomes a reader of in2 and x, 
communication with the writers of in2 and x are set up.
There is no requirement that x or in2 have already been 
written to.
No agents are created, so the agent terminates.



New Variable and Agent
agent(in1, in2)‑>out
{
 …
 in2=tagC(x) || out=tagD(in1,y), sub(x)‑>y;
 …
}

A reader of out then becomes a reader of in1 and y.
As y is a new variable, a new agent is set up to write to it.
There is no requirement that x or in1 have already been 
written to.
The assignment to out takes place before y has been 
assigned a value, the ordering of the rhs has no relevance.



Indeterminacy
agent(in1, in2)‑>out
{
 …
  in1=tagA(x) || out=tagB(in2,x);
  in2=tagC(x) || out=tagD(in1,y), sub(x)‑>y;
 …
}

Both rules could be applicable, the choice of which to use is 
then indeterminate.
If in1 has been assigned, the agent can choose the first rule 
without waiting to see if the second rule becomes applicable 
and vice versa



Multiple Reads (1)
agent(in1, in2)‑>out
{
 …
  in1=tagA(x), in2=tagC(y) ||

out=tagD(z), sub(x,y)‑>z;
 …
}

The rule is applicable only if both in1 and in2 have been 
appropriately assigned.



Multiple Reads (2)
agent(in1, in2)‑>out
{
 …
  in1=tagE(x,in1a), in1a=tagF(y) ||

out=tagG(z), sub(x,y)‑>z;
 …
}

The rule is applicable only if in1 has been appropriately 
assigned, and the second variable in the tuple to which it has 
been assigned has also been appropriately assigned.  The lhs 
can be written in1=tagE(x,tagF(y)) as shorthand



Internal Assignment
agent(in1, in2)‑>out
{
 …
  in1=tagE(x,tagF(y)) || z=tagG(x), sub(z,y)‑>out;
 …
}

The lhs can be written sub(tagG(x),y)->out as shorthand.
In normal evaluation there is no interaction between 
z=tagG(x) and sub(z,y)‑>out until the rule is committed 
to. Speculative evaluation (see later) would allow it.



Passing Write Access
agent(in1, in2)‑>out
{
 …
  in1=tagH(x) || sub1(x)‑>y, sub2(y)‑>out;
 …
}

The variable out is not directly assigned, instead a new 
process is set up to write to it.
The variable in2 is ignored, but the variable out must be 
written to directly or indirectly



Multiple Writes
agent(in1, in2)‑>(out1, out2)
{
 …
  in1=tagH(x,y) || out2=tagI(z), 

sub1(x)‑>(w,out1), sub2(in2,y,w)->z;
 …
}

The variable out2 is directly assigned, but out1 is not.  



Duplication
agent(in1, in2)‑>out
{
 …
  in1=tagJ || sub3(in2)‑>y, sub4(in2,y)‑>out;
 …
}

Read access to the variable in2 is duplicated here.
The tuple with tag tagJ has no internal variables.
Linear input variables cannot be ignored or duplicated.



Aliasing
agent(in1, in2)‑>out
{
 …
  in1=tagK || out<-in2;
 …
}

Read access to the in2 is passed to the readers of out.
Or write access to out is passed to the writer of in2.



Continuation
agent(in, state)‑>out
{
 …
  in=tagL(x,in1) ||

out=tagM(y,out1), 
agent(in1,state1)->out1,
sub5(x,state)‑>(y,state1); 

 …
}

A recursive process is created, it may be regarded as a 
continuation with state change from in2 to in2a.



Anonymity and List Notation
(in, state)‑>out
{
 …
 in=[] || out=[]; 
 in=[x|in1] || out=[y|out1], 

*(in1,state1)->out1,
(x,state)‑>(y,state1) {

  …
}

 …
}



Message Sending
(in, state)‑>(out1, out2)
{
 …
 in=[] || out=[]; 
 in=[tag1(x)|in1] || out1=[tag2(y)|out11], 

*(in1,state1)->(out11,out2),
process1(x,state)->(state1,y);

 in=[tag3(x,y)|in1] || out2=[tag4(z)|out21], 
*(in1,state1)->(out1,out21) ,
process2(x,y,state)->(state1,z);

 …
}



Stream Merging
(in1, in2)‑>out
{
 in1=[] || out<-in2;
 in2=[] || out<-in1; 
 in1=[mess|in11] || out=[mess|out1], 

*(in11,in2)->out1;
 in2=[mess|in21] || out=[mess|out1], 

*(in1,in21)->out1;
}

Variables can only have a single writer, but this gives the 
effect of a stream with multiple writers 



Back Communication
•  As described so far, the agent which assigns a 

tuple to a variable must provide writers to the 
variables in the tuple, directly or indirectly

•  With back communication, a variable may be 
assigned a tuple where the reader of the tuple 
becomes the writer of variables in the tuple.

•  The writer of the tuple becomes the reader of these 
“back communication” variables.

•  To maintain the single-writer property, a tuple 
with back communication variables must have 
exactly one reader.



Linear Variables
•  As described so far, all variables must have 

exactly one writer but may have any number of 
readers: 0, 1 or more than 1.

•  A linear variable (indicated by initial upper case 
letter) must have exactly one writer and also 
exactly one reader.

•  An assignment of a tuple with back 
communication must be to a linear variable

•  An assignment of a tuple which contains linear 
variables must be to a linear variable even if it has 
no direct back communication 



Output of Tuple with ���
Back Communication

agent(In1, In2)‑>Out
{
 …
 In1=tagA(x)->y || Out=tagB(z,In2)->y, sub(x)->z;
 …
}

The reader of Out becomes the reader of In2, a reader of z 
and the writer of y.
As y is a back communication variable, it must be in a write 
position in the rhs.



Input of Tuple with ���
Back Communication

agent(In1, In2)
{
 …
 In1=tagC(x)->y || sub(x,In2)->y;
 …
}

The agent becomes the writer of y, and the writer of In1 is  
the  reader of y.
The variable In2 must have a single reader to be the writer of  
back communication variables in a tuple it is assigned to.
The agent does not need any direct output variables.



Input of Tuples with ���
Back Communication

agent(In1, In2)
{
 …
 In1=tagD(x), In2=tagE->y || y<-x;
 In1=tagF(X), In2=tagG->Y || Y<-X;
 …
}

The first rule provides one-way communication between the 
writer of In1 and the writer of In2 as it is through a non-linear 
variable.
The second rule provides potential two-way communication.



Aldwych
•  The model of computation described, “Core 

Aldwych”, originated from concurrent logic 
programming

•  Aldwych was an attempt to add syntactic sugar to 
concurrent logic programming to provide a richer 
structure to make it easier to use (“Aldwych turns 
into Strand”)

•  The concurrent language Erlang had a similar 
origin



Core Aldwych
•  Core Aldwych is an executable programming 

language
•  Core Aldwych breaks down the unification of 

logic programming into single variables 
assignments and matches

•  Concurrent logic programming did not take the 
final step of enforcing the single writer property 
throughout by the use of linear variables

•  The possibility of multiple writers of variables 
was a major factor preventing the development of 
clear semantics for concurrent logic programming



Nothing Global
•  The behaviour of any Aldwych agent has no depenency on 

external factors apart from assignments to variables to 
which it has read access

•  There is no global clock, a process may commit to its rhs 
whenever it has a rule with an empty lhs (all matches 
made), but may wait an arbitrary amount of time before 
doing so

•  There is no sequential composition
•  There is no priority ordering on processes
•  There is no global namespace, variables are defined by 

their readers and writers
•  There is no global namespace for processes, all agents can 

be defined using anonymous rule sets and recursion



Factory Processes (1)
•  The following replaces the need for an explicit named set 

of rules to append lists:
    (S)
    {
     S=[];
     S=[(In1,In2)->Out|S1] || *(S1),
     (In1,In2)->Out {
        In1=[]    || Out<-In2;
        In1=[H|T] || Out=[H|Rest], *(T,In2)->Rest
       }
    }

•  S=[(A,B)->C|S1] could be used rather than 
append(A,B)->C



Factory Processes (2)
If S were read by the following process:
    (S)
    {
     S=[] || ;
     S=[(In1,In2)->Out|S1] || *(S1),
     (In1,In2)->Out {
        In1=[]    || Out<-In2;
        In2=[]    || Out<-In2;
        In1=[H1|T1], In2=[H2|T2] || 
           Out=[H1,H2|Rest], *(In1,In2)->Rest
       }
    }

then S=[(A,B)->C|S1] would give a different sort of stream 
joining, so setting a particular reader of S gives a higher order 
effect



Synchronisation
Synchronisation can be implemented by back communication.
The following process zips together two input streams of 
numbers, adding together their respective elements:
    (In1,In2)->Out
    {
     In1=[] || Out<-In2;
     In2=[] || Out<-In1;
     In1=[(x1)->ret1|In1a], In2=[(x2)->ret2|In2a] || 
     ret1=done, ret2=done, Out=[(x)->ret|Outa],
        (x1,x2,In1a,In2a)->(x,Outa) {
           ret=done || x<-x1+x2, **(In1a,In2a)->Outa;
        }
    }

Same example as used by Michael Goldsby at CPA 2015



Asynchronous version
The following process zips together two input streams of 
numbers, adding together their respective elements:
    (In1,In2)->Out
    {
     In1=[] || Out<-In2;
     In2=[] || Out<-In1;
     In1=[(x1)|In1a], In2=[(x2)|In2a] || 
     Out=[(x)|Outa], x<-x1+x2, 
        *(In1a,In2a)->Outa;
    }

Unlike the previous version, this process will zip the numbers 
without waiting for their sums to be read.
Following examples more attempts to replicate example in 
Michael Goldsby’s paper.



“Normal Form”
    (In1,In2)->Out
    { || done1=false, done2=false, x1=0, x2=0,
       (In1,In2,x1,x2,done1,done2)->Out {
         In1=[] || Out<-In2;
         In2=[] || Out<-In1;
         In1=[(x1a)|In1a], done1=false || done1a=true,
           *(In1a,In2,x1a,x2,done1a,done2)->Out;
         In2=[(x2a)|In2a], done2=false || done2a=true,
           *(In1,In2a,x1,x2a,done1,done2a)->Out;
      done1=true, done2=true  || 
           Out=[(x)|Outa], x<-x1+x2, x1a=0, x2a=0,
           done1a=false, done2a=false,
           *(In1,In2,done1a,done2a,x1a,x2a)->Outa; 
       }
    }



Synchronous Normal Form
(In1,In2)->Out
{ || done1=false, done2=false, x1=0, x2=0, ret=done,
    (In1,In2,x1,x2,done1,done2,ret)->Out {
      In1=[] || Out<-In2;
      In2=[] || Out<-In1;
      In1=[(x1a)->ret1|In1a], done1=false, ret=done ||
          done1a=true, ret1=done,
          *(In1a,In2,x1a,x2,done1a,done2,ret)->Out;
      In2=[(x2a)->ret2|In2a], done2=false || 
          done2a=true, ret2=done,
          *(In1,In2a,x1,x2a,done1,done2a,ret)->Out;
      done1=true, done2=true, ret=true  || 
          Out=[(x)->reta|Outa], x<-x1+x2, x1a=0, x2a=0,
          done1a=false, done2a=false,
          *(In1,In2,done1a,done2a,x1a,x2a,reta)->Outa; 
       }
    }



Model of Computation
•  Core Aldwych is not suggested as a language for 

direct programming
•  It is suggested as a model of computation for 

concurrent programming
•  A model of computation is used to provide a 

semantics for more complex languages
•  A model of computation sacrifices usability in 

order to gain simplicity: full and accurate 
description of its behaviour is very short

•  Features which make code easier to understand in 
human terms are translated to the model



Translations to Models
•  Translation of higher level features to models of 

computation establish precisely what those 
features mean

•  The translation may identify possible variations of 
the features

•  The model should be able to cover identified 
variations of the higher level features, so that a 
different choice in the feature behaviour gives a 
different translation

•  Operational rules on the model should reflect 
operational rules on the higher level language



Models of Concurrent Computation
•  Introducing concurrency into computation means 

assumptions based on sequential behaviour no 
longer apply

•  Classic example with mutable variables:
{var x=0; x=x+1, x=x+2; return x}

   could return 1, 2 or 3
•  A model of concurrent computation would need 

to be able to show this
•  It would need to cover variations in the exact 

handling of mutable variables which would vary 
the possible behaviour



Core Aldwych Representation ���
of Mutable Variables

A variable is represented by a process which inputs a stream 
of messages representing get and set operations on the 
variable, and outputs a stream of messages representing 
access to the value it holds:
   (S)‑>Val
   {
    S=[] || Val=[];
    S=[()‑>Val1|S1] || Val=[], *(S1)‑>Val1; 
    S=[(Val1)|S1]   || merge(Val1,Val2)->Val,
    *(S1)->Val2; 
   }

The second rule handles a set message, the third rule 
handles a get message, the first rule terminates the variable.



General Core Aldwych Representation
•  An entity is represented by an agent which inputs 

a stream of messages representing 
communications sent to the entity by other entities

•  It has an output stream for each of the entities 
which form part of it

•  Shared access to entities is represented by joining 
separate input streams to them

•  Concurrent access is represented by indeterminate 
merger of streams to it

•  Sequential access is represented by appending 
streams to it



Variation Example
The following is a slight variation on the previous 
representation of a mutable variable:
   (S)‑>Val
   {
    S=[] || Val=[];
    S=[()‑>Val1|S1] || Val=[], var(S1)‑>Val1; 
    S=[(Val1)|S1]   || append(Val1,Val2)->Val,
    *(S1)->Val2; 
   }

The merger of streams to the representation of the variable’s 
value is replaced by an append.  The consequence is that 
when a value is obtained from a variable more than once, 
each access locks it from other accesses through the same 
variable.



Operational and ���
Denotational Semantics

•  Running Core Aldwych code with an interpreter 
which allows explicit choice of options in 
indeterminacy reveals all possible code behaviour

•  A smarter way of doing this is to employ code 
transformation to reduce Core Aldwych code to a 
normal form

•  For example, the initial Core Aldwych code for
{var x=0; x=x+1, x=x+2; return x}

   reduces to the simplest code for indeterminately 
returning 1, 2 or 3.



Partial Evaluation
•  Partial evaluation is executing code with some 

variables unbound, this is a normal aspect of Core 
Aldwych’s behaviour, halting only when a 
variable needs its value matched

•  The operational model of Core Aldwych involves 
“assignment absorption”, a process which requires 
more than one assignment to commit is modified 
when it has received just one

•  To obtain all-solutions code, a process should only 
commit if it has only one possible rule, otherwise 
it suspends with an empty-lhs rule



Speculative Evaluation
•  Speculative evaluation means evaluating all 

possibilities before a commitment is made, so the 
code on the rhs of each rule in the suspended 
process is similarly evaluated

•  Assignment absorption brings assignments into 
the rhs, possibly allowing it to be reduced

•  Recognising an assignment absorption as identical 
in all but variable names to a previous one enables 
it to be replaced by the rules of the previous one, 
or by a recursive call if it is internal to those rules



Composition
•  Two process may be composed into one which has the read 

and write variables of both less linear variables which one 
reads and the other writes, these become inner variables

•  The rules of the composed process are the rules of the two 
processes with any rule which has a match to an internal 
variable removed, and each rule from one process has the 
call to the other process added to its rhs

•  Recognising a composition as identical in all but variable 
names to a previous one enables it to be replaced by the 
rules of the previous one, or by a recursive call if it is 
internal to those rules

•  Our aim is to combine partial evaluation, speculative 
evaluation and composition to transform any compound 
agent to a normal form (its denotational semantics).



Lambda Calculus
•  Lambda calculus is recognised as the standard model for 

sequential computation
•  Lambda calculus resembles Core Aldwych in having no 

defined order of reduction (so potentially parallel), and no 
global nameset

•  Unlike Core Aldwych, lambda calculus makes no 
distinction between processes and values, a variable may 
be set to a function, and functions passed as arguments to 
other functions (higher order functions)

•  Lambda calculus is based on computation as about taking 
input and evaluating to a result rather than interaction

•  Lambda calculus does not have indeterminacy, an 
individual function application cannot choose alternatives



Higher Order Programming
•  A criticism of logic programming, which applies 

to Core Aldwych, is that as the process rules are 
separate from the process values, it does not offer 
the flexibility of higher order programming

•  Showing that lambda calculus can be represented 
in Core Aldwych shows there is no need to 
complicate the model with higher order aspects

•  The factory process technique gives the effect of 
higher order programming

•  A function is passed to a Core Aldwych process in 
the form of a back communication variable used 
as a stream of calls to the function



Representing a lambda expression
The lambda expression λx.exp, where exp contains a 
single free variable is represented by L where the reader of 
L is as below, and V represents the free variable (a stream 
read by the process which represents its value):
(L)—>V
{
 L=[] || V=[];

  L=[Call|L1], Call=(Res)—>X || 
exp(Res)—>(X,V1), 
*(L1)—>V2, merge(V1,V2)—>V;

}

Then (λx.exp) n is given by R in L=[(R)—>N|L1] where N 
represents n, with L1 used for λx.exp subsequently.



Higher order lambda expression
The lambda expression λx.λy.exp, where exp contains a 
single free variable is represented by:
 (L)—>V
 {
  L=[] || V=[];

   L=[Call|L1], Call=(Res)—>X || 
  (Res)->(X,V1) {

         Res=[] || X=[], V1=[];
         Res=[C|Res1], C=(R)->Y || 
             exp(R)—>(X1,Y,V3), *(Res1)—>(X2,V4),

       merge(X1,X2)->X, merge(V3,V4)—>V1;
       }, 

 *(L1)—>V2, merge(V1,V2)—>V;
 }



Input-Output Reversal
•  An expression is represented by a process which inputs a 

stream of messages, each message representing an 
individual access to the expression

•  Access to that expression is then represented by output of 
streams which are merged to form the input stream

•  If a process represents a function, the form of the message 
sent to it representing a call to the function is(Res)->Arg

•  Here Arg is an output of messages to the representation of 
the argument, and Res is an input of messages to the 
process created which represents the result of the function 
call



Y Combinator
•  The Y combinator is used to give recursion in 

lambda calculus.  It is defined as a function Y 
where Y f, that is Y applied to f, evaluates to the 
expression f (Y f).

•  If F represents a λ-expression f, or more strictly F 
is a variable set to a stream read by the process 
which represents f, then Y f is represented by the 
stream R with:  

F=[(R1)->F1], merge(F1,R)->R1



Lazy Evaluation
•  F=[(Z)‑>X] represents Z set to a call of the function 

represented by F with X its argument and no continuation 
for further calls to that function

•  If we have
    lazyapply(Res)‑>(F,X)
    {
     Res=[] || F=[], X=[];
     Res=[Mess|Res1] || F=[(Z)‑>X], Z=[Mess|Res1];
    }

   then lazyapply(Z)->(F,X) is the call applied lazily, F 
will only be sent a message if the result of the call is 
accessed.



Representation of Expressions
With lazy evaluation let z=x+y in exp end is represented by:
    (Z)->(X,Y) 
    { 
     Z=[] || X=[], Y=[];
     Z=[M|Z1] ||  X=[()->xval], Y=[()->yval],
      zval<-xval+yval, constant([M|Z1],zval); 
    },
    exp(E)->(Z,…)

where exp(E) represents exp, with … its free variables, and:
   constant(S,val) 
   { 
    S=empty() || ; 
    S=[Mess|S1], Mess=()->ret || ret<-val, *(S1,val); 
   } 



Types
•  The representation of constants as a process which takes 

messages of the form ()->val maintains the principle that 
all entities are represented by processes which take a 
stream of messages, but it is clearly inefficient

•  Partial evaluation can transform to more efficient code
•  The messages that can be sent on a stream indicate the type 

of expression it represents
•  A function takes messages of the form (Res)->Arg but 

if it is a function from integers to integers both Res and 
Arg must be lists of tuples of the form ()->val where 
val must be an integer.



Message Order (1)
The lambda expression λx.λy.(f x)+(f y) is represented by:
 (L)—>F
 {
  L=[] || F=[];

   L=[Call|L1], Call=(Res)—>X || 
  (Res)->(X,F1) {

         Res=[] || X=[], F1=[];
         Res=[C|Res1], C=(R)->Y || 
             F3=[(Fx)->X1,(Fy)->Y],
             Fx=[()->vfx], Fy=[()->vfy],
             sum<-vfx+vfy, constant(R,sum), 
             *(Res1)—>(X2,F4),

       merge(X1,X2)->X, merge(F3,F4)—>F1;
       }, 

 *(L1)—>F2, merge(F1,F2)—>F;
 }



Message Order (2)
•  Inside this process, the assignment:

F3=[(Fx)->X1,(Fy)->Y]
   represents the calls f x and f y.
•  However, this imposes an order on the calls, they would be 

made the other way round if it were:
F3=[(Fy)->Y,(Fx)->X1]

•  With the general format given previously it should be:
F5=[(Fx)->X1], F6=[(Fy)->Y], merge(F5,F6)->F3

•  Does it matter?
•  Not in lambda calculus where a function applied to a 

particular argument always gives the same value (except if 
a function application is non-terminating, and lazy 
evaluation is being used)



Interaction
•  We have already seen how Core Aldwych can represent 

mutable state, with the mutable variable representation
•  More generally, Core Aldwych can interact with anything, 

so long as it has a Core Aldwych interface (through single-
writer single-assignment variables)

•  Lambda calculus is a closed system, Core Aldwych is an 
open system

•  The order of messages is an issue when the messages may 
be interacting with a mutable world

•  As already seen, in some cases we would want to replace 
the indeterminate merger of streams with appending 
streams to give closer control



Y Combinator Revisited (1)
•  With the Y combinator representation suggested previously 

where Y f is represented by the stream R with:  
F=[(R1)->F1], merge(F1,R)->R1

   when a call is made to the recursive function Y f it is done 
through a message sent on R which is passed to R1 then read 
through F which generates further messages through F1.

•  So when Y f is applied to x, the recursive calls it generates 
are mixed up with Y f applied to other arguments and the 
recursive calls those applications generate

•  We could not use
F=[(R1)->F1], append(F1,R)->R1

   as there could be deadlock with the append process waiting 
for F1 to be assigned and that requiring R1 to be assigned



Y Combinator Revisited (2)
•  The following works to represent Y f where the stream R is 

used to send messages to Y f and the function f is given by 
the reader of the stream F:  

    (R)->F
    {
     R=[] || F=[];
     R=[Call|More] ||  R1=[Call|F1],
                      F=[(R1)->F1|F2],
                      *(More)->F2;
   }

•  The more general point is that this suggests Core Aldwych 
as a more fundamental model as it captures variations in 
behaviour which lambda calculus does not



Summary
•  Core Aldwych is presented here as a model of computation 

comparable with other widely used models of computation
•  Its distinguishing factor is interaction between processes 

expressed through shared single-writer single-assignment 
variables

•  As lambda calculus is the longest established and most 
widely used model of computation, it is important to show 
that Core Aldwych can model lambda calculus

•  Lambda calculus assumes computation is determinate with 
a single end goal, interesting questions are raised when it is 
put into an environment involving interaction and 
indeterminacy



Current work
•  A sequential implementation of Core Aldwych exists as an 

executable programming language with simulated 
concurrency

•  A representation in Core Aldwych of procedural 
programming with mutable variables has been 
implemented

•  A representation of lambda calculus in Core Aldwych has 
been implemented, with several variants such as optional 
lazy evaluation

•  A representation of channel-based computation has also 
been implemented in Core Aldwych



Future work
•  The original aim of Aldwych was to provide a practical 

language for concurrent programming, with Erlang (which 
has a similar background) its nearest equivalent

•  It would be good to experiment with Core Aldwych on real 
concurrent architecture

•  Some experimentation has been done with partial 
evaluation of Core Aldwych, originally to deal with 
efficiency issues in translation from Aldwych

•  If partial evaluation could be brought to the point where 
any Core Aldwych program could be translated to a 
normal form, it would provide an effective denotational 
semantics for concurrent programming


