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Abstract. We describe the denotational semantics of a subset of the COMPASS Mod-

elling Language (CML), using Hoare & He’s Unifying Theories of Programming. The

subset consists of rich state and operations based on VDM, concurrency and com-

munication, based on CSP, and discrete time, based on Timed CSP. Other features

of CML not treated here include object orientation, pointers and object references,

and mobile processes and channels; extensions planned for the future include priority,

probabilistic choice, and continuous time. A rich collection of language features such

as this presents significant challenges when building a formal semantics, so the ap-

proach taken in CML is compositional: each feature is given a separate semantics and

a domain-specific language is then composed from whichever features are required for

the job in hand. Composition is achieved from the use of Galois connections. In this

paper, we describe the semantics for the timed, imperative process algebra subset of

CML. We adopt a semantic domain suggested by Lowe & Ouaknine—timed testing

traces—as the basis for our UTP semantics. We include an example CML specification

taken from industry: a leadership election protocol for a system of systems.

Keywords. COMPASS Modelling Language, compositional semantics, formal semantics,

CSP, VDM, Unifying Theories of Programming

Introduction

The COMPASS Modelling Language (CML) is a new language, developed for the mod-

elling and analysis of systems of systems (SoS), which are typically large-scale systems com-

posed of independent constituent systems [1]. The COMPASS project is described in detail

at www.compass-research.eu. CML is based on a combination of VDM [2], CSP [3], and

Circus [4,5,6]. Broadly speaking, a CML model consists of a collection of types, functions,

channels and processes. Each process encapsulates a state and operations in the style of VDM

and interacts with the environment via synchronous communications in the style of CSP. The

main elements of the basic CML language with state, concurrency, and timing are described

in Table 1. Additionally, CML is object oriented.

The main contribution of this paper is to present a semantics of CML. Our style pro-

vides a natural contract language for all language constructs, including nonterminating reac-

tive processes. The result is a compositional formal definition of a complex language, with

individual parts being available for reuse. Our work shows that the use of UTP scales up to

industrial-strength languages.

Several aspects of CML are noteworthy:

• The model that we propose extends Lowe & Ouaknine’s timed testing traces semantic

model of [7], adding termination, divergence and additional program operators. The
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2 J. Woodcock et al. / The COMPASS Modelling Language

deadlock STOP termination SKIP

divergence CHAOS assignment (v := e)

specification statement w : [ pre, post ] simple prefix a → SKIP

prefixed action a → P guarded action [g] &P

sequential composition P ; Q internal choice P ⊓ Q

external choice P ✷ Q parallel composition P ‖cs Q

interleaving P ||| Q abstraction P \ A

recursion µX • P(X) wait Wait(n)

while b ∗ P timeout P
n
⊲ Q

untimed timeout P ⊲ Q interrupt P △ Q

timed interrupt P
n

△ Q starts by P startsby(n)

ends by P endsby(n)

Table 1. The CML language.

timed testing trace model includes five axioms: all processes have a feasible initial

state, are prefix closed, can refuse events they can’t engage in, allow time to pass and

do not allow an unbounded number of events to occur in finite time—this last prop-

erty is called Zeno freedom. CML processes satisfy modified forms of these axioms,

which describe non-terminated program behaviours. For example, in CML, every pro-

cess must have a non-terminated feasible initial state, every prefix of an observable

trace must be a feasible non-terminated trace of the process and non-terminated pro-

cesses must allow time to pass. Where possible, these properties are enforced by the

healthiness conditions of CML, but in the cases of prefix closure and Zeno freedom it

is easier to prove the property inductively over operators in the CML signature.

• CSP contains unstable states from which a process must either terminate or engage in

an event within a very short amount of time [3]. CML identifies this amount of time

with the smallest distinguishable time duration in the theory: one tock step. This means

that all unstable states, including the state of a process like SKIP before it terminates,

are observable for up to one time unit; this in turn means that unstable observations can

be made of CML processes, although the processes must reach stable states whenever

time passes. In a CSP unstable state, the process can refuse arbitrary events, and thus

the value of the refusals is interesting only when it occurs in the trace. In particular, we

are not interested in the current value of the refusals, which is recorded in similar mod-

els such as [8]: process behaviour cannot depend on this value until it is recorded in the

trace. The CML healthiness conditions enforce that processes are urgency free: every

process starts and terminates in an unstable state which can last for up to one time unit.

• Constituent subsystems of an SoS have local private states that must be concealed from

observers. State information can be communicated only over event channels. We use

the model of concealed states described in [9]: non-terminated processes operate on an

existentially quantified concealed state and reveal an arbitrary state to the environment.

CML takes all of the advantages of this model, which prevents specification of infea-

sible constructs using external choice and state; however, this does restrict the ability

of the interrupt operator to access the interrupted state, which is completely concealed

from it: the CML interrupt operator checkpoints the initial state and rolls back if an

interrupt occurs.

The paper is organised as follows. Section 1 contains a brief overview of the UTP philoso-

phy and approach and Section 2 describes the semantic domain for CML. In Section 3, we

present our case study: a CML model of an a industrial leadership election protocol used in
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a commercial AudioVisual entertainment SoS. Finally, Section 4 describes related work and

Section 5 concludes the paper.

1. Unifying Theories of Programming

UTP [10] sets out a long-term research agenda summarised as follows: researchers propose

programming theories and practitioners use pragmatic programming paradigms; what is the

relationship between them? UTP, based on predicative programming [11], gives three prin-

cipal ways to study such relationships: (i) by computational paradigm, identifying common

concepts; (ii) by level of abstraction, from requirements, through architectures and compo-

nents, to platform-specific implementation technology; and (iii) by method of presentation—

denotational, algebraic, and operational semantics and their mutual embeddings.

UTP presents a theoretical foundation for understanding software and systems engineer-

ing. It has been already been exploited in areas such as component-based systems [12], hard-

ware [13,14], and hardware/software co-design [15], but UTP can also be used in a more

active way as a domain-specific language for constructing domain-specific languages, espe-

cially ones with heterogeneous semantics. An example is the semantics for Safety-Critical

Java [16,17]. The analogy is of a theory supermarket, where you shop for exactly those fea-

tures you need, while being confident that the theories plug-and-play together.

The semantic model is an alphabetised version of Tarski’s relational calculus, presented

in a predicative style that is reminiscent of the schema calculus in the Z notation [18]. Each

programming construct is formalised as a relation between an initial and an intermediate or

final observation. The collection of these relations forms a theory of a paradigm that contains

three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the theory being

studied. Names are chosen for any relevant external observations of behaviour. For instance,

programming variables x, y, and z would be part of the alphabet. Theories for particular

programming paradigms require the observation of extra information; some examples are: a

flag that says whether the program has started (ok); the current time (clock); the number of

available resources (res); a trace of the events in the life of the program (tr); a set of re-

fused events (ref ), or a flag that says whether the program is waiting for interaction with its

environment (wait). The signature gives syntactic rules for denoting objects of the theory.

Healthiness conditions identify properties that characterise the theory, which can often be

expressed in terms of a function φ that makes a program healthy. There is no point in ap-

plying φ twice, since we cannot make a healthy program even healthier, so φ must be idem-

potent: φ ◦ φ(P) = φ(P). The fixed-points of the equation P = φ(P) are then the healthy

predicates of the theory.

An alphabetised predicate (P,Q, . . . , true) is an alphabet-predicate pair, such that the

predicate’s free variables are all members of the alphabet. Relations are predicates in which

the alphabet comprises plain variables (x, y, z, . . . ) and dashed variables (x′, a′, . . . ); the

former represent initial observations, and the latter, intermediate or final observations. The

alphabet of P is denoted αP, and may be divided into its before-variables (inαP) and

its after-variables (outαP). A homogeneous relation has outαP = inαP′, where inαP′ is

the set of variables obtained by dashing all variables in the alphabet inαP. A condition

(b, c, d, . . . , true) has an empty output alphabet. Standard predicate calculus operators are

used to combine alphabetised predicates, but their definitions must specify the alphabet of the

combined predicate. For instance, the alphabet of a conjunction is the union of the alphabets

of its components.

A distinguishing feature of UTP is its concern with program correctness, which is the

same in every paradigm in [10]: in each state, the behaviour of an implementation implies
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its specification. Suppose αP = {a, b, a′, b′}, then the universal closure of P is simply

∀ a, b, a′, b′ • P, denoted [P ]. Program correctness for P with respect to specification S is

denoted S ⊑ P (S is refined by P), and is defined as: S ⊑ P iff [P ⇒ S ].
UTP has an infix syntax for the conditional, written P ⊳ b ⊲Q and defined as the

proposition (b ∧ P) ∨ (¬ b ∧ Q), provided αb ⊆ αP = αQ. Sequence is mod-

elled as relational composition: two relations may be composed, provided the alphabets

match: P(v′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0), if outαP = inαQ′ = {v′}. If A = {x, y, . . . , z}
and αe ⊆ A, the assignment x :=A e of expression e to variable x changes only x’s

value: x :=A e =̂ (x′ = e ∧ y′ = y ∧ · · · ∧ z′ = z). There is a degenerate form of assign-

ment that changes no variable, called “skip”: II A =̂ (v′ = v), if A = {v}. Nondeterminism

can arise in one of two ways: either as the result of run-time factors, such as distributed pro-

cessing; or as the under-specification of implementation choices. Either way, nondeterminism

is modelled by choice; the semantics is simply disjunction: P ⊓ Q =̂ P ∨ Q.

Variable blocks are split into the commands var x, which declares and introduces x in

scope, and end x, which removes x from scope. In the definitions, A is an alphabet containing

x and x′.

var x =̂ ( ∃ x • II A ) end x =̂ ( ∃ x′ • II A )

The relation var x is not homogeneous, since it does not include x in its alphabet, but it does

include x′; similarly, end x includes x, but not x′.

The set of alphabetised predicates with a particular alphabet A forms a complete lattice

under the refinement ordering (which is a partial order). The bottom element is denoted ⊥A,

and is the weakest predicate true; this is the program that aborts, and behaves quite arbitrar-

ily. The top element is denoted ⊤A, and is the strongest predicate false; this is the program

that performs miracles and implements every specification. Since alphabetised relations form

a complete lattice, every construction defined solely using monotonic operators has a com-

plete lattice of fixed points. The weakest fixed-point of the function F is denoted by µF,

and is simply the greatest lower bound (the weakest) of all the fixed-points of F. This is de-

fined: µF =̂ ⊓{X | F(X) ⊑ X }. The strongest fixed-point νF is the dual of the weakest

fixed-point.

2. Timed Testing Traces

The semantic domain consists of traces with embedded refusal sets. We refer to these aug-

mented traces as timed testing traces, because of their similarity with Lowe & Ouaknine’s

Timed Testing Traces [7], which is in turn related to the standard semantics for CSP.

The timed testing traces model of Lowe & Ouaknine records the passing of time with an

explicit tock event and allows refusal experiments to be made only before tocks. In our model

we do not observe a tock event directly. Instead, we observe the passage of time through the

refusal experiments. At the end of each time interval either a refusal experiment is made or

the empty refusal set is recorded. If we let Σ be the universe of events, then observations

within this model are drawn from the following set:

Definition 2.1

timedTrace =̂ (Σ + PΣ)∗

In our semantics we restrict ourselves to finite traces, so + is to be understood as a choice and

x∗ as all finite sequences containing only x. All members of this set are potential timed testing

traces of CML processes. We refer to members of the set timedTraces as traces throughout

the paper. We now give some useful definitions over traces.
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Definition 2.2 Let A ⊆ Σ, a ∈ Σ and t ∈ timedTrace. Then

events(t) = t ↾ Σ

refsduring(t) = ran(t ⊲ P(Σ))

refusals(t) =
⋃

refsduring(t)

The idle prefix of a trace t is denoted idleprefix(t) and describes the longest prefix of t con-

taining no observable events. The idle suffix of t is the remainder of the trace after the first

visible event has been removed.

Definition 2.3 (Idleprefix and Idlesuffix) Let A ⊆ Σ, a ∈ Σ and t ∈ timedTrace. Then

idleprefix(〈〉) = 〈〉

idleprefix(〈A〉a t) = 〈A〉a idleprefix(t)

idleprefix(〈a〉a t) = 〈〉

idlesuffix(〈〉) = 〈〉

idlesuffix(〈A〉a t) = idlesuffix(t)

idlesuffix(〈a〉a t) = t

We also define a function tocks(t) that replaces all the refusal sets in a timed trace t with a

new event, tock 6∈ Σ. This proves useful for placing conditions on duration of a trace.

Definition 2.4 Let A ⊆ Σ, a ∈ Σ and t ∈ timedTrace. Then

tocks(〈〉) = 〈〉

tocks(〈a〉a t) = 〈a〉a tocks(t)

tocks(〈A〉a t) = 〈tock〉a tocks(t)

We introduce other operators on timed traces as we need them. We present now the observa-

tion variables and healthiness conditions that characterise our semantic domain.

2.1. Observation Variables and Healthiness Conditions

Observations of CML processes contain four pairs of variables.

• ok, ok′: These are the observation variables from designs [10, Chapter 3]. The obser-

vation ok describes the situation in which a process has been started in a stable state,

whilst ok′ describes the situation in which a process has reached a stable state.

• wait,wait′: These are the observation variables from reactive processes [10, Chap-

ter 8]. The observation wait describes the situation in which a process occupies a wait-

ing state of its sequential predecessor, whilst wait′ describes the situation in which the

process has reached a waiting state. The combination of ok and wait and their dashed

counterparts allow sequential combination to be defined as relational composition.

• rt, rt′: These are the observations of the trace of the previous process (rt) and the

current process (rt′). Traces encode all observations we wish to make about particular

executions of CML processes: the trace of events marked out by the passage of time

and the refusal experiments that can be made during execution.

• v, v′: These are the variables that record our observations of the initial and final state

of the current process.
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We also introduce a derived variable: tt′ is equal to rt′−rt whenever that expression is defined,

and undefined otherwise. Intuitively, tt′ represents the portion of the trace carried out by the

currently active process; however, it is not an observation variable and is therefore not quan-

tified by [ ] (universal closure over alphabets) or by sequential composition—it can always

be replaced by rt′−rt in any expression.

We make use of the notational shorthand introduced in [19]:

Definition 2.5

Pb
c = P[b, c/ok′,wait]

which denotes the substitution of the boolean variables b and c for the variables ok′ and wait.

There are seven healthiness conditions. We note in passing that we do not need to restrict

the structure of the trace variables with a healthiness condition, since all elements of the set

timedTrace are structurally valid observations of timed reactive processes.

The first requirement is that tt′ is well-defined. This requires that the observation of rt

prefixes the observation of rt′. RT1 is similar to R1 in that it ensures that a process cannot

alter the part of the trace that has already been observed; all it may do is append to rt.

Definition 2.6 (RT1)

RT1(P) = P ∧ rt ≤ rt′

Our next healthiness condition is similar to R2 in Hoare & He’s theory of reactive processes

(see [10, p.195]). It controls the use of the trace variable to make sure that P is not sensitive

to the behaviour of its predecessors. For example, it cannot depend on certain events already

having taken place, or on a particular amount of time having elapsed under its predecessor’s

control.

Definition 2.7 (RT2)

RT2(P) = P[〈〉, tt′/rt, rt′]

The healthiness condition RT3 is a modified form of R3 in the theory of reactive processes

(see [10, p.196]). It is similar to the condition R3h proposed in [9], and describes the be-

haviour of a process that has not been started: it may not extend the trace (tt′ = 〈〉), and it

may not observe the internal state of its predecessor. R3h in [9] differs from R3 by removing

the insistence that the state does not change while the process is waiting for external inter-

action. Changes to the internal state of a process are permitted by RT3, but should remain

unobservable until some interaction takes place. This inability to observe internal interaction

has the consequence that a choice between two processes cannot be resolved by internal state

changes, but only external events or the termination of one of the processes.

Definition 2.8 (RT3)

RT3(P) = (∃ v′ • II) ⊳wait ⊲P

Our fourth healthiness condition corresponds to CSP1 in Hoare & He’s theory of CSP

(see [10, p.208]). If P’s predecessor is in an unstable state, then P will not be started and we

have ¬ ok. What contribution will P now make to the divergent behaviour of its predeces-

sor? It cannot alter the behaviour that has already been observed (RT1), but otherwise it can

behave arbitrarily.

Definition 2.9 (RT4)

RT4(P) = RT1(¬ ok) ∨ P
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Our fifth healthiness condition is analogous to CSP2 in [10], and states that P must be

monotonic in the value of the ok′ variable, just like a design: P cannot demand instability and

nontermination. In other words, it is always possible to terminate: if P is capable of reaching

a state with ¬ ok′, then it must be capable of reaching the same state with ok′. In [19] in the

context of designs, the authors show that this healthiness property is equivalent to [Pf ⇒ Pt].

Definition 2.10 (RT5)

RT5(P) = P ; (II{rt,wait,v} ∧ (ok ⇒ ok′))

We subscript the relational identity II with the set of observation variables that are required

to be constant. Notice that RT4 and RT5 are the timed reactive versions of H1 and H2,

respectively (in the same way that CSP1 and CSP2 are the reactive versions). The remaining

healthiness conditions involve the process SKIP. SKIP has precondition true, and it must

terminate before any time passes. It is impossible for SKIP to engage in any events before

it terminates. When it terminates, it does not change the state, although it can conceal its

intermediate state before terminating.

Definition 2.11 (SKIP)

SKIP = RT3 ◦ RT4(ok′ ∧ tt′ = 〈〉 ∧ (¬ wait′ ⇒ v′ = v))

The sixth healthiness condition corresponds to CSP3, insisting that SKIP is a left unit of

sequential composition. In CSP, the effect of this was to make processes independent of the

refusals of their predecessor, but since refusal information is captured in the trace in CML,

this is already guaranteed by RT2. Instead, RT6 ensures that processes never engage in

urgent initial actions: it is always possible to make a stable initial observation of any process.

Definition 2.12 (RT6)

RT6(P) = SKIP ; P

The seventh healthiness condition corresponds to CSP4, insisting that SKIP is a right unit

of sequential composition. Any process with an RT3 process as a right unit, such as SKIP,

will conceal the value of its intermediate states when it hasn’t terminated. Any process with

an RT4 process as a right unit can engage in arbitrary behaviour after it has diverged, and

so its precondition must be prefix closed. Additionally, any process which has SKIP as a

right unit cannot terminate urgently: if it is possible to observe the process terminated after

any behaviour, it was also possible to observe the process with the same trace before it had

terminated.

Definition 2.13 (RT7 )

RT7(P) = P ; SKIP

Lemma 2.1 (RT functions are commuting monotonic idempotents)

1. RT1–RT7 are all monotonic idempotents.

2. RT1–RT7 all commute.

Definition 2.14 (RT )

RT =̂ RT1 ◦ RT2 ◦ RT3 ◦ RT4 ◦ RT5 ◦ RT6 ◦ RT7

We can now proceed to define the rest of our language. We define processes as timed reactive

designs in the style of Circus (for an introduction to this style, see [19]).

In the definitions that follow, we make the assumption that any constituent processes in

a process definition are themselves RT -healthy.
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2.2. Deadlock

The inactive language construct is the deadlocked process: STOP. This process is an RT -

healthy design with precondition true that never engages in any events and is perpetually

waiting (wait′). In the postcondition, we also have that events(tt′) = 〈〉: no events are ever

observed. STOP deadlocks events but it cannot deadlock the clock, so refusal experiments

can happen freely and no further trace restriction is required. STOP also says nothing about

the final value of the program variables v′, which are left unconstrained.

Definition 2.15 (Deadlock)

STOP = RT (true ⊢ events(tt′) = 〈〉 ∧ wait′)

2.3. Assignment

For the assignment v := e, we make the simplifying assumption that the expression e is

well defined. The assignment takes place immediately and the process then terminates. This

process has precondition true and a postcondition (which guarantees stability) that it has

terminated (¬ wait′) without any events (tt′ = 〈〉), but having completed the assignment

(v′ = e). Elements of state other than v are unaffected. This design is then made healthy with

the application of the healthiness conditions.

Notice that since it is RT7 , it will be possible to observe an assignment before it has

terminated or for it to be preempted by other processes. Assignment can be used to represent

SKIP as a reactive design, since (v := v) = SKIP.

Definition 2.16 (Assignment)

(v := e) = RT (true ⊢ tt′ = 〈〉 ∧ ¬ wait′ ∧ v′ = e)

2.4. Prefixed Termination

Prefixed termination is the process that is willing to perform a single, given event, and having

done it terminates immediately. It has precondition true, and a postcondition that has two

parts. Either the process is still waiting to engage in its event (a, say), in which case no events

will occur and a will not be refused. Alternatively, the a has occurred, in which case it was

the only event, and the process terminated immediately with the state unchanged. Prefixed

termination is used together with relational composition in Section 2.8 to define the general

prefix process a → P.

Definition 2.17 (a → SKIP)

a → SKIP = RT


true ⊢

a /∈ refusals(tt′) ∧


events(tt′) = 〈〉
⊳wait′ ⊲

tt′ = idleprefix(tt′)a 〈a〉 ∧ v′ = v







2.5. Divergence

CHAOS is the least predictable process that satisfies the healthiness conditions. The precon-

dition of CHAOS never holds, so its behaviour is always divergent.

Definition 2.18 (CHAOS)

CHAOS = RT (false ⊢ true)
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2.6. Specification Statement

CML inherits a specification statement from VDM as a way of describing operations and

functions. If feasible, this may be refined into a CML action. If the post condition holds, the

specification statement will terminate immediately and successfully. w is the framed vari-

ables: only these may be changed by the postcondition.

Definition 2.19 (Specification statement)

w : [ pre P post Q ] = RT (P ⊢ Q ∧ ¬ wait′ ∧ tt′ = 〈〉 ∧ (v′ \ w) = (v \ w))

2.7. Sequential Composition

Sequential composition of two reactive processes (written P ;RT Q) is simply relational

composition, given our healthiness conditions. It is closed under the healthiness conditions.

We will dispense with the subscript on this operator after the definition.

Definition 2.20 (Sequential composition)

P ;RT Q = P ; Q

The sequential composition of two designs has two parts to its precondition: there must be

no possible values for v′ and wait′ that would have allowed process P to diverge at any point

along its trace (¬ (Pf
f ; RT1(true))) and the successful termination of P must not lead to a

point where Q diverges (¬ (Pt
f [false/wait′] ; RT1(Qf

f ))). Given the conjunction of these two

conditions, P can be expected to terminate and lead to a stable observation of Q.

Lemma 2.2 (Precondition/Postcondition form)

P ; Q = RT(¬ (Pf
f ; RT1(true)) ∧ ¬ (Pt

f [false/wait′] ; RT1(Qf
f )) ⊢ Pt

f ; Qtt)

The abbreviation Qcd is used to stand for Q[c, d/ok, ok′].

2.8. Prefix

The prefixed processes a → P is determined to engage in the event a and nothing else; after

engaging in a it behaves like P. It is defined as a derived operator using prefixed termination

(Section 2.4) and sequential composition (Section 2.7).

Definition 2.21 (Prefixing)

a → P = a → SKIP ; P

As a design, this operator is defined as follows: The only possibility of divergence of the

process a → P is if the process P diverges, and this is possible only if the event a is the initial

visible event of the trace: 〈a〉 ≤ events(tt′). In the period before this observation, a cannot

be refused: a 6∈ refusals(idleprefix(tt′)). Provided that the trace subsequent to this does not

cause P to diverge (¬ P
f
f [idlesuffix(tt′)/tt′]) then the postcondition will hold.

The postcondition describes the two possible states of a → P. Either no events have been

observed (events(tt′) = 〈〉), in which case the process is waiting for input. The event a must

not have been refused: a 6∈ refusals(idleprefix(tt′)), which is equivalent to a 6∈ refusals(tt′)
because no event has been observed. The process cannot diverge in this case. Alternatively, an

event has been observed and it must have been the a-event: the first event must be a. It is still

the case that the event a must not be refused before it occurred, and after it occurs the process

will continue as P. The future behaviour of the process is given by Pt
f [idlesuffix(tt′)/tt′].
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Lemma 2.3 (Precondition/Postcondition form)

a → P =

RT




(〈a〉 ≤ events(tt′) ∧ a 6∈ refusals(idleprefix(tt′))) ⇒

¬ P
f
f [idlesuffix(tt′)/tt′]

⊢
(a 6∈ refusals(idleprefix(tt′)) ∧


events(tt′) = 〈〉

⊳wait′ ⊲
〈a〉 ≤ events(tt′) ∧ Pt

f [idlesuffix(tt′)/tt′]







2.9. Internal Choice

Internal choice is simply disjunction, as usual.

Definition 2.22 (Internal choice)

P ⊓ Q = P ∨ Q

An internal choice can diverge if either of its component processes diverges, and guarantees

termination only if both guarantee termination.

Lemma 2.4 (Precondition/Postcondition form)

P ⊓ Q = RT(¬ P
f
f ∧ ¬ Q

f
f ⊢ Pt

f ∨ Qt
f )

2.10. External Choice

An external choice can be resolved if the process diverges, engages in a visible event or

terminates. Either the observed behaviour is unresolved and does not diverge, in which case

processes must agree on the observed behaviour, or something observable happens, the choice

is resolved and the process which was responsible for observable event is now responsible

for the subsequent observation.

However, in order to guarantee prefix closure of the observed behaviour, it must still be

the case after the choice has resolved that the initial behaviours that didn’t resolve the choice

were compatible with both branches. The relevant behaviours are the prefixes of the trace

which contain no events and on which the precondition of both branches still holds.

Definition 2.23 (External choice)

P ✷ Q =̂




(P ∧ Q ∧ events(tt′) = 〈〉 ∧ wait′ ∧ ok′

∨
(P ∨ Q) ∧ ∀ tt0 ≤ idleprefix(tt′) •

(¬ (P ∧ Q)f ⇒ (P ∧ Q)t)[tt0, true/tt′,wait′]




The design form is, of course, more involved than internal choice.

The process P ✷ Q can diverge in any way that either of its branches could diverge,

provided that initial prefixes of that behaviour do not violate the other branch of the choice.

To enforce this condition, we require that on any initial behaviour which does not resolve

the choice and satisfies the preconditions of both processes, it must be possible to satisfy the

postconditions of both processes:

∀ tt0 ≤ idleprefix(tt′) • ((¬ P
f
f ∧ ¬ Q

f
f ) ⇒ (Pt

f ∧ Qt
f ))[tt0, true/tt′,wait′]
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If this condition holds, the behaviour is feasible and the preconditions of both branches must

be satisfied: ¬ P
f
f ∧ ¬ Q

f
f .

Provided the process does not diverge, its behaviour must be compatible with at least one

of its branches: Pt
f ∨ Qt

f . Additionally, it must satisfy both branches on any initial behaviour

that does not resolve the choice: (Pt
f ∧ Qt

f )[idleprefix(tt′), true/tt′,wait′]. The choice has not

yet resolved when events(tt′) = 〈〉 ∧ wait′ holds, in which case this condition will insist that

both branches still hold: Pt
f ∧ Qt

f .

Lemma 2.5 (Precondition/postcondition form)

P ✷ Q = RT




(
∀ tt0 ≤ idleprefix(tt′) •

((¬ P
f
f ∧ ¬ Q

f
f ) ⇒ (Pt

f ∧ Qt
f ))[tt0, true/tt′,wait′]

)

⇒ (¬ P
f
f ∧ ¬ Q

f
f )

⊢
(Pt

f ∨ Qt
f ) ∧ (Pt

f ∧ Qt
f )[idleprefix(tt′), true/tt′,wait′]




2.11. Parallel Composition

A parallel composition specifies the set of events that require synchronisation between two

processes; outside this set events happen independently, without needing the participation of

the other process. Parallel composition is then a form of restricted conjunction, where the

behaviour of each process is seen as a projection of the overall trace.

We call two timed reactive designs disjoint if they share no programming variables; they

are allowed, of course, to share the observational variables rt,wait, and ok. Parallel compo-

sition is restricted to disjoint processes. This rules out shared-variable parallelism.

The precondition of the parallel composition of P and Q is the conjunction of the pre-

conditions of P and Q. The postcondition merges the intermediate or final states of the two

processes. Since the program variables are partitioned, the equation (v′ = v) takes care of the

appropriate merging of these programming variables, and we need worry only about merging

the observational variables. The composition is in a waiting state if either of the processes

end up in a waiting state. This is taken care of by taking the disjunction of their waiting states.

To take care of tt′, we define a semantic operator on traces that merges a pair of traces

together to give the set of traces that can result if the pair of traces are observed in parallel.

To define this, we start by defining an intersection operator for refusal sets that will tell us

what the refusal set will be for the parallel composition. Suppose that P has a refusal set X, Q

has a refusal set Y , and A is the synchronisation alphabet. Our intersection operator (written

X ∩A Y) has three cases:

1. X ∩ A: the set of synchronisation events refused by P.

2. Y ∩ A: the set of synchronisation events refused by Q.

3. X ∩ Y: the set of independent events refused by both P and Q.

Any subset of the union of these three sets is a refusal of the parallel composition of P and

Q.

Definition 2.24 (Refusal set intersection)

X ∩A Y =̂ (X ∩ A) ∪ (Y ∩ A) ∪ (X ∩ Y)

Now we are ready to define our semantic operator on timed testing traces. This is similar to

the one defined in [3].

Definition 2.25 (Trace interleaving) Let t, u ∈ timedTrace; a, b ∈ A; c, d /∈ A; S, T ∈ PΣ
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t ‖A u = u ‖A t

〈〉 ‖A 〈〉 = {〈〉}
〈〉 ‖A 〈b〉a u = {}
〈〉 ‖A 〈d〉a u = { 〈d〉a v | v ∈ 〈〉 ‖A u }
〈〉 ‖A 〈T〉a u = { 〈T ∪ U〉a v | U ⊆ A ∧ v ∈ t ‖A u }

〈a〉a t ‖A 〈a〉a u = { 〈a〉a v | v ∈ t ‖A u }
〈a〉a t ‖A 〈b〉a u = {}
〈a〉a t ‖A 〈d〉a u = { 〈d〉a v | v ∈ 〈a〉a t ‖A u }
〈a〉a t ‖A 〈T〉a u = {}
〈c〉a t ‖A 〈d〉a u = { 〈c〉a v | v ∈ t ‖A 〈d〉a u } ∪

{ 〈d〉a v | v ∈ 〈c〉a t ‖A u }
〈c〉a t ‖A 〈T〉a u = { 〈c〉a v | v ∈ t ‖A 〈T〉a u }
〈S〉a t ‖A 〈T〉a u = { 〈U〉a v | U = S∩A T ∧ v ∈ t ‖A u }

The process Skip in parallel with an active process P will suspend termination until P fin-

ishes. They will both then synchronise on termination. The definition of alphabetised parallel

operator, where process P can write to state variables ns1, and process Q can write to state

variables ns2, and both processes synchronise on the channels cs, is given by

Definition 2.26

P [|ns1|cs|ns2|] Q =̂ (P; U0(outα(P)) || Q; U1(outα(Q)))+{v,tt}; MCML

Here Ui are relabelling functions. They map each observational variable obs of their argu-

ments to i.obs. This ensures that the two sides of the parallel composition do not share vari-

ables, and hence do not interfere with each other. Subscripting an action with a set of events

adds that set of events to the alphabet: R{+n} = R ∧ n = n′. Here we add the original values

of v and tt back. MCML is the CML merge function, and

Definition 2.27

MCML =̂




(ok′ = P.ok ∧ Q.ok) ∧
(wait′ = P.wait ∨ Q.wait) ∧
(tt′ ∈ (P.rt − rt) ||A (Q.rt − rt) ∧
(v′ = merge(v,P.v,Q.v))


 ; Skip

The function merge merges the copies of state that the operands have taken. If process P is

restricted to the name space ns1, and process Q to ns2, then merge is defined as

Definition 2.28 (merging state)

merge(v, v1, v2) = (ns1 ⊳ v1) ∪ (ns2 ⊳ v2) ∪ ((ns1 ∪ ns2)−⊳ v)

where the domain restriction operator ns ⊳ v restricts the domain of the mapping v to the

nameset ns, and the domain subtraction operator ns −⊳ v removes the nameset ns from the

domain of the mapping v. Using these new operators, we are in a position to define parallel

composition.

A parallel composition will diverge on a trace tt′ if it can be constructed as the trace

composition of two traces tt1 and tt2, and one of the operands diverges at some point along

either tt1 or tt2.

Lemma 2.6
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(P [|ns1|cs|ns2|] Q)f
f

=

∃ tt1, tt2 •



(Pf

f [tt1/tt′] ∧ Qt
f [tt2/tt′]); RT1(true)

∨

(Pt
f [tt1/tt′] ∧ Q

f
f [tt2/tt′]); RT1(true)


 ∧ tt′ ∈ tt1‖Att2

Definition 2.29 (Parallel composition)

P [|ns1|cs|ns2|] Q = RT




∀ tt1, tt2 •
(tt′ ∈ tt1 ||A tt2) ⇒

¬



((Pf

f [tt1/tt′] ∧ Qt
f [tt2/tt′]); RT1(true))

∨

((Pt
f [tt1/tt′] ∧ Q

f
f [tt2/tt′]); RT1(true))




⊢
∃wait1,wait2, tt1, tt2 •

tt′ ∈ tt1 ‖A tt2 ∧
wait′ = wait1 ∨ wait2 ∧
Pt

f [wait1, tt1, v1/wait′, tt′, v′] ∧
Qt

f [wait2, tt2, v2/wait′, tt′, v′] ∧
v′ = merge(v, v1, v2)




2.12. Interleaving Parallel

Interleaving of two processes is a straightforward derived operator: it is formed as the parallel

composition of two processes, communicating on an empty set of events.

Definition 2.30 (Interleaving) If P and Q may modify variables in ns1 ns2 respectively, and

ns1 ∩ ns1 = ∅, then

P ||| Q = P [|ns1|∅|ns2|] Q

2.13. Abstraction

The abstraction or hiding operator provides a way to abstract processes by internalising

some events, thus making them unobservable by the environment. An assumption of maxi-

mal progress requires that no time may elapse whilst hidden events are on offer; they must

happen as soon as they become available. Once more, the definition is given using semantic

functions.

The assumption of maximal progress is modelled by considering only the A-urgent traces

of P: the traces where all possible occurrences of every event in A happen as soon as they

become available. In an A-urgent trace all events in the set A will appear in all refusal sets: no

further events from A can be performed at any point.

Definition 2.31 (Urgency) If A ⊆ Σ and t ∈ timedTrace, then

A urgent t =̂ ∀ s,X • s a 〈X〉 ≤ t ⇒ A ⊆ X

The semantic trace hiding operator is defined inductively:

Definition 2.32 (Trace hiding) If A, S ⊆ Σ; a ∈ A; b /∈ A, then

〈〉 \ A = 〈〉
(〈S〉a tt) \ A = 〈S \ A〉a (tt \ A)
(〈a〉a tt) \ A = tt \ A

(〈b〉a tt) \ A = 〈b〉a (tt \ A)
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The behaviour of a process with an internalised set of events A is derived only from the

A-urgent traces of the process:

Definition 2.33 (Hiding)

P \ A =̂ ∃ t • P[t/tt′] ∧ A urgent t ∧ tt′ = t \ A

An abstracted process will diverge on an observed trace in the case where we are able

to identify a prefix of the observed trace for which there is a corresponding observation (t)

that (1) is an observation of the unabstracted process (A urgent t ∧ tt′ = t \ A), and (2) rep-

resents a divergence of the unabstracted process (P
f
f [t/tt′]). RT1(true) indicates that we do

not care what happens in the latter potion of the trace. Obviously this is a case to avoid.

¬ ((∃ t • P
f
f [t/tt′] ∧ A urgent t ∧ tt′ = t \ A) ; RT1(true))

Only A-urgent observations of the unabstracted process contribute to the postcondition of the

abstracted process.

(∃ t • Pt
f [t/tt′] ∧ A urgent t ∧ tt′ = t \ A)

We form the design by ensuring that these observations are RT healthy.

P \ A = RT



¬
(
(∃ t • P

f
f [t/tt′] ∧ A urgent t ∧ tt′ = t \ A) ; RT1(true)

)

⊢
(∃ t • Pt

f [t/tt′] ∧ A urgent t ∧ tt′ = t \ A)




2.14. Recursion

Recursion is defined as the RT -healthy least fixed point.

Definition 2.34 (Recursion)

µX • F(X) = RT(⊓{P | F(P) ⊑ P })

2.15. Timeout

The timeout P
n
⊲ Q is the process which offers to behave as P for the first n time units. If P

fails to begin communication by then, process Q silently takes over.

The precondition for the timeout process P
n
⊲ Q comes in two parts, to exclude two

possible behaviours. The first part deals with the case where the process has waited up to n

time units without any visible event. The behaviours that we wish to exclude here are those

in which the precondition of P has failed. P’s precondition will fail to hold on any trace that

we can divide up into two RT -healthy portions, the first of which is of duration less than or

equal to n time units, at the end of which P
f
f holds. RT1(true) ensures that no constraints are

imposed on the second part of the trace. Obviously, we do not want this situation.

¬ ((events(tt′) = 〈〉 ∧ #tt′ ≤ n) ∧ P
f
f ; RT1(true))

The second part of the precondition excludes the case where P’s precondition held success-

fully over an interval of n time units, but at that point P’s postcondition fails to establish the

precondition for Q:

¬ ((Pt
f ∧ events(tt′) = 〈〉 ∧ #tt′ = n) ; (wait ∧ Q

f
f ))
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This can only occur if Q is initiated when P’s value for wait′ is true; in which case this

value will be transferred (by the sequential composition) to wait for Q. Of course, Q is now

initiated, so Qf holds.

The postcondition for the timeout process P
n
⊲ Q also has two parts. It initially offers

to behave like P. If this offer is taken up before n time units have passed, then the entire

observable behaviour is due to P:

(Pt
f ∧ #(idleprefix(tt′)) ≤ n)

If no events occur and P hasn’t terminated in the first n time units, the combined process

proceeds to behave like Q, initialised with an arbitrary choice of state. Allowing Q to begin

with the state of the previous process would mean that the timeout operator allowed the state

of deadlocked processes to be exposed, and so (v := 1) ; STOP
2

⊲ SKIP would be distin-

guishable from (v := 2) ; STOP
2

⊲ SKIP, even though (v := 1) ; STOP is not distinguishable

from (v := 2) ; STOP.

∃ v0 •
(
(Pt

f ∧ events(tt′) = 〈〉 ∧ #tt′ = n ∧ v = v0) ; (wait ∧ Qt
f [v0/v])

)

Note that the timeout operator is non-strict in the sense of [20,21]: events of P can be per-

formed (unstably) between the nth and n+1th tock.

Definition 2.35 (Timeout)

P
n
⊲ Q = RT




¬
(
(events(tt′) = 〈〉 ∧ #tt′ ≤ n) ∧ P

f
f ; RT1(true)

)

∧

¬
(
(Pt

f ∧ events(tt′) = 〈〉 ∧ #tt′ = n) ; (wait ∧ Q
f
f )
)

⊢
(Pt

f ∧ #(idleprefix(tt′)) ≤ n)
∨

∃ v0 •
(
(Pt

f ∧ events(tt′) = 〈〉 ∧ #tt′ = n ∧ v = v0) ; (wait ∧ Qt
f [v0/v])

)




2.16. Untimed Timeout

The untimed variant of the timeout operator P ⊲ Q allows the first process to be timed out

at any time. It is defined directly in the same way as the timeout operator (Section 2.15), but

with no restriction on the point at which the timeout may occur.

Definition 2.36 (Untimed timeout)

P ⊲ Q = RT




¬ ((events(tt′) = 〈〉 ∧ P
f
f ) ; RT1(true))

∧

¬ ((Pt
f ∧ events(tt′) = 〈〉) ; (wait ∧ Q

f
f ))

⊢
Pt

f

∨

∃ v0 •
(
(Pt

f ∧ events(tt′) = 〈〉 ∧ v = v0) ; (wait ∧ Qt
f [v0/v])

)




2.17. Wait

The delay operator is defined as a timeout process. It behaves like STOP for a specified

number of time units, then terminates successfully.

Definition 2.37 (Delay)

Wait(n) = STOP
n
⊲ SKIP
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2.18. Interrupt

Like the timeout operator, the interrupt operator also has timed and untimed versions. Unlike

the timeout operator, however, the basic form of the interrupt operator is the untimed version,

written P △ Q. The untimed interrupt initially behaves like P, except that it cannot refuse to

engage in the initial events of Q. If any of the initial events of Q occurs, the combined process

starts to behave like Q.

We begin by defining the set of initial events of a process. An event a is an initial event

of R if it is the initial event of a trace of R.

Definition 2.38

initials(R) = { a | 〈a〉 ≤ events(tt0) • R[tt0/tt′] }

The condition notoffered(A, t) holds when no events in A have been offered during the ob-

servation of t. In this case, no events in A will have been observed or refused in the trace

t.

Definition 2.39 If A ⊆ Σ and t ∈ timedTrace, then

notoffered(A, t) = t ↾ A = 〈〉 ∧ A ∩ refusals(t) = ∅

Like the timeout operator, the precondition comes in two parts to exclude two possible cases.

The first is the case where we can divide the trace up into two parts, and identify an initial seg-

ment over which the initial events of Q have not been offered, and on which the precondition

of P fails to hold. This is a case to exclude.

¬ (notoffered(initials(Q), tt′) ⇒ P
f
f ; RT1(true))

The second case to avoid is when the interrupt is triggered at a point at which P is failing to

establish the precondition of Q. P must have held up to the point of interruption. As in the

corresponding case for timeout, P must not have terminated after the first segment, so wait′

holds and this value is transferred via the relational composition to wait.

¬ ((Pt
f ∧ notoffered(initials(Q), tt′)) ; (wait ∧ Q

f
f ))

The postcondition describes two cases. In the first, P has terminated successfully (which is

only possible if none of the initial events of Q were offered) and the relational composition

transfers control to SKIP. In the second control is transferred via an initial event of Q. Q

begins with a non-deterministic choice of state, again to avoid the possibility of exposing the

state of a deadlocked process.

∃ v0 • ((Pt
f ∧ notoffered(initials(Q), tt′)) ; (SKIP ∨ (wait ∧ Qt

f [v0/v])))

These parts combine in the definition of the interrupt operator.

Definition 2.40 (Interrupt)

P △ Q = RT




¬
(
notoffered(initials(Q), tt′) ⇒ P

f
f ; RT1(true)

)
∧

¬
(
(Pt

f ∧ notoffered(initials(Q), tt′)) ; (wait ∧ Q
f
f )
)

⊢

∃ v0 •
(
(Pt

f ∧ notoffered(initials(Q), tt′)) ; (SKIP ∨ (wait ∧ Qt
f [v0/v]))

)
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2.19. Timed Interrupt

The timed version of the interrupt operator allows the first process to continue for a specified

number of time units, after which it will be interrupted by Q. Note that the timed interrupt

operator is not invoked if the first process terminates before the time value, whereas a timeout

operator is not invoked if the first process begins before the time value.

We begin with the definition of the duration of a trace, written dur(t), as being the

number of time units that elapse during a trace. This definition ignores the events in the trace,

and so differs from the way that we calculate the passage of time in Section 2.15, where we

know that no events have occurred.

Definition 2.41 Let A ⊆ Σ, a ∈ Σ and t ∈ timedTrace. Then

dur(t) = #(tocks(t) ↾ {tock})

The precondition of timed interrupt has two parts, again disallowing two ways in which

divergence can arise. The first is the case where an initial segment of the trace has a duration

of less than or equal to the interrupt parameter, and leads to the case where P diverges.

¬ (dur(tt′) ≤ n ⇒ P
f
f ; RT1(true))

The second case is the one where P fails to establish the precondition for P at the point of

interruption.

¬ (dur(tt′) = n ∧ Pt
f ) ; (wait ∧ Q

f
f )

The postcondition also has two parts. Either the duration of the trace is less than the interrupt

parameter, or P is interrupted and the subsequent behaviour is from Q.

Definition 2.42

P
n

△ Q = RT




¬
(
dur(tt′) ≤ n ⇒ P

f
f ; RT1(true)

)

∧

¬ (dur(tt′) = n ∧ Pt
f ) ; (wait ∧ Q

f
f )

⊢
Pt

f ∧ dur(tt′) ≤ n

∨
(Pt

f ∧ dur(tt′) = n) ; (wait ∧ Qt
f )




During the first n time units control cannot transfer to Q, and P is unhindered. Either it

terminates before the n time units, or at n time units it will be interrupted by Q.

2.20. Startsby

The startsby operator insists that a process begins communication by a deadline. The pro-

cess P startsby(n) behaves like P, and exhibits entirely unpredictable behaviour if P hasn’t

engaged in an event in the first n time units.

Definition 2.43 (startsby)

P startsby(n) = P
n
⊲ CHAOS
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2.21. Endsby

The endsby operator insists that a process terminates by a deadline, otherwise it is entirely

unpredictable.

Definition 2.44

P endsby(n) = P
n

△ CHAOS

2.22. While

The while loop recursively behaves like P so long as the condition b holds. If b fails, it

terminates. It is defined as a derived operator, using recursion and the conditional operator

(defined in Section 1.)

Definition 2.45 (While loop)

b ∗ P = µX • (P ; X) ⊳ b ⊲ SKIP

2.23. Guarded Actions

The guarded action [g] &P behaves as P if the guard g holds, otherwise it stops.

Definition 2.46

[g] &P = P ⊳ g ⊲ STOP

3. A Leader Election Case Study

The leader election problem is a familiar one, met in many contexts. The example we de-

scribe comes from the audo-visual domain, in which multiple audio and video devices are

synchronised. Maintaining and distributing the system configuration is the responsibility of a

single device (the leader), that provides relevant information to other devices (followers)

via a publish-subscribe architecture. If the chosen leader is switched off, or moves out of

range, one of the followers must become the leader. The algorithm is biased to favour devices

that have been live for the longest period of time. We present the algorithm in CML.

We first declare the types and values. CLAIM is the record-type of all claims that can be

associated with a node: a node can be leader, follower, undecided or off. The strength

of a node’s claim to be a leader is a natural number. It increases as the node remains in

leadership and is reset when the node finishes leading. The maximum value of this strength

is given by uls (the upper limit of strength).
The record MSG is the type of message, containing source (src) and destination (dest)

fields, and a payload of type CLAIM. Messages in transit are stored in the MessageStore.

values

allNodes : set of nat1 = {1,...,3}
uls : nat = 10

n_timeout : nat = 1

types

NODE = nat1

inv n == n in set allNodes

CLAIM = <leader>|<follower>|<undecided>|<off>

STRENGTH = nat
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CS :: c : CLAIM

s : STRENGTH

MSG :: src : NODE

dest : NODE

cs : CS

The channels inn and out are named from the point of view of the store, and correspond to
messages going into and coming out of the store respectively. init, on and off allow the
user to interact with the nodes in the system by initialising them, and turning them on and
off.

channels

inn, out : NODE * NODE * MSG

on,off,init : nat1

The behaviour of the message store is given as the independent process MessageStore,
which maintains an, initially empty, sequence of messages for each node. An operation that
removes the head of one of the sequences is available, with the precondition that the sequence
must not be empty.

process MessageStore =

begin

state

store : map NODE to seq of MSG := {i|->[]|i in set allNodes}

operations

RmvHdFrmStore:NODE ==> ()

RmvHdFrmStore(i) ==

store := store ++ {i |-> tl(store(i))}
pre store(i) <> []

The behaviour of the message store is given by the single action Loop. Messages may be re-

ceived through the channel inn in which case they are appended to the appropriate sequence.

The fields src and dest are assumed to be consistent with the channel on which the message

was received. Notice that here the message is added to the store directly within the action

Loop, although this could have been encapsulated as another operation.
The message store also constantly offers each node the next message, if there are any

available, on a first-in-first-out basis.

actions

Loop =

inn?src?des?m -> store(m.dest) := store(m.dest)^[m]; Skip

[]

([] i in set allNodes @

[store(i) <> []] & -- there are message(s) for node i

let m = hd(store(i)) in

out!(m.dest)!(m.src)!m ->

RmvHdFrmStore(i);

Skip)

@ while true do Loop

end

Each node is given an identity parameter id on initialisation. The nodes communicate by

sharing their current claim. Each node maintains (in mem) a record of the last claim made

by each of the other nodes, if it is aware of any. The mem variable is periodically reset. The

square brackets around the CS indicate that this type is optional. If the node is not aware of a

claim since mem was reset, this takes the value nil. The invariant ensures that each node has

a place in memory to record the claims of for all the other nodes and that there is at least one

other node in the network.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



20 J. Woodcock et al. / The COMPASS Modelling Language

The other variables summarise the information in mem. The node will make use of all
of these when it is time to update the leadership claim. highest strength is the strength
of strongest leadership claim that the node is aware of from among the neighbouring nodes.
highest strength id is the identity of the neighbouring node making the leadership claim
with the highest strength. If more than one neighbouring node has the strongest claim, this
will be the one with the highest id. leaders records the number of neighbouring nodes that
are claiming leadership (with any strength of claim.) myCS is the current claim and strength
of the node, and isleader is true if the node believes it should be a leader.

process Node = i : nat1 @ begin

state

mem: map NODE to [CS] := { cid |-> nil | cid in set allNodes \ {i} }
inv dom mem = allNodes \ {i} and dom mem <> {}

highest_strength : [STRENGTH] := nil

highest_strength_id : [NODE] := nil

inv highest_strength_id <> nil => highest_strength_id in set (dom mem union {i})
leaders : nat:= 0

inv leaders <= card dom mem

myCS : CS := mk_CS(<off>, 0)

isleader : bool := false

The node has a set of operations for manipulating state from the within the actions.
The operation flushMemory resets the variable mem, and is used when the node is turned

off. flushSummary resets the summary variables to their initialisation values. flushState
applies both operations. The operation write receives a node and a claim, and updates
mem(n) with that claim, overwriting any older claim. The precondition ensures that the node
is in the domain of the memory, and the postcondition ensures that the update is correct.

operations

flushState: () ==> ()

flushState() ==

(

flushMemory();flushSummary()

)

flushMemory: () ==> ()

flushMemory() ==

(

mem := { cid |-> nil | cid in set allNodes \ {i} }
)

flushSummary: () ==> ()

flushSummary() ==

(

highest_strength := nil;

highest_strength_id := nil;

leaders := 0;

myCS := mk_CS(<off>, 0);

isleader := false

)

write: NODE * MSG ==> ()

write(j,m) ==

(

mem := mem ++ {j |-> m.cs}
)

pre j in set dom mem

post mem(j) = m.cs
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The update operation updates the number of leaders, the highest strength observed, and
the identity of the node with the highest strength, using the operations maxStrength
and maxStrengthID. If more than one node has the strongest claim to be leader,
maxStrengthID will return the one with the highest id.

update:()==>()

update() ==

(

leaders := card{n|n in set dom mem @ mem(n)<>nil and mem(n).c = <leader>};
highest_strength := maxStrength();

highest_strength_id := maxStrengthID();

isleader := amILeader()

)

maxStrength:() ==> [nat]

maxStrength() ==

(

let

leaderNodes = {n|n in set dom mem @ mem(n) <> nil and mem(n).c = <leader>} in

(

if leaderNodes <> {} then

let strs = {mem(l).s|l in set leaderNodes} in

if strs <> {} then return maxSet(strs)

else return nil

else return nil

)

)

maxStrengthID : () ==> [NODE]

maxStrengthID() ==

(

let

leaderNodes = {n|n in set dom mem @ mem(n) <> nil and mem(n).c = <leader>} in

(

if leaderNodes = {} then return nil

else

let maxStrIds = {n | n in set leaderNodes @ mem(n).s = highest_strength} in

return maxSet(maxStrIds)

)

)

changeClaim updates the claim of a node. The precondition enforces the fact that nodes

cannot transition directly from leading to following, they must go through a period of inde-

cision; incStrength increases the strength of the node’s leadership claim, up to the limit

uls. The operation amILeader returns true if the summary information indicates that the

node should be the leader. This is the case if: (i) there are no other nodes claiming to be

leaders; (ii) the highest strength of any other claim is nil (in fact, this holds exactly when

there are no other leaders); (iii) the strength of the highest claim is less than the strength of

my claim; or (iv) another node has an equally strong claim, but it’s identity is lower.
maxSet returns the maximum of a (non-empty) set of natural numbers. It uses the im-

plicit function select to select an element from a set.

changeClaim: CLAIM ==> ()

changeClaim(newc) ==

(

myCS.c := newc

)

pre myCS.c = <off> => newc = <undecided> and

myCS.c = <undecided> => newc = <leader> or newc = <follower> and

myCS.c = <leader> => newc = <undecided> and
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myCS.c = <follower> => newc = <undecided>

changeStrength: nat ==> ()

changeStrength(n) ==

myCS := mk_CS(myCS.c,n)

incStrength:()==>()

incStrength() ==

(

if myCS.s < uls

then myCS := mk_CS(myCS.c, myCS.s+1)

else Skip

)

amILeader: () ==> bool

amILeader() ==

(return (leaders = 0) or

(highest_strength = nil) or

(highest_strength <> nil and highest_strength < myCS.s) or

(highest_strength <> nil and highest_strength = myCS.s

and highest_strength_id < i)

)

maxSet: set of nat ==> nat

maxSet(sn) ==

(

dcl s: set of nat @

s:= sn;

(

dcl c: nat @

c := select(s);

s := s \ {c};
while (s <> {}) do

(let n = select(s) in

(if (n>c) then c:=n else c:=c;

s := s\{n})
);

return c

)

)

pre sn <> {}

select(sn : set of nat) r: nat

pre sn <> {}
post r in set sn

The four main states of a node are Off, Undecided, Follower and Leader. A node is ini-
tialised to Off, from which state it may receive an on signal and turn on. At this point, it
enters the Undecided state, and the subsequent behaviour can be interrupted at any point by
an off event.

Off = on!i -> (Undecided /_\ off!i -> flushState();Off)

When the node is in state Undecided, it begins by changing its claim to match its state. It

then flushes the volatile memory mem and listens to the network (via the action Listener.)

Listener begins by invoking the action ReceiveData, which receives messages from

the other nodes and updates memory for n timeout time units, then the operation update is

called to update the summary variables. The node then uses the variable isleader in guard,

moving to the leader state if this is set, and follower otherwise.
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The behaviour is similar in states Leader and Follower. In each case the claim of the
node is reported to the network before the memory is flushed. In state Leader the strength of
the claim is increased for every successful round of leadership. In state Follower the strength
of the leadership claim is set of zero (changeStrength(0)), and decision on whether or not
to continue following is based on the number of leaders – when there is more than one the
node becomes undecided.

actions

Undecided = changeClaim(<undecided>);undecided!i -> flushMemory();Listener;

(

[isleader] & Leader

[]

[not isleader] & Follower

)

Leader = changeClaim(<leader>);leading.i -> SendCS; flushMemory();Listener;

(

[not isleader] & Undecided

[]

[isleader] & incStrength();Leader

)

Follower = changeClaim(<follower>);changeStrength(0);

following.i -> SendCS; flushMemory();Listener;

(

[leaders <> 1] & Undecided

[]

[leaders = 1] & Follower

)

end

Listener = ReceiveData;update();Skip

ReceiveData =

(

out!i?j?msg -> (mem := mem ++ {j |-> msg.cs}); ReceiveData

) [_ n_timeout _> Skip

SendCS = (||| t in set dom mem @ [{}] inn!i!t!(mk_MSG(i,t,myCS)) -> Skip)

@ init.i -> flushState();Off

The nodes are combined in the process AllNodes. They communicate via the MessageStore
on the channels inn and out, which are then hidden.

process AllNodes = ||| i in set allNodes @ (Node(i))

process Election = AllNodes [|{|inn,out|}|] MessageStore \\ {|inn,out|}

The leader election protocol that we describe is inspired by work with one of our industrial

partners. We have deliberately attempted to exercise a substantial proportion of CML in the

development of the model.

4. Related Work

4.1. Languages with UTP semantics

The work reported in this paper is part of a larger programme of research in defining the

semantics of heterogeneous languages that started with UTP [10], which we describe in Sec-

tion 1. Since the publication of Hoare & He’s book, a number of heterogeneous languages

have been successfully defined using UTP. These include:
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1. Circus, which was first proposed as a concurrent language for refinement in 2001 [22].

The first semantics was given in UTP [4], and this was mechanised in the ProofPower

interactive theorem prover [23,5].

2. Handel-C, which is a high-level programming language that targets low-level hard-

ware and is most commonly used in the programming of FPGAs (field-programmable

gate arrays). Handel-C is a rich subset of C with non-standard extensions to con-

trol hardware instantiation with an emphasis on parallelism. Reminiscent of occam,

Handel-C is to hardware design what the first high-level programming languages were

to programming computers. Unlike many other design languages that target a specific

architecture, Handel-C can be compiled to a number of design languages and then

synthesised for the desired hardware. This raises the level of abstraction for a devel-

oper, who can then largely ignore the idiosyncrasies of particular design notations and

oddities of hardware architectures. UTP semantics are given in [15,24,25].

3. SCJ, Safety-Critical Java, a new language based on RTSJ (the Real-time Specification

for Java), which is designed to support the creation of applications, infrastructures, and

libraries that are amenable to certification under safety-critical standards such as DO-

178B, Level A [26]. SCJ gives developers a simplified programming model based on

missions (independent application tasks) that access restricted scoped memory. Thread-

ing, reflection, and class loading are restrained to reduce the code base and simplify

certification. The SCJ specification is based around three levels of compliance to offer

richer language facilities for more sophisticated applications [27]. The SCJ memory

model has been formalised in UTP [28,17] and a development process created based

on Circus [16,29].

4. CML, the COMPASS Modelling Language, which is the topic of this paper. Earlier

descriptions of the language include [1,30]. The Symphony IDE is an open-source

tool for constructing and reasoning about CML models and their refinements (see

symphonytool.org).

4.2. Semantic heterogeneity

SoS are intrinsically heterogeneous, and this is particularly true for cyber-physical systems.

Semantic heterogeneity is a significant challenge to integration in SoS Engineering (SoSE)

due the large variety of languages, domains, and tools that are used in their construction.

A strategy for managing this heterogeneity is to decompose domain-specific languages into

their building-block theories that can be independently analysed and used as a basis for link-

ing to similar notations. This provides a systematic approach to building tool-chains that in-

tegrate different theories, methods, and tools used in SoSE. An approach based on UTP has

been piloted on the development of theories enabling machine-supported analysis of SysML

models of SoSs [31].

A key objective of the semantically heterogeneous CML language is to be semantically

open, allowing further paradigms to be added, such as process mobility, continuous physical

models, and stochastic processes. The CML semantics deals separately with each paradigm,

composing them with Galois connections, leading to a natural contract language for all con-

structs in all paradigms. The result is a compositional formal definition of a complex lan-

guage, with the individual parts being available for reuse in other language definitions [32].

4.3. Semantic paradigms

In building the languages mentioned in Section 4.1, a number of different semantic paradigms

have already been described in UTP.
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4.3.1. State and Imperative Programming

A theory of total correctness for imperative programming, known as the theory of designs,

appeared in the original book [10]. The consequences of the interaction between state visi-

bility and communication have been explored in [9].

4.3.2. Definedness

CML includes VDM [2], where the treatment of undefined terms and predicates uses the

Logic of Partial Functions [33]. For various practical reasons, CML uses McCarthy’s left-to-

right evaluation logic, so the question becomes: what is the relation between these two logics.

The answer is given by unifying theories of undefinedness in UTP [34] and unifying theories

of logic and specification [35].

4.3.3. Object Orientation

A unification of object classes and processes was carried out in OhCircus [36] and a theory

of object orientation presented in [37]. rCOS, a refinement calculus of object systems, is

described in [38,39,40]. Theories of pointers and Records in UTP have been explored in [41,

42,43,44]. A basic theory of separation logic in UTP can be found in [32]. A theory of higher-

order UTP, which is required for a theory of methods, is worked out in [45].

4.3.4. Reactive Process

The theory of reactive processes is worked out in detail in [10], where it is used to describe

the relationship between the process algebras ACP, CCS, and CSP. Further work on the se-

mantics, its algebraic laws, and the mechanisation of the theory was carried out by Oliveira

in his PhD thesis [46]. The notion of a reactive design first appeared here and in [19,47].

4.3.5. Time

A basic theory for a time model for Circus was first proposed by Sherif [8], together with

a process algebraic framework for specification and validation of real-time systems using

Circus Actions[48,49,50]. The semantic domain for CML is closely based on the work of

Lowe & Ouaknine [7]. The consequences of using a complete lattice with a miracle as its top

element was explored in [47,51].

4.3.6. Interrupt-driven Programming

Hoare has shown that an interrupt operator can be given a pleasing process algebraic seman-

tics [52]. McEwan has produced a model in UTP that supports Hoare’s algebraic laws in a

unifying theories of interrupts [53].

4.3.7. Mobility

Tang has explored the idea of mobile CSP processes in unifying theories in [54,55]. The

key idea is to model processes as first-class citizens by using higher-order predicates that

specify behaviour, and that can be assigned to variables and transmitted over communication

channels.

4.3.8. Angelic choice

Angelic nondeterminism was first described in UTP in [56,57]. It has subsequently been used

in a development of Simulink timed models for program verification [58]. Ribeiro has gone

on to build a theory of designs with angelic nondeterminism [59].
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4.3.9. Probability

He & Sanders introduce a unification of probability with standard computation in which a

non-zero chance of disaster is treated as disaster [60]. Laws and a Galois connection with

a more traditional probabilistic model are provided and the formalism is applied to unify

quantum computation and cryptography within the probabilistic method. Stoddart & Zeyda

present a unification of probabilistic choice within a design-based model of reversible compu-

tation [61]. Zhu and his colleagues present a denotational semantics for a probabilistic timed

shared-variable language [62] and Bresciani & Butterfield describe a probabilistic theory of

designs based on distributions [63].

4.3.10. Security

Banks & Jacob have developed a theory of confidentiality in UTP. In [64], they present a

framework for reasoning about the security of confidential data within software systems and

show how information flow between users can be modelled. They devise conditions for veri-

fying that system designs may not leak secret information to untrusted users. They also inves-

tigate how these conditions can be combined with existing notions of refinement to produce

refinement relations suitable for deriving secure implementations of systems. In [65], they

outline generic techniques for identifying the information that a user can deduce about the

systems behaviour from observations. In [66], they introduce a notation for specifying which

aspects of Circus processes are confidential and should not be revealed to low-level users.

They also describe a novel procedure for verifying that a process satisfies its confidentiality

properties.

4.3.11. Synchrony

Butterfield and his colleagues present a generic framework of UTP theories for describing

systems whose behaviour is characterised by regular time-slots, compatible with the general

structure of the Circus language [67]. This slotted Circus framework is parametrised by the

particular way in which event histories are observable within a time-slot, and specifies what

laws a desired parameterisation must obey in order for a satisfactory theory to emerge.

4.4. Mechanisation

Nuka & Woodcock present the first attempt at a formalisation of a subset of UTP as a deep

embedding in Z with a corresponding mechanisation in ProofPowerZ[68]. Oliveira extends

this approach using ProofPowerZ with a comprehensive treatment of the theories of alphabe-

tised relations, designs, reactive processes, and CSP [69,70]. This work is complemented by

Zeyda & Cavalcanti who show how a theory of UTP can be used to encode particular Circus
specifications and their refinements. Feliachi and his colleagues develop a machine-checked,

formal semantics based on a shallow embedding of Circus [71] in Isabelle/HOL [72]. They

derive proof rules from and implement tactic support that allows for refinement proofs for

Circus processes involving both data and behavioural aspects. Foster & Woodcock describe

Isabelle/UTP, a mechanised theory engineering framework for UTP [73,74].

4.5. Refinement

Hoare & He define the notion of refinement as follows: program P is a refinement of specifi-

cation S, providing every observed behaviour of P is also a behaviour of S [10]; they suggest

that this should be a standard definition of refinement across all semantics paradigms. Circus
was originally conceived as a language for describing concurrent system centred around re-

finement [22]. Sampaio et al. propose a sound data refinement technique for process refine-

ment in Circus [75], propose laws for actions refinement [76], and present a general refine-
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ment strategy for Circus [77]. Oliveira’s PhD thesis focuses on formal derivation of state-rich

reactive programs using Circus [46].

5. Conclusions and Future Work

We present in this paper the formal semantics of the COMPASS Modelling Language based

on UTP. The work shows that a complicated language with features taken from many different

paradigms can indeed be given a formal semantics and this approach scales up to industrial-

strength modelling languages because of the compositional nature of UTP; see [32] for more

details on how Galois connections are used to compose individual paradigms. Our technique

is just one way of approaching the problem of semantic heterogeneity, an important challenge

for engineering cyber-physical systems, but it does seem a promising one.

In the future, we propose to carry out the following work programme in heterogenous

language development:

1. Complete the design of CML with both continuous and stochastic processes.

2. Complete the mechanisation of the UTP semantics for CML.

3. Construct a public repository of UTP theories and associated links that can be then be

used to develop domain-specific languages and tool chains for SoSE, including CPS.

4. Construct an ontology for the concepts and vocabulary of SoSE by formalising them

as UTP theories mechanised in Isabelle/UTP. The ontology will take the form of a

web-based theory library, similar to the existing Archive of Formal Proofs (see afp.

sourceforge.net), but using UTP theories and with a greater emphasis on theory

composition and reuse.

The ultimate and rather ambitious objective for this work is to increase automation for SoSE

based on heterogeneous languages for heterogeneous SoS. This will expose universal mod-

elling concepts and allow the exploitation of large sets of libraries in several different physical

domains. With rapid prototyping of multidisciplinary applications, the larger SoS community

will benefit from these capabilities.
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ald, Anne Elisabeth Haxthausen, and Hüsnü Yenigün, editors, Theoretical Aspects of Computing—ICTAC

2008, 5th International Colloquium, Istanbul, 1–3 September 2008, volume 5160 of Lecture Notes in

Computer Science, pages 141–155. Springer, 2008.

[45] Frank Zeyda and Ana Cavalcanti. Higher-order UTP for a theory of methods. In [80], pages 204–223,

2012.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



30 J. Woodcock et al. / The COMPASS Modelling Language

[46] M. V. M. Oliveira. Formal derivation of state-rich reactive programs using Circus. Phd thesis, Department

of Computer Science, University of York, Report YCST-2006/02 2005.

[47] Jim Woodcock. The miracle of reactive programming. In [79], pages 202–217, 2008.

[48] Adnan Sherif, Jifeng He, Ana Cavalcanti, and Augusto Sampaio. A framework for specification and vali-

dation of real-time systems using Circus actions. In Zhiming Liu and Keijiro Araki, editors, Theoretical

Aspects of Computing—ICTAC 2004, First International Colloquium, Guiyang, 20–24 September 2004,

volume 3407 of Lecture Notes in Computer Science, pages 478–493. Springer, 2005.

[49] Adnan Sherif. A Framework for Specification and Validation of Real-Time Systems using Circus Actions.

PhD thesis, Center for Informatics, Federal University of Pernambuco, Brazil, 2006.

[50] Adnan Sherif, Ana Cavalcanti, Jifeng He, and Augusto Sampaio. A process algebraic framework for

specification and validation of real-time systems. Formal Asp. Comput., 22(2):153–191, 2010.

[51] Kun Wei, Jim Woodcock, and Ana Cavalcanti. CircusTime with reactive designs. In [80], pages 68–87,

2012.

[52] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[53] Alistair A. McEwan and Jim Woodcock. Unifying theories of interrupts. In [79], pages 122–141, 2008.

[54] Xinbei Tang and Jim Woodcock. Towards mobile processes in Unifying Theories. In 2nd International

Conference on Software Engineering and Formal Methods (SEFM 2004), 28–30 September 2004, Beijing,

pages 44–53. IEEE Computer Society, 2004.

[55] Xinbei Tang and Jim Woodcock. Travelling processes. In Dexter Kozen and Carron Shankland, editors,

Mathematics of Program Construction, 7th International Conference, MPC 2004, Stirling, Scotland, 12–

14 July 2004, volume 3125 of Lecture Notes in Computer Science, pages 381–399. Springer, 2004.

[56] Ana Cavalcanti and Jim Woodcock. Angelic nondeterminism and Unifying Theories of Programming.

Electr. Notes Theor. Comput. Sci., 137(2):45–66, 2005.

[57] Ana Cavalcanti, Jim Woodcock, and Steve Dunne. Angelic nondeterminism in the Unifying Theories of

Programming. Formal Asp. Comput., 18(3):288–307, 2006.

[58] Ana Cavalcanti, Alexandre Mota, and Jim Woodcock. Simulink timed models for program verification. In

Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Programming and Formal Methods—

Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, volume 8051 of Lecture Notes in

Computer Science, pages 82–99. Springer, 2013.

[59] Pedro Ribeiro and Ana Cavalcanti. Designs with angelic nondeterminism. In Seventh International Sym-

posium on Theoretical Aspects of Software Engineering, TASE 2013, 1–3 July 2013, Birmingham, pages

71–78. IEEE, 2013.

[60] Jifeng He and Jeff W. Sanders. Unifying probability. In [78], pages 173–199, 2006.

[61] Bill Stoddart and Frank Zeyda. A unification of probabilistic choice within a design-based model of

reversible computation. Formal Asp. Comput., 25(1):107–131, 2013.

[62] Huibiao Zhu, Jeff W. Sanders, Jifeng He, and Shengchao Qin. Denotational semantics for a probabilistic

timed shared-variable language. In [80], pages 224–247, 2012.

[63] Riccardo Bresciani and Andrew Butterfield. A probabilistic theory of designs based on distributions. In

[80], pages 105–123, 2012.

[64] Michael J. Banks and Jeremy L. Jacob. Unifying theories of confidentiality. In [81], pages 120–136, 2010.

[65] Michael J. Banks and Jeremy L. Jacob. On modelling user observations in the UTP. In [81], pages

101–119, 2010.

[66] Michael J. Banks and Jeremy L. Jacob. Specifying confidentiality in Circus. In Michael Butler and

Wolfram Schulte, editors, FM 2011: Formal Methods—17th International Symposium on Formal Methods,

Limerick, 20–24 June 2011, volume 6664 of Lecture Notes in Computer Science, pages 215–230. Springer,

2011.

[67] Andrew Butterfield, Adnan Sherif, and Jim Woodcock. Slotted Circus. In Jim Davies and Jeremy Gib-

bons, editors, Integrated Formal Methods, 6th International Conference, IFM 2007, Oxford, 2–5 July 2007,

volume 4591 of Lecture Notes in Computer Science, pages 75–97. Springer, 2007.

[68] Gift Nuka and Jim Woodcock. Mechanising a unifying theory. In [78], pages 217–235, 2006.

[69] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Unifying Theories in ProofPower-Z. In [78], pages

123–140, 2006.

[70] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Unifying theories in ProofPower-Z. Formal Asp.

Comput., 25(1):133–158, 2013.

[71] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Unifying Theories in Isabelle/HOL.

In [81], pages 188–206, 2010.

[72] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-Order Logic,

volume 2283 of LNCS. Springer, 2002.

[73] Simon Foster and Jim Woodcock. Unifying Theories of Programming in Isabelle. In Zhiming Liu,

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



J. Woodcock et al. / The COMPASS Modelling Language 31

Jim Woodcock, and Huibiao Zhu, editors, Unifying Theories of Programming and Formal Engineering

Methods—International Training School on Software Engineering, Held at ICTAC 2013, Shanghai, 26–

30 August 2013, volume 8050 of Lecture Notes in Computer Science, pages 109–155. Springer, 2013.

[74] S. Foster, F. Zeyda, and J. Woodcock. Isabelle/UTP: a mechanised theory engineering framework. In 5th

International Symposium on Unifying Theories of Programming (To appear), 2014.

[75] Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Refinement in Circus. In Lars-Henrik Eriksson

and Peter A. Lindsay, editors, FME 2002: Formal Methods—Getting IT Right, International Symposium

of Formal Methods Europe, Copenhagen, 22–24 July 2002, volume 2391 of Lecture Notes in Computer

Science, pages 451–470. Springer, 2002.

[76] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Refinement of actions in Circus. Electr. Notes

Theor. Comput. Sci., 70(3):132–162, 2002.

[77] Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A refinement strategy for Circus. Formal Asp.

Comput., 15(2–3):146–181, 2003.

[78] Steve Dunne and Bill Stoddart, editors. Unifying Theories of Programming, First International Sympo-

sium, UTP 2006, Walworth Castle, County Durham, 5–7 February 2006, volume 4010 of Lecture Notes

in Computer Science. Springer, 2006.

[79] Andrew Butterfield, editor. Unifying Theories of Programming, Second International Symposium, UTP

2008, Dublin, 8–10 September 2008, volume 5713 of Lecture Notes in Computer Science. Springer, 2010.

[80] Burkhart Wolff, Marie-Claude Gaudel, and Abderrahmane Feliachi, editors. Unifying Theories of Pro-

gramming, 4th International Symposium, UTP 2012, Paris, 27–28 August 2012, volume 7681 of Lecture

Notes in Computer Science. Springer, 2013.

[81] Shengchao Qin, editor. Unifying Theories of Programming, Third International Symposium, UTP 2010,

Shanghai, 15–16 November 2010, volume 6445 of Lecture Notes in Computer Science. Springer, 2010.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference



32 J. Woodcock et al. / The COMPASS Modelling Language

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference


