
Communicating Process Architectures 2014

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2014

© 2014 The authors and Open Channel Publishing Ltd. All rights reserved.

1

Towards Millions of Processes on the JVM

Jan Bækgaard PEDERSEN 1, and Andreas STEFIK

University of Nevada, Las Vegas, USA

Abstract. In this paper we show how two previously published rewriting techniques

for enabling process mobility in the JVM can be combined with a simple non-

preemptive scheduler to allow for millions of processes to be executed within a sin-

gle Java Virtual Machine (JVM) without using the built-in threading mechanism. The

approach is tailored toward efficient execution of a large number of (CSP style) pro-

cesses in Java bytecode running on the Java Virtual Machine. This may also prove

useful for languages that, like ProcessJ, target the JVM as an execution platform and

which need a much finer level of threading granularity than the one provided by the

Java programming language system’s threading mechanism.

Keywords. process oriented programming, non-preemptive scheduling, user-level

scheduling, Java Virtual Machine, Java, ProcessJ

Introduction

As the Java platform has matured over the last two decades, its runtime system, the Java Vir-

tual Machine (JVM) has become a popular target for many languages. Examples of languages

that target the JVM include Clojure [1], Groovy [2], Scala [3], JRuby [4] and Jython [5]. In

this paper we consider the ProcessJ [6] language, which is under development at the Uni-

versity of Nevada Las Vegas. ProcessJ has several back-end targets like C (using the CCSP

runtime [7]) as well as the JVM. ProcessJ is a process oriented language similar to occam-

π [8,9,10,11], but with Java-like syntax. Since ProcessJ is process oriented, processes play a

crucial role in the language. Such processes, when executing, need to run independently (i.e.,

control its own data and event responses like channel communication and barrier synchro-

nization), and therefore must map processes to the underlying runtime (e.g. JVM).

There are two different approaches to targeting the JVM as an execution architecture.

Firstly, a compiler can produce Java source code and then use the Java compiler to produce

Java class files (containing the bytecode along with other information like field definitions,

exception tables etc.), which subsequently can be executed on the JVM. The other approach

is to directly generate Java bytecode through a tool like ASM [12], which will produce the

appropriate class files. Let us consider these two options in turn.

If a compiler produces Java source code, then this source code must make use of com-

munication libraries to realize processes, channel, barriers etc. A possible approach could be

to use the JCSP library [13,14,15]. JCSP provides the necessary entities needed to execute

a process oriented program, but it has a one-to-one mapping between JCSP processes and

threads, therefore has similar process memory and runtime overheads.

If producing Java bytecode via Java source is not attractive or possible, byte code gener-

ation libraries like ASM can be used. ASM is a Java bytecode manipulation tool which can

be used to manipulate or create Java class files. Naturally, such generated class files must

1Corresponding Author: Jan Bækgaard Pedersen, Department of Computer Science, University of Nevada,

Las Vegas, 89054, NV, USA. Tel.: +1 702 895 2557; Fax: +1 702 895 2639; E-mail: matt.pedersen@unlv.edu.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

2 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

rely on a library of classes that support process oriented programming. Generating files using

JCSP with ASM would not fix the primary concerns, as the reliance on a one-to-one mapping

of processes to Java threads remains.

Given that the processes of JCSP map directly to the JVM threading mechanism, running

more than a few thousand threads in a single JVM may render it so slow that it becomes

useless for all practical purposes. In correspondence with the JCSP developers, they list this

limit to be around 7,000 JCSP processes. A Java/JVM thread is generally not conducive to

running hundreds of thousands or millions of processes—which previous work has shown

does occur in some process oriented systems [16]. For example, the occam runtime system

CCSP supports executing millions of processes in one execution. For such scales, mapping

of processes to threads may not be a viable solution for process-oriented languages targeting

the Java Virtual Machine.

A lightweight threading model that uses the pre-emptive scheduling mechanism of the

JVM is not an option; at least not without rewriting parts of the implementation of the JVM,

but that renders the idea of portability of the class files moot. Something else must be done.

One solution might be to develop a threading model (which we will call the process model

from now on) that can be executed by a user-level scheduler. A simple, naı̈ve user-level sched-

uler is not hard to write but for one caveat: to the best of our knowledge, there is no known

technique for pre-emptive scheduling at the user-level. For this approach to work, the sched-

uler must be non-preemptive and the process model must support (and correctly implement)

explicit yielding to ensure execution progress. This kind of scheduling is also referred to as

cooperative scheduling. Luckily, this will work well with a process oriented language that

implements synchronous, non-blocking, and non-buffered (channel) communication (as well

as other blocking primitives like barrier synchronization), as we will see later. At this point, it

should be mentioned that implementing an efficient user-level scheduler is not a simple task;

indeed, it is a research area all by itself. An example of such work applied in the occam π

scheduler can be found in [17].

In this paper, we present a method for generating Java classes that represent ProcessJ pro-

cesses, which can be executed by a custom non-preemptive user-level scheduler. The rest of

the paper is organized as follows: in Section 1 we present a simple non-preemptive scheduler

to form the basis for our processes model. In Section 2 we present the background material

that forms the basis for the work presented in this paper. Section 3 outlines the code genera-

tion that a compiler targeting the system must follow, as well as some simple bytecode rewrit-

ing needed to support yielding (called suspension for mobile processes) and re-animation of

processes as they are descheduled and rescheduled again. In Section 4 we present test results,

and Sections 5 and 6 contain the conclusion and future work, respectively.

1. A Simple User-Level Scheduler in Java for Non-preemptive Processes

Writing a user-level preemptive scheduler, as far as we know, is not possible, whereas a naı̈ve

non-preemptive one is fairly straight forward to implement. An (oversimplified) piece of

pseudo-code for such a scheduler can be seen in Figure 1: for as long as there are processes in

the process queue, take one out, run it (if it is ready to run) until it either terminates or yields;

when it yields (or if it was not ready to run), put it back in the queue, and repeat until the

queue is empty. In Appendix A Java code outlining our prototype implementation is listed.

For such a scheduler to be usable, the implementation of the processes (and entities like

par blocks and read/write calls) must be implemented in such a away that they cooperate in

the scheduling; that is, processes must voluntarily give up the CPU and let the scheduler run a

different process (i.e., processes must explicitly yield and give control back to the scheduler).

This is of course necessary as the scheduler itself cannot force a process to yield.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 3

Queue<Process> processQueue;

...

// enqueue one or more processes to run

...

while (!processQueue.isEmpty()) {
Proecss p = processQueue.dequeue();

if (it p.ready())

p.run();

if (!p.terminated())

processQueue.enqueue(p);

}

Figure 1. Pseudo-code for a simple non-pre-emptive scheduler.

A number of issues must be resolved before such a scheduler is of any use, and they

include (short answers are given as well, but more in-depth explanations will follow in sub-

sequent sections):

• How does a procedure yield? By returning control to the scheduler through a return

statement.

• When does a procedure yield and who decides that it does? Every time a synchroniza-

tion primitive is called a procedure yields voluntarily.

• How is a procedure restarted after having yielded? It gets called and is itself in charge

of ‘jumping’ to the right code location.

• How is local state (parameters and local variables) maintained? They are stored in an

Object array before yielding and restored upon resumption.

• How are nested procedure calls handled when the innermost procedure yields? The

caller makes the activation record with the parameters before the call, and yields after,

if the procedure itself yielded.

Before tackling these issues, let us first consider the approach taken in [18] to implement mo-

bile ProcessJ processes in the JVM. This technique will serve as the basis for the generation

of code for the non-preemptively schedulable processes which are the focus of the paper.

2. Background

2.1. Mobile Processes

In occam-π, a mobile process is a process that can be suspended explicitly using the suspend

statement. Similarly, a suspend statement is used in ProcessJ to achieve suspension of a mo-

bile process. In both languages, when a process suspends, it stops running and becomes a

passive piece of data, which can be communicated on a channel to another process, con-

nected to compatible elements of the environment of that process and resumed simply by

calling/invoking it and passing it the appropriate actual parameters. Once a mobile process

is restarted, execution continues with the statement immediately following the statement that

suspended the process.

In [18] we outlined an approach to implementing such processes on the JVM; the steps

taken (which we will elaborate on in Section 3 when we show how to use the technique to

implement regular ProcessJ procedures that engage in synchronization such that they can be

executed by the scheduler presented in Section 1 and Appendix A) can be summarized as

follows:

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

4 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

• A mobile process is encapsulated in a class.

• The class contains an array of Java Objects that will serve as the activation record

holding the values of parameters while the process is suspended (i.e., after it yields

and passes control back to the scheduler).

• Rewriting of the code in the following way:

* At the beginning of the procedure, insert code to re-establish the values of the pa-

rameters and locals from the stored activation record.

* After the parameter restoration code, insert a switch statement with empty cases

(just a break). A later bytecode rewriting will change the breaks to jumps to route

the flow of control to the resume point (the instruction immediately following the

yield statement).

* A number of labels representing the resume points. These are the labels to which

the jumps of the switch statement will jump.

* Code for re-establishing the local variables; this code should follow immediately

after the resume point labels.

* Code for saving the parameters and locals in an activation record before the yield

point.

* All yield statements replaced by returns.

In Section 3, we will show how this technique, along with a few further rewriting tech-

niques, will allow us to implement the processes needed for the non-preemptive scheduler.

The technique described in [18] requires bytecode manipulation as well as source code

generation. However, in [19] we describe a (more complex) technique to generate resumable

code like in [18] but entirely in source code. The latter technique is preferable if the compiler

generates source code and utilizes the Java compiler to generate the class files, where the

former is preferable when the compiler (using a tool like ASM) generates bytecode directly.

In this paper we explain much of the generated Java code in terms of source as it is much

easier to read than long listings of Java bytecode operations, but also make use of the bytecode

rewriting of [18]. Ultimately, the ProcessJ compiler will generate bytecode using ASM.

2.2. JCSP and the JVM

Since JCSP is implemented as a library in Java, a JCSP process is a Java class that extends the

JCSP class CSProcess. When such a process is executed, for example, in a par block (which

in JCSP is also a Java class), it is executed in a Java thread. Thus, a JCSP process maps di-

rectly to a Java/JVM thread. This means that JCSP processes are scheduled by the JVM (pre-

emptive) scheduler, which also means that things like blocking I/O calls pose no problems

as the JVM scheduler handles such issues without any intervention by the programmer. This

is not the case for our implementation. With the implementation we present, which is single-

threaded, a blocking I/O call will block the entire execution; it will cause the only execution

thread in the scheduler to block. Naturally, this is something that needs to be addressed, and

we give a few suggestions to possible solutions in the future work section.

2.3. occam-π and the CCSP runtime

As the title of the paper suggests, our goal in this work is to develop a runtime that can sup-

port the execution of millions of processes. We already know that the typical Java threading

mechanism, and also other threading mechanisms like POSIX [20], are coarse grained, and

since threads and operating system processes are scheduled by the operating system, user-

level scheduling of some process or thread abstraction is necessary. The CCSP [7] runtime

is similar; allowing occam and occam-π to execute millions of processes; the CCSP runtime

also implements a non-preemptive scheduler.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 5

ProcessJ also targets CCSP, but since CCSP is architecture dependent, it exists in parallel

to what we are trying to achieve with our scheduler and process abstraction on the JVM. Gen-

erally, this provides a portability advantage. It seems unlikely, however, that we will achieve

the same performance running in the JVM as the occam CCSP runtime. The Java Virtual

Machine has 1) higher overhead for bytecode in terms of the amount of memory required to

represent a process, 2) the relative slowness compared to optimized C executables [21] and

3) the higher overhead for runtime management. However, since we are not in direct compe-

tition with the CCSP runtime, if the JVM could execute a few million processes, then it still

may be of value as a target platform for language designers.

2.4. The Missing Gotos

Java does allow labels, which an be targets for breaks and continues, but not for explicit gotos.

Though goto is a reserved word in Java, programs using the goto keyword will not compile.

However, if we had the ability to perform explicit jumps in Java source, the implementation

which we describe in the next section could be done completely in source and would not re-

quire any subsequent bytecode rewriting. This approach can actually be achieved though the

JavaGoto [22] package, which implements a custom class loader that performs the bytecode

rewriting on the fly. The JavaGoto package marks gotos and labels using ‘empty’ method

calls which are replaced by actual labels and gotos in the bytecode by the rewriting.

3. Implementation

We have already seen parts of the implementation, namely the scheduler in Section 1, so in

this section we look at a number of other issues, and their solutions, associated with imple-

menting non-preemptively schedulable processes (or self-yielding) in the JVM. We have to

consider the following points:

• How do we implement a self-yielding process framework in Java?

• How do we handle parameters and locals during the time when a process is not run-

ning?

• How do we implement the yielding and resuming of a process?

• How do we handle nested procedures yielding?

We start with the process abstraction.

3.1. Processes

A process is represented by an abstract Java class called Process. In order to instantiate this

class, its run() method must be implemented (typically done in a subclass of Process). The

run() method is the method that the scheduler will call in order to execute the process (until

it voluntarily yields or terminates). The run() method takes no parameters, so any parameters

passed to the original procedure must be passed to the constructor of the class, which will

then create an activation record with the parameters and place it on a local activation stack

such that the code (in the run() method) can access the parameters’ values. All parameters of

the original ProcessJ procedure are implemented as specially named local variables and then

restored from the activation record. The contents of an activation record will be determined

by a live variable analysis performed by the compiler in order to keep the size of activation

record as small as possible (though, it should be mentioned that different activation records

complicate the idea presented later for reusing existing activation records). See the example

in Figures 2 and 3. In addition, a finalize() method, which is run when the process terminates,

can be overridden. This allows for any clean-up that might be needed; for example, the pro-

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

6 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

cesses in a par block use the finalize() method to decrement the number of running processes

so that the code enclosing the par block will be set ready to run (and thus rescheduled again)

when all its processes have terminated.

The Process class also contains the yield() method, which must be called when the pro-

cess wants to yield and be descheduled. Before discussing the yield() method in more detail,

we need to define the meaning of a run label. In the context of this paper, we refer to a run

label as a label (ultimately an address) that marks a starting point of a process being sched-

uled. Since any process with synchronization events like channel reads and writes must yield,

they give rise to run labels being placed before and after those events. In the code examples

we mark a label like ”Lx:” or as a method call ”LABEL(x);” where the LABEL is an empty

method to satisfy the compiler. Note, the ”Lx:” notation will compile, but the label disappears

in the class file and is just used for making locations in the source code.

The yield() method takes in an activation record (see Section 3.4) and the number of the

next run label and then performs the following actions:

• Updates the run label of the passed-in activation.

• Adds the activation to the activation stack.

• Sets the yielded field (found in the Process class) to true so the scheduler knows that

the process yielded and did not terminate, and thus must be added to the end of the

process queue again for future scheduling.

In addition, a number of other useful methods exist in the Process class. Examples include:

terminate(), which sets the field yielded to false and the terminated field to true, terminated()

which returns true if the process has terminated, and methods for adding activation records

to the activation stack. Finally methods for querying and setting the process ready (and not

ready) are also included.

Let us consider a small ProcessJ procedure (depicted in Figure 2) which takes in an

integer parameter x. Figure 3 shows the corresponding Process subclass (named foo) and

proc void foo(int x) {
chan<int> c;

par {
p1(c.read)

p2(c.write, x)

}
}

Figure 2. ProcessJ example.

its constructor, which takes in the ProcessJ procedure’s original parameter (x). The ‘2’ in the

parameter list to Activation’s constructor call represents the total number of parameters and

locals (one for x and one for the local variable c). In this case, the Process class is compatible

with the implementation of the scheduler in Appendix A. Naturally the yielding and correct

handling of activations and the activation stack remain, but let us now turn to par blocks.

3.2. Par blocks

A par block in ProcessJ (like the one in Figure 2) is much like the one in occam-π. The

process in which a par block is executed will be blocked from running until all the processes

in the par block have terminated. Like in JCSP, a par block is implemented though a Par
class. The Par class contains a counter that keeps track of how many of its processes are still

running and a reference to the process in which the par block appears. This reference is used

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 7

public abstract class foo extends Process {
public foo(int x) {

addActivation(new Activation(new Object[] { x } , 2));

}

void run() {
// do all the work of the ProcessJ foo() procedure here (Figure 5).

}
}

Figure 3. Example use of the Process class.

to set the process ready to run again once all its sub-process have terminated. The following

steps must be taken to create and schedule a par block’s sub-processes:

1. Create an instance of the Par class with the count 2 (representing p1 and p2).

2. Create an instance of the class p1, which represents p1 while extending it with an

implementation of finalize() (to decrement the par block’s process counter). This is

needed for the last terminating par block to set the enclosing process to ready when

it terminates.

3. Do the same for p2.

4. Insert both instances into the process queue.

5. Mark the enclosing process as not ready so that it does not get scheduled again until

the par block has terminated.

6. Yield with the run label being the instruction immediately after the par block.

Figure 4 shows the outline of the code for p1; p2 is implemented in a similar manner. (Note,

there are no explicit channel ends in this code). The code for run() from Figure 3 is shown in

public abstract class p1 extends Process {
public p1(Channel<Integer> c) {

addActivation(new Activation(new Object { c }, 1));

}

public void run() {
// the ProcessJ code for p1 goes here.

terminate();

}
}

Figure 4. Structure of the p1 class.

Figure 5. The constructor for p1 will create and place an activation record on the process’

activation stack. The code for run() (of which the par block is a part) will not run again

until the par block sets it ready (see the decrement() method in the code of Figure 6). The

implementation of the Par class is shown in Figure 6. It should be pointed out that with the

current implementation, all components of a par block must be method calls, it is not possible

to do simple things like assignments1. Since the rewriting creates new classes in which the

statements in the par block are executed, a simple assignment would cause scoping issues as

1The same issue exists in JCSP.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

8 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

void run() { // in foo
L0:

...

c = new Channel<Integer>();

final Par par1 = new Par(2, this);

// this ensures that this process will not get scheduled until

// it is marked ready by the (terminating) par block!

setNotReady();

// make the new processes and add them to the process queue

Process p1 = new p1(c) {
public void finalize() {

par1.decrement();
}

};

processQueue.enqueue(p1);

Process p2 = new p2(c, x) {
public void finalize() {

par1.decrement();
}

};

processQueue.enqueue(p2);

// then yield (and return) to run the processes in the par

yield(new Activation(new Object[] { x, c }, 2), 1);

return;

L1:

...

terminate();

}

Figure 5. Code for run() in foo.

the left-hand side local would not be in scope inside the created class. We do have ideas on

how to resolve this issue.

3.3. Channels

Next, we focus on the implementation of a channel. No exclusive access control to the chan-

nel is needed if the runtime system is single-threaded. For a multi-threaded runtime, exclu-

sive access control must be maintained with appropriate locks. See Section 6 for thoughts on

how to implement a multi-threaded runtime and scheduler.

A templated Channel class with a read() and a write() method is sufficient.

Figure 7 shows the Channel class with the implementation of the read() and write()

methods. In addition, the class contains the following four fields: a private data field that

holds the data to be transmitted across the channel, a Boolean field ready that is set to true

once the data has been written to the channel, and finally reader and writer which hold

references to the writing and reading processes. These values are needed as the receiver needs

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 9

public class Par {
// the process to schedule when done

private Process process;

// the number of processes in the par

private int processCount;

public Par(int processCount, Process p) {
this.processCount = processCount;
this.process = p;

}

public void decrement() {
processCount--;
if (processCount == 0) {

// Release the process with this par block in

process.setReady();

}
}

}

Figure 6. Implementation of the Par class.

to set the sender ready in order for it to be rescheduled and vice versa, depending on who

got to their respective read or write first. It must be noted that the read() and write() methods

of the Channel class may only be invoked if the isReadyToRead() and isReadyToWrite() (of

Figure 7) methods have been invoked and returned true respectively. It is the compiler’s job

to ensure that sound code is generated with respect to the use of a channel’s methods, that is,

since there are no explicit channel ends, the compiler must make sure to generate only read

code for a reader and write code for a writer.

Let us consider the implementations of the reads and writes. Simply calling read() or

write() is not sufficient; this is where the compiler needs to generate code that correctly uses

the Channel and Process objects. Remember, channel communication is synchronous, so the

reader cannot continue past a read() if the writer is absent, and a writer cannot continue past

a write() call until the reader is ready. Of course, a reader cannot monopolize the CPU if the

writer is not ready. If it did, the system would deadlock as it is single-threaded. Given this sit-

uation, the reader must yield and upon re-scheduling try the read again. The reader sets itself

not ready (Figure 8), so it will not be scheduled until the writer sets it ready again (Figure 7,

last line of the write method), at which time the call c.isReadyToRead(this) (Figure 8) will

return true and the read call will succeed. If the writer is ready, then the reader can receive

the data, mark the sender ready, and continue (read() method of Figure 7 and Figure 8). The

actual implementation (with run labels added) can be seen in Figure 8. The ‘2’ in the yield

call in Figure 8 denotes the run label L2 that marks the first line of the code; in other words,

if the channel is not ready for a read (because the writer is not ready), the process is set not

ready and then yields. Once the writer is ready to write the data, it will set the reader back

to ready so it will get scheduled (write() method of Figure 7). Also note, there is no need

to yield after the read happens (b = c.read(this)), but it would not be incorrect to do so, in

which case the run label should be the next one (in this case 3).

Like the reader cannot monopolize the CPU, neither can the writer. If the reader is not

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

10 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

public class Channel< T > {
// the data item communicated on the channel.

private T data;

// is there any data?

public boolean ready = false;

private Process writer = null;

private Process reader = null;

// calls to read and write must be properly

// controlled by the channel end holders.

public void write(Process p, T item) {
data = item; // save the data item

writer = p; // hold on to the writers reference

writer.setNotReady(); // not to be scheduled again until data has been read

ready = true; // channel is ready, data has been delivered

if (reader != null) // if a reader got here first

reader.setReady(); // set it ready so it can be scheduled again

}

public T read(Process p) {
ready = false; // not ready to read again!

// we need to set the writer ready as the sync

// has happened when the data was read

writer.setReady();

// clear the reader and write

writer = null;

reader = null;

return data;

}

public boolean isReadyToRead(Process p) {
reader = p; // set the reader

return ready;

}

public boolean isReadyToWrite() {
return !ready;

}
}

Figure 7. Implementation of the Channel class.

ready when the writer is, the writer will set itself not ready and yield (Figure 9), and will not

be rescheduled until a reader is ready and sets the writer to ready. A typical write looks like

the code shown in Figure 9 (again with run labels added). If the channel is ready for a write,

a data value is passed to it (in the write() method of Figure 7) and the process yields. This

is of course necessary because all channel communication is synchronous. The write() call

will set the process not ready, so it will not be rescheduled before the read has happened. The

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 11

L2:

... restore parameters and locals

if (c.isReadyToRead(this)) {
b = c.read(this);

} else {
// channel not ready, no need to reschedule until it is.

setNotReady();

yield(new Activation(... new activation record ... , ...), 2);

return;

}
L3:

...

Figure 8. Reading from a channel.

L1:

... restore parameters and locals

if (c.isReadyToWrite()) {
c.write(this, 42);

yield(new Activation(... new activation record ... , ...), 2);

return;

} else {
yield(new Activation(... new activation record ... , ...), 1);

return;

}
L2:

...

Figure 9. Writing to a channel.

process will then yield and go back to the end of the process queue. The run label passed to

the yield call should be the run label of the instruction following the write.

If the channel was not ready for a write (which could happen when implementing many-

to-one and many-to-many channels) it simply yields and sets the next run label to the begin-

ning of the if in the code in Figure 9; this way the write will be retried next time the process

gets scheduled. It should be noted that to avoid side-effects, if the value to be sent is the result

of a method call that could perform synchronizations, it should be lifted out of the write()
call and handled like any other method that could yield.

3.4. Activation Record and the Activation Stack

In [18], a limitation of the techniques described was that no procedure call made by a mobile

process could call suspend(). This restriction means, that when a mobile process suspends,

we only need to save its parameters and locals. This can be done by adding an Object array

in the class that represents the Java version of the mobile process. This is a restriction that we

could not have made for this work as it would be impossible to imagine that channel ends and

barriers could not be passed as parameters. If, for example a process calls a procedure with

the reading end of a channel, and the procedure then performs a read, then the process must

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

12 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

yield. This means that both the process’ and the called procedure’s parameters and locals

must be saved in (separate) activation records (one for each) and kept on an activation stack,

a very similar approach taken by the JVM and any other runtime systems allowing procedure

calls/method invocations.

3.5. Processes Calling Procedures

We need to consider two different cases when it comes to processes or procedures calling

other procedures. If the callee does not participate in any synchronization events, no rewriting

needs to take place. However, if the callee does synchronize, for example by calling a read

on a channel that was passed in as a parameter, then the callee must be able to yield, and thus

require rewriting in the exact same way as the caller.

What happens when the callee returns? It could be because it terminated, in which case

the caller needs not take any special measures and can simply continue its execution until

it either terminates or yields because of a synchronization event. If the callee terminated, it

would not have left an activation record on the activation stack. If it yielded, it would have left

an activation record on the activation stack, and the caller must therefore also yield and add its

activation record to the front of the activation stack (really, the activation stack is not a stack

but a linked list). Consider the small example in Figure 10 (A larger ProcessJ example imple-

proc int g(chan<int>.read in) {
int result = in.read();

return result;
}

proc void p1(chan<int>.read in) {
int a;

a = g(in);

...

}

Figure 10. ProcessJ process calling a procedure.

menting the Prefix process from the CommsTime benchmark can be found in Appendix B).

The read() in g() will yield, which mean that p1() must yield. When rescheduled, the flow of

control must make it through p1() back to g() and re-attempt the read. We have already seen

how to accomplish the rewriting in g(). The code for p1() is shown in Figure 11. As we can

see, if g() yielded, p1() will yield and resume at L1 the next time p1() is scheduled; when

g() is called on subsequent invocations (because it yielded), it will behave correctly as it was

rewritten according to the techniques described earlier. The code following L0 establishes the

activation record that g() will read when called the first time.

3.6. Alt

No process oriented programming language is complete without a way to alternate over (in-

put) channel ends. ProcessJ implements the classic alt from CSP, though only with input

guards for now (output guards, timers and barriers are reasonably simple to implement in

a single-threaded runtime as well). A ProcessJ example of an alt alternating over two input

channels can be seen in Figure 12. Since the scheduler is single-threaded, implementing an

alt can be done by simply picking one of the ready channels. Once a writer has committed

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 13

...

L0:

addActivation(new Activation(new Object[] { in }, 2));

L1:

a = g();

if (yielded) {
yield(new Activation(new Object[] { in, a }, 2), 1);

return;

}
...

terminate();

Figure 11. Implementation of p1().

public proc void bar(chan<int>.read in1,

chan<int>.read in2) {
int x;

alt {
x = in1.read() : { ... }
x = in2.read() : { ... }

}
}

Figure 12. ProcessJ alt example.

to a channel synchronization, the channel is ready, and the alt construct can pick any of the

ready channels. The implementation of the Alt class is shown in Figure 13. The Alt class

public class Alt {
private Object[] channels;

public Alt(Object... channels) {
this.channels = channels;

}

// -1: no channels are ready

public int getReadyIndex() {
for (int i=0; i<channels.length; i++) {

if (((Channel<? extends Object>)channels[i]).readyToReadAlt())
return i;

}
return -1;

}
}

Figure 13. The Alt class.

is instantiated with an array of channels and the getReadyIndex() method returns the index

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

14 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

of a ready channel. Note, The method readyToReadAlt() simply checks if the channel has a

writer committed to the communication yet. This method was added to the Channel class to

accommodate the implementation of the alt.

Figure 14 shows code that uses the alt. After constructing it, the getReadyIndex method

returns an index which is used for switching. If the method returns -1, and therefore does not

match any of the cases, the default case is executed, and the process yields and retries next

time it is scheduled.

...

L1:

if (runLabel == 1) {
// restore locals

runLabel = -1;

}
Alt alt = new Alt(in1, in2);

switch(alt.getReadyIndex()) {
case 0: // in1

in1.isReadyToRead(this);

x = in1.read(this);

...

break;

case 1: // in2
in2.isReadyToRead(this);

x = in2.read(this);

...

break;

default: // no ready channels

yield(new Activation(new Object[] { in1, in2, x }, 3), 1);

return;

}
...

Figure 14. Code using the Alt class.

4. Runtime Tests

Reporting on correctness tests is of course rather difficult, but to get an idea of the capabilities

of the system we have implemented, we have run a number of tests on two different machines

(with different amounts of memory). The two execution architectures on which we tested are

• Mac Pro 4.1, OS X Snow Leopard, Intel i7 Quad-core Xenon 2.93 MHz with 8GB

RAM. On this machine we managed to run tests with up to 22,000,000 processes

• AMD dual 16 core Opteron 6274 (2.2 GHz) with 64GB 1,333 MHz DDR3 ECC Reg-

istered RAM running CentOS 6.3 (Linux 2.6.32). On this machine we managed to run

tests up to 100,000,000 processes.

Though it should be noted, the runtime system (the scheduler) uses just one core.

We tested a simple program with a reader and a writer running in parallel communicating

one integer value. The reader calls a procedure to do the send, and the writer reads the channel

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 15

directly (see Figure 15). The par for will add 2 ∗ n processes to the process queue so it

reaches maximum size (which is 2 ∗ n + 1) before running anything. The way the process

queue is filled, each reader will be scheduled (and yield) before its writer, so each reader and

each writer will be scheduled twice (thus go around the process queue twice). The reason

for stopping the tests at 22,000,000 and 100,000,000 respectively was simply a question of

degrading performance. When it was obvious that there was so much overhead because of

paging or other memory issues, we stopped increasing the number of processes. It might be

possible to run bigger samples on both machines, but the times would be unacceptably poor.

It should be noted that the channel c is not shared between instances of the inner par block,

but only between the two processes in the par block. We are still working on the syntactic

issues associated with parallel for loops and similar things. The times (real, user and system)

reported where obtained with the OS X/Linux shell built-in command time. The Mac with

8GB RAM runs Java version 1.6.0 26, and the -Xmx flag was given the value 8G. The AMD

machine with 64GB RAM runs Java version 1.6.0 24, and the -Xmx flag was given the value

64G. To test the maximum number of processes that can be run in one single-threaded JVM,

proc int g(chan<int>.read in) {
int result = c.read();

return result;
}

proc void p1(chan<int>.read in) {
int a;

a = g(in);

}

proc void p2(chan<int>.write in) {
c.write(42);

}

proc void main(int n) {
par for (int i=0; i<n; i++) {

chan<int> c;

par {
p1(c.read);

p2(c.write);

}
}

}

Figure 15. ProcessJ test program.

and to gain some knowledge about performance, we have executed the code, obtained by

rewriting the above ProcessJ code, ten times for each value of n (starting at 2,000 all the

way up to 22,000,000 for the Mac and 100 million for the AMD). The time reported is the

best of each of the 10 runs. We ran the test on the Mac and the AMD for 2,000, 20,000,

100,000, 200,000, 1,000,000, 2,000,000 to 22,000,000 in steps of 2,000,000, and continued

to 100,000,000 on the AMD, first in steps of 2,000,000 to 30,000,000 and then in steps of

10,000,000 all the way to 100,000,000. The time shown in Figures 16, 17, 18, 19, and 20 are

all based on the real time (i.e., the wall clock time) from Table 1.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

16 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

Table 1. Time measurements in seconds.

Mac AMD

Number of Real User System Total Real User System Total

Processes Time Time Time Time Time Time Time Time

2,000 0.179 0.225 0.033 0.258 0.141 0.15 0.052 0.202

20,000 0.288 0.412 0.040 0.452 0.343 0.445 0.058 0.503

100,000 0.715 1.981 0.188 2.169 0.475 0.846 0.076 0.922

200,000 1.043 2.976 0.208 3.184 0.550 0.898 0.090 0.988

1,000,000 3.678 11.745 0.494 12.239 2.456 21.233 4.063 25.296

2,000,000 6.900 21.422 0.849 22.271 9.042 42.812 8.196 51.008

4,000,000 13.559 42.631 1.567 44.198 22.588 88.304 18.900 107.204

6,000,000 20.312 64.512 2.316 66.828 28.217 150.380 26.150 176.53

8,000,000 27.019 86.494 3.069 89.563 35.703 276.555 32.986 309.541

10,000,000 33.967 108.940 3.765 112.705 53.858 343.264 31.407 374.671

12,000,000 40.998 132.855 4.580 137.435 65.226 483.807 37.344 521.151

14,000,000 48.005 155.932 5.595 161.527 90.195 569.434 43.174 612.608

16,000,000 72.199 185.503 9.891 195.394 103.211 676.649 41.916 718.565

18,000,000 116.668 211.246 11.970 223.216 98.041 718.234 51.715 769.949

20,000,000 552.964 279.982 25.049 305.031 166.047 1148.218 63.168 1211.386

22,000,000 767.245 336.626 35.167 371.793 174.428 1235.173 71.503 1306.676

24,000,000 — — — — 175.481 1,236.130 81.863 1,317.993

26,000,000 — — — — 235.759 1,435.805 85.566 1,521.371

28,000,000 — — — — 243.219 1,611.822 77.575 1,689.397

30,000,000 — — — — 235.587 1,647.064 89.196 1,736.260

32,000,000 — — — — 326.800 1,965.065 107.430 2,072.495

34,000,000 — — — — 319.788 2,045.741 102.725 2,148.466

36,000,000 — — — — 321.788 2,038.874 108.610 2,147.484

38,000,000 — — — — 337.983 2,283.136 105.309 2,388.445

40,000,000 — — — — 344.113 2,320.590 99.907 2,420.497

50,000,000 — — — — 447.756 2,903.146 133.154 3,036.300

60,000,000 — — — — 589.306 3,750.600 162.203 3,912.803

70,000,000 — — — — 753.439 4,362.060 221.815 4,583.875

80,000,000 — — — — 772.803 4,746.371 287.332 5,033.703

90,000,000 — — — — 1,131.736 5,792.862 332.786 6,125.648

100,000,000 — — — — 2,750.785 6,921.055 271.813 7,192.868

Figure 16 illustrates the real runtime for the program with the above mentioned number

of processes. Figure 17 illustrates the time in microseconds that each par of processes (p1()

and p2()) took to execute (including the communication). As we can see, the best performance

of 7 microseconds per pair of processes happened in the range of 1,000,000 - 14,000,000.

We also ran the same program on an AMD processor with 64GB, and here we managed to

run as many as 100,000,000 processes (which was about on the limit of what the machine

could handle), and the results can be see in Figures 18 (for 2,000 to 22,000,000 processes)

and 19 (for 22,000,000 to 100,000,000 processes). The per processor pair (one sender and

one receiver) cost on the AMD machine seems higher than on the Mac; we cannot say why

at this time. Figure 20 illustrates these numbers. The sweet spot seems to be in the range of

1,000,000 to around 90,000,000 processes. Like with the Mac, a certain start-up cost must

be paid to start the JVM. To get an idea of what part of the program takes what amount of

time, we investigated the 20,000,000 processes case. It turns out that setting up the process

queue (without having executed anything yet) takes 61 seconds (6.117 microseconds per

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 21

on the source code.

4.2. Alt

We tested the alt with a simple two producers and a single consumer multiplexer system

where the consumer received 10,000,000 messages (the producers were willing to commu-

nicate as many messages as the consumer could consume). On the Mac the average time per

communication was 1.32 microseconds, and on the AMD it was 2.02 microseconds.

5. Conclusion

In this paper we have presented a code generation and bytecode rewriting technique for im-

plementing ProcessJ processes in the JVM by the millions. We have also presented a simple

scheduler that can be used to execute the process in the JVM.

We have successfully tested the system and shown that, on a regular office workstation, it

is feasible to run (translated ProcessJ) programs with tens of millions of processes. In addition

we succeeded in executing 100,000,000 processes on a 64GB memory AMD machine. The

main limitation to performance is the amount of memory available on the system.

We see that the Mac tops out at approximately 18,000,000 processes, and since the AMD

has 4 times as much memory, we would expect it to start showing extremely poor perfor-

mance at around 4∗18,000,000 ≈ 70-80,000,000 processes, and indeed it does (performance

starts to seriously decline at around 80,000,000).

6. Future Work

The system we have presented in this paper utilizes a rewriting technique and implementation

that takes advantage of only a single operating systems thread in the JVM. That is of course,

in the long run, not acceptable. Ultimately, we want an n core CPU to always execute n

schedulers in separate JVM threads. A initial, but probably not very scalable, solution is

outlined here; we need to make two changes to the system:

1. Rather than having just one instance of the process queue, we create n instances,

and rather than just running one copy of the scheduler, we start n Java threads each

running a copy of the scheduling algorithm and each being associated with its own

process queue.

2. Since access to a channel (and other synchronization entities), can no longer be guar-

anteed to be exclusive, race conditions can now happen. The obvious, and correct

solution is to re-implement the classes representing the synchronization entities like

channels and barriers to only allow exclusive access. The various methods can be

declared synchronized and access to whole objects can be protected by locks using

synchronized blocks. It should be noted, implementing a channel using the wait-notify
paradigm in Java is not possible as both wait and notify operate on Java threads. The

current implementation where the sender sets the reader back to ready and vice-versa

is a simple implementation of the wait-notify paradigm in our system.

It should also be noted that this approach will not increase the number of processes that

can be run on a single JVM (single or multi-threaded) as this number is determined by the

memory size of the machine on which the JVM runs. However, in theory, adding more cores

and thus more process queues and schedulers, we should see a speed up in execution time; at

least until the runtime is significantly impacted by page faults and the fact that the JVM heap

exceeds the total physical memory size.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

22 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

Rather than using a linked list to hold the activation records for each process, an array

could be used; the amount of space taken up by just one linked link node object could easily

cover the space of an array with at least a couple of indices. Whether this would greatly

improve performance is not known, but it is worth exploring.

As mentioned in Section 4, the way activation records are created and maintained could

be optimized; before a yield, we now create a brand new activation record (array of Objects)

rather than simply reusing and updating the one that already exists.

Another optimization, which could be done to the single-threaded runtime, is to split

the process queue into two queues: one for the ready and one for the not ready processes.

Doing this also eliminates the notReadyCounter from the scheduling code as a deadlock has

happened when the queue with the ready processes is empty and the one with the not-ready

ones is not empty. Naturally, this is not necessarily as easy as it first appears, but it should

be reasonably straightforward to implement what we can call a ‘naı̈ve’ version of a multi-

threaded scheduler. There is really no need for the not ready processes to cycle through the

process queue if they cannot be run. When a not ready process becomes ready it gets moved

to the ready queue and eventually gets run; when a process become not ready, it gets moved to

the not ready queue. Alternatively, like both JCSP and CCSP, non-ready processes could be

held by the channel on which they are blocking. When the channel communication happens,

the writer can reschedule the reader (if the reader arrived at the channel communication first),

or the reader can reschedule the writer (if the writer got there first).

One last issue that eventually needs to be addressed is blocking I/O. If a procedure blocks

in an I/O call no further progress will be made until the procedure unblocks. This can be

a difficult issue to tackle with a single-threaded scheduler, however with a multi-threaded

scheduler a possible solution could be to allocate one or more threads in the scheduler to deal

with procedure calls that can block (e.g. blocking I/O). Alternatively, processes performing

I/O could be executed in real JVM threads and thus scheduled by the JVM. Appendix C

illustrates how this could be achieved.

We are fully aware that multi-core scheduling is a complicated and eventually some of

the techniques described in [23] might be adaptable to our approach.

Acknowledgements

We would like to thank the reviewers who clearly spent a lot of time reading the paper and

making suggestions on how to improve the contents as well as the presentation. Also, we

would like to thank the paper-specific editor, Kevin Chalmers, for re-reading the paper and

making sure we got everything just right, and Peter Welch for quickly looking over the alt

section, which was added after the paper was initially reviewed.

References

[1] Amit Rathore. Clojure in Action. Manning Publications Co., Greenwich, CT, USA, 1st edition, 2011.

[2] D. Koenig, A. Glover, P. King, G. Laforge, and J.Skeet. Groovy in Action. Manning Publications Co.,

2007.

[3] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive Step-by-step

Guide. Artima Incorporation, USA, 1st edition, 2008.

[4] Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and Ian Dees. Using JRuby: Bringing Ruby to

Java. Pragmatic Bookshelf, 1st edition, 2011.

[5] Samuele Pedroni and Noel Rappin. Jython Essentials. O’Reilly, Beijing, 2002.

[6] Jan Bækgaard Pedersen and Marc L. Smith. ProcessJ: A Possible Future of Process-Oriented Design. In

Peter H. Welch, Frederick R. M. Barnes, Jan F. Broenink, Kevin Chalmers, Jan Bækgaard Pedersen, and

Adam T. Sampson, editors, Communicating Process Architectures 2013, pages 133–156, November 2013.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 23

[7] James Moores. CCSP – a Portable CSP-based Run-time System Supporting C and occam. In B.M.

Cook, editor, Architectures, Languages and Techniques for Concurrent Systems, volume 57 of Concurrent

Systems Engineering series, pages 147–168, Amsterdam, The Netherlands, April 1999. WoTUG, IOS

Press. ISBN: 90-5199-480-X.

[8] Peter H. Welch and Frederick R.M. Barnes. Communicating Mobile Processes: introducing occam-pi. In

Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture

Notes in Computer Science, pages 175–210. Springer Verlag, April 2005.

[9] Frederick R. M. Barnes and Peter H. Welch. Communicating Mobile Processes. In Ian East, Jeremy

Martin, Peter H. Welch, David Duce, and Mark Green, editors, Communicating Process Architectures

2004, volume 62, WoTUG-27 of Concurrent Systems Engineering Series, ISSN 1383-7575, pages 201–

218, Amsterdam, The Netherlands, September 2004. IOS Press. ISBN: 1-58603-458-8.

[10] Peter H. Welch and Frederick R. M. Barnes. Mobile Barriers for occam-π: Semantics, Implementation

and Application. In Jan F. Broenink, Herman W. Roebbers, Johan P.E. Sunter, Peter H. Welch, and David

C. Wood, editors, Communicating Process Architectures 2005, volume 63, WoTUG-28 of Concurrent

Systems Engineering Series, pages 289–316, Amsterdam, The Netherlands, September 2005. IOS Press.

ISBN: 1-58603-561-4.

[11] Peter H. Welch and Frederick R. M. Barnes. A CSP Model for Mobile Channels. In Communicating

Process Architectures 2008, volume 66, WoTUG-31 of Concurrent Systems Engineering Series, pages

17–33, Amsterdam, The Netherlands, September 2008. IOS Press. ISBN: 978-1-58603-907-3.

[12] E. Bruneton and R Lenglet and T. Coupaye. ASM: a code manipulation tool to implement adaptable

systems. In Adaptable and extensible component systems, November 2002.

[13] Peter H. Welch, Neil C.C. Brown, James Moores, Kevin Chalmers, and Bernard Sputh. Integrating and Ex-

tending JCSP. In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch, editors, Communi-

cating Process Architectures 2007, volume 65 of Concurrent Systems Engineering Series, pages 349–370,

Amsterdam, The Netherlands, July 2007. IOS Press. ISBN: 978-1-58603-767-3.

[14] Peter H. Welch and Paul D. Austin. Communicating Sequential Processes for Java (JCSP) Home Page.

Systems Research Group, University of Kent, 2010. www.cs.kent.ac.uk/projects/ofa/jcsp.

[15] Peter H. Welch. Java Threads in the Light of occam/CSP. In Peter H. Welch and André W.P. Bakkers,

editors, Architectures, Languages and Patterns for Parallel and Distributed Applications, Proceedings of

WoTUG 21, volume 52 of Concurrent Systems Engineering, pages 259–284, Amsterdam, The Netherlands,

April 1998. WoTUG, IOS Press. ISBN: 90-5199-391-9.

[16] Carl G. Ritson and Peter H. Welch. A Process-Oriented Architecture for Complex System Modelling. In

Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter H. Welch, editors, Communicating Process

Architectures 2007, pages 249–266, July 2007.

[17] Carl G. Ritson, Adam T. Sampson, and Fred R. M. Barnes. Multicore scheduling for lightweight commu-

nicating processes. In John Field and Vasco Thudichum Vasconcelos, editors, COORDINATION, volume

5521 of Lecture Notes in Computer Science, pages 163–183. Springer, 2009.

[18] Jan B. Pedersen and Brian Kauke. Resumable Java Bytecode - Process Mobility for the JVM. In The

thirty-second Communicating Process Architectures Conference, CPA 2009, organised under the auspices

of WoTUG, Eindhoven, The Netherlands, 1-6 November 2009, pages 159–172, 2009.

[19] Matthew Sowders and Jan B. Pedersen. Mobile Process Resumption In Java Without Bytecode Rewriting.

In Proceedings of Parallel and Distributed Processing Techniques and Applications (PDPTA’11), July

2011.

[20] The IEEE and The Open Group. POSIX Threads: IEEE Std 1003.1, 2013 Edition, 2013. http://pubs.

opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html.

[21] The Computer Benchmark Games. http://benchmarksgame.alioth.debian.org.

[22] Javagoto - Goto for your Java Programs. http://javagoto.com.

[23] Carl G. Ritson, Adam T. Sampson, and Frederick R. M. Barnes. Multicore Scheduling for Lightweight

Communicating Processes. In John Field and Vasco Thudichum Vasconcelos, editors, Coordination Mod-

els and Languages, COORDINATION 2009, Lisboa, Portugal, June 9-12, 2009. Proceedings, volume 5521

of Lecture Notes in Computer Science, pages 163–183. Springer, June 2009. http://www.cs.kent.ac.

uk/pubs/2009/2928/.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

24 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

Appendix A. The Scheduler

For completeness, the Java code that implements the simple scheduler used for the tests in

this paper is illustrated in Figure 25.

public static void schedule(ProcessQueue pq[]) {
int notReadyCounter = 0;

while (pq.size() > 0) {
// grab the next process in the process queue

Process p = pq.dequeue();

// is it ready to run?

if (p.ready()) {
// reset the notReadyCounter

notReadyCounter = 0;

// yes it was ready, so run it

p.yielded = false;

p.run();

// and reset the notReadyCounter

notReadyCounter = 0;

// did the process terminate

if (!p.terminated()) {
// did not terminate, so insert in process queue

pq.enqueue(p);

} else {
// finalize before terminating the process

p.finalize();

}
} else {

// no, not ready, put it back in the process queue

// and count it as not ready

pq.enqueue(p);

notReadyCounter++;

}
// if we have seen all the processes

// and none were ready we have a deadlock

if (notReadyCounter == pq.size() && pq.size() > 0) {
System.out.println("No processes ready to run." +

"System is deadlocked");

System.exit(1);

}
}

}

Figure 25. Java code for the simple scheduler.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 25

Appendix B. CommsTime in ProcessJ

This section shows the ProcessJ version of the CommsTime benchmark and illustrates, in

detail, the implementation of the Prefix process; we show the equivalent Java code and byte

code rewriting.

import std.io;

public proc void Prefix(int init, chan<int>.read in,

chan<int>.write out) {
out.write (init);
while (true) {

int val = in.read();

out.write(val);
}

}
public proc void Delta(chan<int>.read in, chan<int>.write out1,

chan<int>.write out2) {
while (true) {

int val = in.read();

out1.write(val);
out2.write(val);

}
}
public proc void Succ(chan<int>.read in, chan<int>.write out) {

while (true) {
int val = in.read();

out.write(val + 1);

}
}
public proc void Consumer(chan<int>.read in) {

while (true) {
int val = in.read();

if (val % 10000 == 0)

println(val);
}

}
public proc void CommsTime() {

chan<int> a,b,c,d;

par {
Prefix(0, a.read, c.write);

Delta(a.write, d.read, b.read);

Succ(b.read, c.write, a.write);

Consumer(d.read);

}
}

Figure 26. The Prefix process in ProcessJ.

Figure 27 shows the code generated for the Prefix process. This code was slightly optimized

by moving the return statement (implemented as if (TRUE) return;, see the explanation

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

26 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

below) out of both branches of the channel-write code. Once the code has been compiled,

the cases in the switch statement (marked with a *) must be adjusted to jump to the locations

of the LABEL() method. For clarity we add a call to an empty method Goto(). LABEL() is

also just an empty method used to mark the location of the labels and are explained in Ap-

pendix B. These are marked with a + in Figure 27.

public abstract class Prefix extends Process {
public Prefix(int init, Channel<Integer> in, Channel<Integer> out) {

addActivationFirst(new Activation(new Object[] {init, in, out}, 4));

}

public void run() {
/** Declare parameters */

int $init = 0;

Channel<Integer> $in = null;

Channel<Integer> $out = null;

Activation activation = getActivation();

int runLabel = activation.getRunLabel();
/** Restore parameters */

$init = (Integer)activation.getLocal(0);

$in = (Channel<Integer>)activation.getLocal(1);

$out = (Channel<Integer>)activation.getLocal(2);

/** Jump */

switch (runLabel) {
∗ case 0: Goto(0); break;

∗ case 1: Goto(1); break;

∗ case 2: Goto(2); break;

∗ case 3: Goto(3); break;

∗ case 4: Goto(4); break;

}
+ LABEL(0);

if ($out.isReadyToWrite()) {
$out.write(this, $init);
yield(new Activation(new Object[] {$init, $in, $out}, 4), 1);

} else {
setNotReady();

yield(new Activation(new Object[] {$init, $in, $out}, 4), 0);

}
if (TRUE) return;

+ LABEL(1);

while (TRUE) {
int val = 0;

+ LABEL(2);

if (runLabel == 2) {
val = (Integer)activation.getLocal(3);

runLabel = -1;

}
if ($in.isReadyToRead(this)) {

val = $in.read(this);

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 27

} else {
setNotReady();

yield(new Activation(new Object[] { $init, $in, $out, val}, 4), 2);

if (TRUE) return;

}
+ LABEL(3);

if (runLabel == 3) {
val = (Integer)activation.getLocal(3);

runLabel = -1;

}
if ($out.isReadyToWrite()) {

$out.write(this, val);
yield(new Activation(new Object[] {$init, $in, $out, val}, 4), 4);

} else {
setNotReady();

yield(new Activation(new Object[] {$init, $in, $out, val}, 4), 3);

}
if (TRUE) return;

+ LABEL(4);

if (runLabel == 4) {
val = (Integer)activation.getLocal(3);

runLabel = -1;

}
}
terminate();

}
}

Figure 27. Java implementation of the Prefix process.

Labels

To better illustrate the location of the label locations we have used an empty method void

LABEL(int label) { }. The code generated for these invocations has one of two shapes (as

shown in Figures 28 and 29). The code in Figure 28 has a label before the three lines as-

sociated with the dummy LABEL() invocation. In this situation, the label Label216 can be

substituted for case 1 (line 217 shows that it is label 1 as the constant 1 is loaded onto the

stack) in the switch statement. In Figure 29 there is no label before the LABEL() invocation,

so a label needs to be inserted and this new label goes in case 2 in the switch statement. Now

lines 216, 217, 218, 260, 261, and 262 can be removed.

Label216:

.line 54

216: aload 0

217: iconst 1

218: invokevirtual Prefix/LABEL(I)V

Figure 28. Label() invocation with preceding bytecode label.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

28 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

258: istore 6

.line 62

260: aload 0

261: iconst 2

262: invokevirtual Prefix/LABEL(I)V

Figure 29. Label() invocation without preceding bytecode label.

Switch Statement

The switch statement generated by the Java compiler looks like the one shown in Figure 30.

The labels are incorrect, and need to be replaced by the ones we discussed in the previous

section. The old labels and the code associated with them (which follows immediately after

the switch) can be removed from the bytecode (though it will never get executed). Also, the

default case will never be executed. Note, in a tableswitch instruction the two numbers

following the instruction denote the low and the high key, thus Label76 represents the value

0, Label79 the value 1 and so on.

41: tableswitch 0 4

Label76

Label79

Label82

Label85

Label88

default : Label88

Figure 30. Switch statement in bytecode.

Returns

To trick the compiler to not generate errors about unreachable code, we implemented the

return following the yields as “if (TRUE) return;” (TRUE is a final Boolean field with the

value true), and that generates bytecode like the code shown in Figure 31. Lines 163, 164

163: aload 0

164: getfield Prefix2/TRUE Z

167: ifeq Label216

170: return

Figure 31. Generated bytecode for return.

and 167 can simply be removed, leaving the return as the only instruction.

Appendix C. Blocking Calls

As mentioned, blocking calls to for example library routines etc. can be a problem with a

single-threaded scheduler. In this section we describe a simple way to solve this problem

by utilizing Java/JVM threads to execute blocking code. We start with the Blocking class

shown in Figure 32. This class extends the Java Thread class, and can therefore be executed

separately by the JVM scheduler. If a blocking call is to be executed, it can be placed in the

runit() method of an instance of the Blocking class and run by invoking the start() method.

This will in turn invoke the run() method which will first invoke the doit() method and then

set the process back to ready. The code with the blocking call needs to create an instance

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM 29

public abstract class Blocking extends Thread {
protected Process pr;

protected Object returnValue = null;

public Blocking(Process p) {
this.pr = p;

}

public abstract void doit();

public void run() {
doit();
pr.setReady();

}

public Object getReturnValue() {
return returnValue;

}
}

Figure 32. The Blocking class.

of the Blocking class, but also set itself not ready to run. This means that the process is not

scheduled again before it is marked ready. Marking it ready is the job of the Blocking class;

more specifically, the last line of the run() method calls setReady() on the process. Figure 33

illustrates the use of the Blocking class; note, after starting the JVM thread to execute the

Blocking object’s run() method, the process must yield. When finally ready again, execution

continues immediately after the yield() call. If the doit() method set the returnValue field,

...

this.setNotReady();

Blocking b = new Blocking(this) {
public void doit() {

// do the blocking call here

// set the field returnValue if needed

}
};

b.start();
yield(new Activation(... new activation ..., ...), 1);

LABEL(1);

// return value available in b.getReturnValue()

...

Figure 33. Example use of the Blocking class.

it can be accessed through a reference to the Blocking object. In the line after the label in

Figure 33, the expression b.getReturnValue() would retrieve the return value of the blocking

call.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

30 J.B. Pedersen and A. Stefik / Towards Millions of Processes on the JVM

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

