
Communicating Process Architectures 2014

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2014

© 2014 The authors and Open Channel Publishing Ltd. All rights reserved.

1

Performance of

Periodic Real-Time Processes:

a Vertex-Removing

Synchronised Graph Product

Antoon H. BOODE 1 and Jan F. BROENINK

Robotics and Mechatronics, CTIT Institute, Faculty EEMCS,

University of Twente, The Netherlands

Abstract. In certain single-core mono-processor configurations, e.g. embedded con-

trol systems, like robotic applications, comprising many short processes, process con-

text switches may consume a considerable amount of the available processing power.

For this reason it can be advantageous to combine processes, to reduce the number of

context switches. Reducing the number of context switches decreases the execution

time and thereby increases the performance of the application. As we consider robotic

applications only, often consisting of processes with identical periods, release times

and deadlines, we restrict these configurations to periodic real-time processes execut-

ing on a single-core mono-processor. These processes can be represented by finite

directed acyclic labelled multi-graphs. The vertex-removing synchronised product of

such graphs gives graphs that represent processes which have less context switches.

To reduce the memory occupancy, the vertex-removing synchronised product removes

vertices that are not reachable; i.e. represents states that can never occur. By means of

a lattice, we show all possible products of a set of graphs, where the number of prod-

ucts is given by the Bell number. We finish with heuristics from which a set of graphs

can be calculated that represents a set of processes that will not miss their deadline

and which fits in the available memory.

Keywords. graph transformation, vertex-removing synchronised product, performance

of real-time periodic processes, process algebra

Introduction

Embedded control systems, like periodic real-time robotic applications, can be designed us-

ing formal methods like process algebras. While designing, the designer distributes the re-

quired behaviour over up to several hundreds of processes. These processes very often syn-

chronise over actions, e.g. to assert that a set of processes will be ready to start executing

at the same time. Another example is mutual exclusion of resources, where a number of

processes is allowed in their critical section.

Due to this synchronisation the application suffers from a considerable overhead related

to extra context switches. We recognise two kinds of sources for these context switches,

synchronisation over an action by two or more processes and a series of I/O actions between

two processes, of which the former is the issue of this paper. The latter will be dealt with in

future research.

1Corresponding Author: Ton Boode, Robotics and Mechatronics, CTIT Institute, Faculty EEMCS, University

of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands. E-mail: A.H.Boode@utwente.nl.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

2 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

In [4] we define periodic real-time processes as finite directed acyclic multi-graphs,

where these graphs are closely related to state transition systems. As, per action, there is a

context switch, the longest path in such a graph is the most time consuming with respect

to the context switch and therefore the worst case. We introduced in [4] a Vertex-Removing

Synchronised Product (VRSP) to reduce the number of context switches. VRSP is based

on the synchronised product of Wöhrle and Thomas [10], which is used in model-checking

synchronised products of infinite transition systems.

The VRSP reduces the number of context switches and realises a performance gain for

periodic real-time applications. This is achieved by (repetitively) combining two graphs rep-

resenting two processes that synchronise over some action. The resulting process will have

only one context switch per synchronising action, where the two processes each have a con-

test switch per synchronising action [4].

For our applications, short processes often consist of three or four sequential actions,

where the first and the last action synchronise with other processes. For these applications a

significant performance gain is expected.

An example of an overall system architecture1 is described in Figure 1.

On Design level the designer gives a specification using some process algebra, in our

case FSP [8]2. Using VRSP this set of processes is transformed into a set of processes which

will meet their deadlines and fit into the available memory. This new set of processes is trans-

formed into Threads containing Finite State Machines (FSMs), where each FSM represents

the behaviour of the corresponding FSP process.

The Synchronisation Software is the controller of the whole system. It decides whether

a process is allowed to do a step in its FSM. To make hardware interaction possible, the

Hardware Dependent Software contains as well a FSM, but related to an action/event is also

some hardware interaction. This is also the case for Algorithmic Software, e.g. representing

20-SIM models, where together with a step in the FSM also some algorithm is executed.

In this manner there is a clear separation of concerns between the application and the

hardware controlling software.

The contribution of this paper is an improvement on the design cycle and is illustrated in

Figure 2.

In this cycle we start with the process specification written in some process algebraic

form, in our case FSP3. By a transformation function T, T : tProcess Specificationu Ñ tHiu,

we get a set of finite directed acyclic labelled multi-graphs. Using the VRSP, the set of graphs

is transformed into a new set of graphs. For this new set of graphs, either the processes that

they represent meet their deadline and fit into the available memory, or there is no set of

processes with strong-bisimular behaviour with respect to the original set of processes that

will do so. In the former case, we again obtain a specification in some process algebraic form,

in our case-study FSP, by using the inverse of the transformation function T , T´1.

To be able to compose the set of graphs in a meaningful manner, the VRSP has to be

idempotent, commutative and associative. For CSP this is all well known and because VRSP

is similar to the CSP parallel composition, we can leave this for future research to be for-

malised.

Furthermore we investigate the number of products that are possible. These products are

represented by a lattice. The lattice shows all possible products, which are partitions of the

1The first authors students at the InHolland University of Applied Sciences implement such a system as part

of their curriculum.
2For our case-study the specification in FSP is more compact than e.g. CSP, although it lacks some of the

nice features of CSP [6].
3We describe a product which is not restricted to FSP. In the future research the transformation function

should be able to deal with any selected process algebra, which could easily be e.g. ACP [2] or CSP. Obviously

the process algebra has to be a timed one, but this is not necessary for our case study.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

4 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

Parallel Process
Specification

Set of Labelled
Directed Acyclic
Multi-Graphs

Parallel Process
Specification

T(Specification)

T-1(Set of Graphs) Set of Labelled
Directed Acyclic
Multi-Graphs

Hi∑
i=1k=1

lij

k,VRSP(=)

Figure 2. The design cycle

1. The Vertex Removing Synchronised Product

In this section we give an informal introduction to VRSP.

In [4] we have stated that ”At specification level, a set of parallel real-time processes can

be represented by a graph consisting of several components. A single process is represented

by one component, which is a finite labelled weighted directed multi-graph, consisting of

vertices, arcs between pairs of vertices and labels associated with the arcs.”.

Processes which have no action in common, will execute interleaved when the gener-

alised parallel operator is used. These actions are called asynchronous actions and are repre-

sented by asynchronous arcs. The interleaved execution of processes can be represented by

the Cartesian product of the components (Figure 3). To build the Cartesian product of two

components, each component is copied over all vertices of the other component and vice

versa. In this manner a path through the Cartesian product will be identical to traversing in

an interleaved manner through the components.

w
1

w
2

a
w
3

c

v1 v2a v3b v4c

H1

H1 H2

H2
a b c

a
c

a
c

a b c

a b c

a
c

a
c

(v3,w2)

(v3,w1)(v2,w1)(v1,w1)

(v1,w2) (v2,w2)

(v4,w1)

(v4,w2)

(v3,w3)(v1,w3) (v2,w3) (v4,w3)

Figure 3. The Cartesian product of H1, H2 ñ H1lH2

Processes that have actions in common, will synchronise over these so called syn-

chronous actions. The vertex removing synchronised product adds to the Cartesian product

that whenever there is a quadrilateral of arcs with identical labels in the Cartesian product, this

is replaced by one diagonal arc with the same label. These arcs that represent synchronous

actions, are called synchronous arcs. In this manner there is a jump from one copy to the other

for both participating components. Because these jumps will lead to unreachable vertices, all

these vertices (and their arcs) will be removed from the product (see Figure 4.)

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

6 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

However, we also need pairwise consistency for VRSP to be associative (see Figure 6).

Without associativity, as we reduce concurrency through VRSP combination, the resulting

system would depend on the order in which we chose to combine the processes!

⇒
(H1 H2) H3

u1

(H1 H2)+H3

u2aH1

v1 v2aH2
v3b

w1 w2bH3
w3a

(u1,v1) aH2
b

w1 w2bH3
w3a

(u2,v2) (u2,v3)

H1+H2+H3

(u1,v1,w1)

H1 (H2 H3)H1+(H2 H3)

(v1,w1)
(u1,v1,w1)

u1 u2aH1

H1

H3H2
a (u2,v1,w1)

⇒

⇒

⇒

⇔

Figure 6. Non-associativity of not pairwise consistent components

If we can verify deadlock freedom in the original set of processes, for example through

the use of a model checker such as [7], then we can combine processes using VRSP with

no worries. Otherwise, we have to repeat checks for pairwise consistency before each VRSP

combination. The first such check is an Opn2q operation. However, after combining processes

A and B to get process AB say, we only need to check that AB is consistent with each of the

remaining processes. We do not need to re-check pairwise consistency within those remaining

processes, since they have not changed and the previous check still holds. So, subsequent

checks for pairwise consistency are only Opnq. If we continue until a single process remains

without any pairwise consistency check failing, the system must have been deadlock free.

2. Synchronised Product as a Lattice

Using VRSP in an effective manner, we have to calculate all possible combinations of prod-

ucts of subsets of the components representing the original process specification. So a parti-

tion of a graph H is a division of H into components in such a manner that these components

form a union (`) of subsets, where the components in each subset are multiplied using VRSP

(n). The number of partitions of the graph H “
n`1
ř

i“1

Hi, has an exponential distribution and

is given by the Bell number, Bn`1 “
n
ř

k“0

ˆ

n

k

˙

Bk, B0 “ 1, [1][3].

Using the synchronised product we can create a partial order for each combination of

` and n [3]. Such a lattice has as an infimum the set
n
ř

i“1

Hi and as a supremum the set

n

n
i“1

Hi. In this lattice, represented by a Hasse-diagram, two vertices are connected if (from top

to bottom) in the graph represented by the upper vertex, two components are multiplied by

our synchronised product, leading to a set of components represented by the lower vertex.

Furthermore, as an example, there are only three paths to produce V1011 » H1nH3nH4`H2.

Either V1010 » H1 n H3 ` H2 ` H4, V0110 » H1 ` H2 n H3 ` H4 or V0011 » H1 ` H2 `

H3 n H4. This is illustrated by the bold edges in Figure 7. In the same figure, v0000 »
4

ř

i“1

Hi

is connected to v1100, v1010, v1001, v1001, v0110, v0101, v0011. The first position in the index of a

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 7

v0000

v1100 v1010 v1001 v0110 v0101 v0011

v1110 v1101 v1011 v0111

v1111

v1122 v1221v1212

Figure 7. Hasse-diagram for H1 through H4. In bold the possible paths from v0000 to v1011

vertex is H1, the second H2, and so on. Identical numbers in the index describe the relation

(` or n) between the related components. Zero stands for the summation, numbers not equal

to zero stand for the synchronised product, e.g. v10122 means H1 n H3 `H2 `H4 n H5. The

vertices in the lattice represent all possible combinations of the ` and n.4

For a set of components
n
ř

i“1

Hi, the depth of the Hasse-diagram is n ´ 1. Each vertex

represents a summation over synchronised products, H 1 “
k

ř

i“1

li
n
j“1

Hi,j ,
k

ř

i“1

li “ n. A vertex is

a solution if ℓpH 1q ď D and sizepH 1q ď M, where D is the deadline of the application and

M is the available memory to store the data representing H 1.

If a solution exists, it lies on a path from v0¨¨¨0 (the infimum of the lattice) to v1¨¨¨1 (the

supremum of the lattice). Because there can be many paths from the source to the vertex

representing a solution, the synchronised product of the graph H has to be commutative and

associative, so the components in the graph H have to be pairwise consistent. Moreover each

product of components has to be pairwise consistent with the other remaining components.

Otherwise associativity further down the Hasse-diagram is jeopardised. Without deadlock

freedom VRSP does not preserve pairwise consistency. Therefore the heuristic has to check

whether the components are still pairwise consistent after every multiplication by VRSP.

3. Algorithms

Periodic real-time processes are defined as components of a finite directed acyclic multi-

graph. The longest path in such a graph is the most time consuming with respect to context

switches. If two processes are synchronizing over an action and one combines two such

processes into one process, it reduces the process context switch overhead.

Unfortunately the number of possible products and therefore the number of choices fol-

lows the Bell number. Calculating all possible additions over products is not tractable for

sufficiently large n (e.g n ą 20).

A brute force algorithm that calculates for every vertex of the Hasse-diagram the syn-

chronised products, is possibly not even in NP. Therefore, out of n components, the heuristics

will always combine two components into one new component. In this (greedy) manner at

most n ´ 1 products have to be calculated.

There are several orders to synchronise the processes. All of them form some kind of path

through the Hasse-diagram generated by all partitions under the synchronised product of the

set of components
ř

Hi. Out of many we consider three options, where the calcAlgorithm

4v1122 is equal to v2211, which are related to respectively v1100 and v0011.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

8 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

in Algorithm 1 of Appendix B represents a choice out of the three algorithms described in

Section 3.1 through 3.3.

Appendix B gives the various algorithms, which are all polynomial with respect to space

and time.

3.1. The largest alphabetical intersection

A simple and polynomial time calculation is the Largest Alphabetical Intersection (LAI). For

each pair of components the size of the synchronising alphabet is calculated. At each iteration

the two components with the largest alphabetical intersection are multiplied. This gives no

guarantee that a solution will be found that fits in the available memory. Also the length

ℓpHi n Hjq of Hi and Hj may be equal to the length of the sum ℓpHi ` Hjq of Hi and Hj .

Because we do not require that every longest path in Hi synchronises over some action with a

full path in Hj . If the two components synchronise over arcs originating in the same vertex, it

may be that another choice of components gives a better improvement of the performance of

the represented processes. As shown in Figure 8, although the common label set is of size n,

the length of the components is reduced by only one. It could even be that the product of two

⇒
v1 v21a1Hi v3b1

Hj

Hi+Hj HjHi

a2

an
.

b2

bn

w1 w21b1 w3c1

b2

bn
.

c2

cn
w22

w2n

v22

v2n

..

.

..

.

(v1,w1)
a1
a2

an ...

v3c1

..
.

b2

bn

..

.

(v21,w1)

(v22,w1)

(v2n,w1) (v3,w2n)

(v3,w22)

(v3,w21)
b1

c2

cn

Figure 8. Synchronising over choice.

components, due to state-space explosion, is not calculable. LAI is a polynomial algorithm,

given in Appendix B, Algorithm 5.

3.2. Maximising Synchronising Arcs

An adaptation of the algorithm in Section 3.1 is the maximisation of the number of synchro-

nising arcs, Maximal Synchronising Arc set (MSA). The number of synchronising arcs is

determined by their label. Without stating the algorithm we select those two components out

of the set of components where the number of synchronising arcs is maximal.

Clearly this algorithm will only work for components where the set of component pairs

with the largest synchronising set contains more than one element. Otherwise if one compo-

nent has a synchronising arc set (pairwise with all other components), greater than the syn-

chronising arc set of all other components (pairwise with all other components), then this

component will become a greedy one. It will always be selected as one of the components

for multiplication.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 9

3.3. Minimising Not Synchronising Arcs

The disadvantage of LAI and MSA is that they do not optimise with respect to the Cartesian

part of the synchronised product. The algorithm for minimising the not-synchronising arc set,

Minimal Not-Synchronising Arc set (MNSA) tries to give the least vertex space explosion.

Unfortunately this is not always the case. As an example, the components H1 and H2 that

synchronise over arcs that are at the beginning (H1) and arcs that are at the end (H2), may

have a very large asynchronous arc set, but the H1 n H2 is linear with respect to the size of

H1`H2. Without stating the algorithm we have that the selected Hi and Hj have the smallest

asynchronous arc set. The disadvantage, with respect to MSA, is that for the first iterations

the improvement of the length of the components may be minimal.

4. The Production Cell Case Study

As a case study we use a Production Cell given in Figure 9 [5]. This Production Cell has

Figure 9. Production Cell.

six optical sensors and six motors. Each motor also contains an angle sensor. For the control

loop, the duty cycle is 1 ms.

Veldhuijzen [9] shows that the cost for a context switch is on average 7.7µs on a 560

MHz pentium IV processor, running under the QNX1 operating system. We use this value to

give an estimate of the average action-related overhead.

The memory occupancy is given in hypothetical units, where each unit represents the

maximum amount of memory needed for a data-structure to store one vertex and its outgoing

arcs. Clearly for our small example the memory occupancy is not really a problem, but in a

real application with more than e.g. 100 processes, the exponential growth of memory needs

may make the application not feasible.

To analyse the Production Cell, we give a model of the concurrent processes in Sec-

tion 4.1, followed by a description of the processes in Section 4.2. The impact and an ex-

ample of the synchronised product is discussed in Section 4.3. In Section 4.4 we analyse the

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

10 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

||ProductionCell “
pfeederBelt : Sensor ||feederUnit : Sensor ||mouldingUnit : Sensor ||
extractionUnit : Sensor ||extractionBelt : Sensor ||rotationUnit : Sensor ||
feederBelt : Motor ||feederUnit : Motor ||angleRotationUnit : Sensor ||
extractionUnit : Motor ||extractionBelt : Motor ||rotationUnit : Motor ||
extractionUnit : Magnet ||angleRotationUnit : Magnet ||MoulderDoor ||
Clockq {ttock{tfeederBelt, feederUnit,mouldingUnit, extractionUnit,

extractionBelt, rotationUnit, angleRotationUnitu.tocku.

Listing 1: Concurrent Processes of the Production Cell.

performance data and show the time and space related behaviour of the presented algorithms.

In Section 4.5 we discuss the results so far.

4.1. Overview of the Concurrent Processes

For simplicity, out of the six angle sensors, we only model the angle sensor of the rotation

unit. An overview of concurrent processes of the Production Cell is given in Listing 1. For

the sixteen processes this means that in the worst case 60 action related context switches per

period will be executed. As the duty cycle is 1 ms, this results in an average overhead of

about 46%.

For the Production Cell, the six motors and six optical sensors and one angle sensor

are represented by motor and sensor processes. The two magnets are represented by two

magnet processes. Because of the real-time constraints we have a clock process containing a

timer that expires every 1 ms. These sixteen processes lead to 10,480,142,147 vertices in the

Hasse-diagram.

4.2. Process Description

In Listing 2 we give a description of the processes of the Production Cell. Where necessary

a tock action transition is included in the model to avoid deadlocks not related to STOP. All

processes synchronise at least over the tock action. This ensures that all processes will reach

the final state represented by the sink of the related component.

MoulderDoor contains five tock actions, because it synchronises with feederUnit.Sensor,

feederUnit.Motor and extractionUnit.Sensor. The components representing the processes

MoulderDoor and feederUnit.Motor are given in Figure 10.

4.3. Synchronised Products of the Production Cell

The synchronised product of the processes MoulderDoor and feederUnit.Motor is given in

Figure 11. It shows a reduction of the longest path of three. This means that by taking this

product, there are three less context switches. The memory occupancy is extended by seven

units (Appendix B, Table 2).

Other synchronised products show a reduction of the length of the longest path (by two)

as well as a reduction of the memory occupancy (by six), like extractionUnit.Sensor and

extractionUnit.Motor. In these cases the first action of one component synchronises with the

almost last component of the other component. This leads almost to a linearisation of the two

components.

If the tock action is the only event over which is synchronised, the synchronised product

will suffer from a state space explosion5.

5The tock action is at the end of each path.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 11

mouldingUnit.sensorValue feederUnit.computeMotorSpeed feederUnit.setMotorSpeed

tock

tock

extra
ction

Unit.
sens

orVa
lue moulderDoor.computeMotorSpeed moulderDoor.setMotorSpeed

tock

tock

tock
MoulderDoor

feederUnit.sensorValue feederUnit.computeMotorSpeed feederUnit.setMotorSpeed

tock

tock

tock
feederUnit.Motor

Figure 10. Components representing the parallel processes MoulderDoor and feederUnit.Motor

mouldingUnit.sensorValue

feederUnit.computeMotorSpeed feederUnit.setMotorSpeed

tock

tock

extractionUnit.sensorValue moulderDoor.computeMotorSpeed moulderDoor.setMotorSpeed

tock

tock

tockMoulderDoor feederUnit.Motor

feederUnit.sensorValue

mouldingUnit.sensorValue

extractionUnit.sensorValue moulderDoor.computeMotorSpeed moulderDoor.setMotorSpeed
tock

tock

tockMoulderDoor feederUnit.sensorValue

feederUnit.sensorValue

tock

feederUnit.sensorValue

feederUnit.sensorValue

Figure 11. The Synchronised Product of the components MoulderDoor and feederUnit.Motor

4.4. Performance of the Production Cell

In Table 1 the memory occupancy and the longest paths of the components representing the

processes in the Production Cell are given. The memory occupancy M is an indication of

the amount of memory that will be used for the processes representing the components. It

describes the usage of memory in relation to the space complexity. M consists of the number

of vertices and the number of arcs used for
ř

i

n
j
Hi,j . The memory needed in practice will

depend on the kind of data-structures that will be used for the implementation of the spec-

ification. The longest path, ℓpHiq, reflects the maximum number of action related context

switches for each process.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

12 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

Motor “ psensorV alue Ñ pcomputeMotorSpeed Ñ setMotorSpeed Ñ tock Ñ MotorStop

|tock Ñ MotorStopq
|tock Ñ MotorStopq,

MotorStop “ STOP.

Sensor “ preadSensor Ñ calculateSensorV alue Ñ psensorV alue Ñ tock Ñ SensorStop

|tock Ñ SensorStopq
|tock Ñ SensorStopq,

SensorStop “ STOP.

Magnet “ psensorV alue Ñ pangleZero Ñ contraction Ñ tock Ñ MagnetStop

|anglePI Ñ release Ñ tock Ñ MagnetStop

|tock Ñ MagnetStopq
|tock Ñ MagnetStopq,

MagnetStop “ STOP.

MoulderDoor “
pmouldingUnit.sensorV alue Ñ pfeederUnit.computeMotorSpeed

Ñ feederUnit.setMotorSpeed Ñ tock Ñ MoulderDoorStop

|tock Ñ MoulderDoorStopq
|extractionUnit.sensorV alue Ñ pmoulderDoor.computeMotorSpeed

Ñ moulderDoor.setMotorSpeed Ñ tock Ñ MoulderDoorStop

|tock Ñ MoulderDoorStopq
|tock Ñ MoulderDoorStopq,
MoulderDoorStop “ STOP.

Clock “ poneMilliSecondT imer Ñ tock Ñ STOP q.

Listing 2: Description of the Production Cell.

i Processi ℓpHiq M i Processi ℓpHiq M

1 feederBelt.Sensor 4 11 9 feederBelt.Motor 4 11

2 feederUnit.Sensor 4 11 10 feederUnit.Motor 4 11

3 mouldingUnit.Sensor 4 11 11 extractionUnit.Motor 4 11

4 extractionUnit.Sensor 4 11 12 extractionBelt.Motor 4 11

5 extractionBelt.Sensor 4 11 13 rotationUnit.Motor 4 11

6 rotationUnit.Sensor 4 11 14 MoulderDoor 4 19

7 angleRotationUnit.Sensor 4 11 15 angleRotationUnit.Magnet 3 12

8 Clock 2 5 16 extractionUnit.Magnet 3 12

Table 1. Worst case number of action-related context switches per process.

We use for the new concurrent process specification, the three algorithms that will calcu-

late up to fifteen synchronised products. A calculation of the expected gain of the Production

Cell specification is given in Appendix A, Table 2.

Based on Table 2, Figure 12 describes the behaviour of the three algorithms with respect

to (the hypothetical values) M and D. The abscissa represents the length of the graph H . This

stands for the number of action-related context switches. The ordinate represents the 2log of

the amount of memory used to store the graph related data.

For the Production Cell, M is the amount of memory available in the target system and

D is the deadline for every period. The deadline D is 1 ms and is based on two parameters.

Firstly, the calculation of the application and secondly, the overhead of the synchronised ac-

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 13

tions. The second one is represented by D. The dotted ellips shows the component composi-

tions that fulfil the requirements.

Figure 12 shows that for our case study the MNSA algorithm has a slightly better per-

formance with respect to memory utilisation, compared to the LAI algorithm. But the area

within the ellipse fulfils the requirements and there LAI is slightly better than MNSA.

The MSA algorithm behaves poorly, because within the process specification the Moul-

derDoor process contains the most synchronising actions with respect to the other processes.

In the component representing the MoulderDoor are five occurrences of the tock action. For

this reason the MoulderDoor (and, while traversing through the Hasse-diagram, its synchro-

nised product with repeatedly the other components) component will always be chosen for

synchronisation with remaining components. Figure 12 shows that the reduction of the ℓpHq
leads to a state space explosion from the fifth synchronised product onwards (ℓpHq “ 47,
2LOG(M)«10.7).

Of course it depends on the requirements of the application which vertex in the Hasse-

diagram will be chosen as a basis to produce the new process specification. In our case study,

this could arguably lead to the choice of V1223345012334253 which is reached after 10 iterations

using the LAI algorithm. The improvement is in this case approximately 16% of a duty cycle.

The reduction of the number of context switches is slightly better than the number of context

switches produced by MNSA. The best case gives an overhead reduction of approximately

20% of a duty cycle. Unfortunately this case suffers from a state space explosion and may

not be tractable.

In practice a choice will be made, based on the question ”How much memory do we

have?”. Based on that question the best reduction of the length of the components will be

taken for the new process specification.

4.5. Discussion

In practice the number of parallel processes, and therefore the number of components of the

graph H , is often limited to 15 or 20 processes. For 15 processes, there are Bp15q « 10
9

nodes in the related lattice. But for 20 processes there are Bp20q « 5¨1013 nodes in the lattice.

Depending on the speed of the computing system it may take several days to calculate the

optimal solution out of all partitions for 20 processes (assuming the algorithm that calculates

24

22

20

18

16

14

12

10

 8

 6

34 36 38 40 42 44 46 48 50 52 54 56 58 60

MNSA
LAI
MSA

2LOG(M)

l(H)D

M

Figure 12. Performance of MNSA, LAI, MSA.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

14 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

the optimal solution uses not more than the available memory to store the intermediate data).

Each extra process will result in almost 10 times as much execution time. For this reason with

the technology of today an upper limit of 20 processes is probably still tractable.

In our case the new set of processes is calculated off-line during the design process and

forms no burden on an active real-time system.

5. Conclusions

A set of processes that does not meet its deadline or does not fit in the available memory can

be transformed into a set of processes that will fulfil both requirements.

We have build a lattice that consists of all possible combinations of additions of products

of components. The size of the lattice is exponential with respect to the number of compo-

nents, representing the original set of processes and is given by the Bell number. In practice

the number of parallel processes, and therefore the number of components of the graph H ,

is often limited to 15 or 20 processes. For 15 processes, there are Bp15q « 10
9 nodes in the

related lattice. But for 20 processes there are Bp20q « 5 ¨1013 nodes in the lattice. Depending

on the speed of the computing system it may take several days to calculate the optimal solu-

tion out of all partitions for 20 processes (assuming the algorithm that calculates the optimal

solution uses not more than the available memory to store the intermediate data). For this

reason with the technology of today an upper limit of 20 processes is probably still tractable.

Clearly for applications containing hundreds of processes heuristics have to be developed

that will give an educated guess which partitions need to be calculated. In our case the new

set of processes is calculated off-line during the design process and forms no burden on an

active real-time system. In real-time systems, where on-the-fly processes are added to the

system, our transformation will only work for the initial set of processes due to the extensive

calculations that are necessary.

Because the components have to be pairwise consistent, to compose the original set of

components, the designer is limited in his description of the system. But by using a model

checker like e.g. FDR2 this should not be an issue.

We have developed heuristics in pseudo-code, which calculate from a set of components,

a set of components that show a theoretical performance improvement, at the cost of an

increasing memory occupancy.

6. Future Work

Several issues in our design cycle have not been addressed yet. They include the idempotency,

commutativity and associativity of VRSP.

The classification of an algorithm that finds the optimal solution (a vertex in the Hasse-

diagram) for the set of components is still open. Whether this is in NP, or even better decide

whether it is NP-complete is also for future research. To proof the NP-completenes, some

kind of Synchronised Product Problem (SPP) with its constraints has to be constructed. Then

one has to show whether this SPP is in NP or is in EXSPACE.

But also the transformation functions T and T´1 are not defined yet. Allowing our

processes to have different periods will introduce scheduling problems, that are avoided

by requiring equal periods. Also the extension of our theory to cyclic components would

strengthen the tool-chain. Another improvement would be the development of theory to fac-

tor the components in sub-components and use VRSP on these components. This may give a

solution that is not available in the original set of components.

The goal is to give the designer of a set of processes full power of expression. The

designer should not be bothered by issues related to the compliance of the design with the

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 15

available memory or to meeting deadlines. The developed theory forms the basis for future

tooling essential to support the designer.

Acknowledgement

The authors would like to express their gratitude to the anonymous reviewers for the very

useful suggestions and comments.

The research of the first author has been funded by the InHolland University of Applied

Sciences, Alkmaar, The Netherlands.

References

[1] E. T. Bell. Exponential polynomials. Annals of Mathematics, 35(2):pp. 258–277, 1934.

[2] J.A. Bergstra and J.W. Klop. Acpτ a universal axiom system for process specification. In Martin Wirsing

and JanA. Bergstra, editors, Algebraic Methods: Theory, Tools and Applications, volume 394 of Lecture

Notes in Computer Science, pages 445–463. Springer Berlin Heidelberg, 1989.

[3] G. Birkhoff. Lattice Theory. American Mathematical Society colloquium publications. American Mathe-

matical Society, 1984.

[4] A. H. Boode, H. J. Broersma, and J. F. Broenink. Improving the performance of periodic real-time pro-

cesses: a graph theoretical approach. In Communicating Process Architectures 2013, Edinburgh, UK, 35th

WoTUG conference on concurrent and parallel programming, pages 57–79, Bicester, August 2013. Open

Channel Publishing Ltd.

[5] M. A. Groothuis, R. M. W. Frijns, J. P. M. Voeten, and J. F. Broenink. Concurrent design of embed-

ded control software. In T. Margaria, J. Padberg, G. Taentzer, T. Levendovszky, L. Lengyel, G. Karsai,

and C. Hardebolle, editors, Proceedings of the 3rd International Workshop on Multi-Paradigm Modeling

(MPM2009), Denver, United States, volume 21 of Electronic Communications of the EASST, page 10,

Berlin, November 2009. EASST.

[6] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, August 1978.

[7] Formal Systems (Europe) Ltd. Failures-Divergence Refinement. FDR2 User Manual, version 2.91 2010.

[8] Jeff Magee and Jeff Kramer. Concurrency: State Models &Amp; Java Programs. John Wiley & Sons,

Inc., New York, NY, USA, 1999.

[9] B. Veldhuijzen. Redesign of the CSP execution engine. MSc thesis 036CE2008, Control Engineering,

University of Twente, February 2009.

[10] Stefan Wöhrle and Wolfgang Thomas. Model checking synchronized products of infinite transition sys-

tems. In in: Proc. 19th LICS, IEEE Comp. Soc, pages 2–11. IEEE Computer Society Press, 2004.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

16 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

Appendix

A. Memory versus Deadline Table

With every iteration two components are multiplied using VRSP. So for n “ 0 we have the

set of graphs representing the original parallel specification. For n “ 15 all components have

been multiplied. For all three algorithms, the length of the graph, ℓpHq, which is the number

of context switches in the representing processes. The function mpHq calculates the number

of vertices that is used by the graph H . It gives a measure what can be expected as far as the

memory occupancy is concerned.

Iteration

❛
❛
❛

❛
❛
❛

❛
❛
❛

❛
❛

ř

i

n
j
Hi,j

Algorithms
MNSA LAI MSA

n V ertex in Hasse-diagram ℓpHq M ℓpHq M ℓpHq M

0 V0000000000000000 60 175 60 175 60 175

1 V1000000010000000 58 169 - - - -

V0000000001000100 - - 57 182 - -

V0000000000000101 - - - - 58 183

2 V1200000012000000 56 163 - - - -

V1000000012000200 - - 55 176 - -

V0000000001000101 - - - - 55 218

3 V1230000012000300 54 177 - - - -

V1200000012000200 - - 53 197 - -

V0100000001000101 - - - - 53 338

4 V1234000012400300 52 171 - - - -

V1203000012300200 - - 51 191 - -

V0100000001100101 - - - - 51 475

5 V1234500012450300 50 165 - - - -

V1223000012300200 - - 48 300 - -

V0101000001100101 - - - - 49 546

6 V1234560012456300 48 159 - - - -

V1223400012340200 - - 46 294 - -

V0111000001100101 - - - - 47 1,618

7 V1234567012456370 46 153 - - - -

V1223450012345200 - - 44 288 - -

V1111000001100101 - - - - 46 7,855

8 V1234567812456378 45 159 - - - -

V1223456012345260 - - 42 282 - -

V1111000011100101 - - - - 44 11,925

9 V1223456712345267 41 283 - - - -

V1223456012345263 - - 40 292 - -

V1111000011101101 - - - - 43 54,133

10 V1223345612334256 40 358 - - - -

V1223345012334253 - - 39 484 - -

V1111100011101101 - - - - 41 242,771

11 V1222234512223245 39 4,381 - - - -

V1222234012223242 - - 38 11,978 - -

V1111110011101101 - - - - 40 367,945

12 V1222233412223234 37 4,563 - - - -

V1222234312223242 - - 37 11,990 - -

V1111111011101101 - - - - 39 1,630,657

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 17

Iteration

❛
❛
❛

❛
❛
❛

❛
❛
❛

❛
❛

ř

i

n
j
Hi,j

Algorithms
MNSA LAI MSA

n V ertex in Hasse-diagram ℓpHq M ℓpHq M ℓpHq M

13 V1222233112223231 36 4,689 - - - -

V1222233312223232 - - 36 12,190 - -

V1111111111101101 - - - - 38 3,465,960

14 V1222211112221211 35 18,318 - - - -

V1222211112221212 - - 35 13,734 - -

V1111111111111101 - - - - 36 4,810,387

15 V1111111111111111 34 7,960,961 34 7,960,961 34 7,960,961

Table 2. Memory occupancy and worst case execution time.

B. Algorithms

In Algorithm 1, we describe the general structure of how to implement the algorithm, which

contains a call to the specific calculation method calcAlgorithmpHq. In Algorithm 1 the

subroutine pairwiseConsistentpHq checks for a set of components H “
ř

i

Hi whether the

VRSP over two of its components is still pairwise consistent with the other components. A

breadth first search will solve this for each remaining combination. The subroutines calcSize

and calcDeadline are a summation over the size of all vertices and their outgoing arcs. The

subroutines calcCartSize and calcSyncProd are (worst case) the product of the vertex and

arc sizes. Therefore these subroutines are polynomial with respect to space and time.

Algorithm 2 calculates the Cartesian product, Algorithm 3 calculates the intermediate

product and Algorithm 4 calculates the synchronised product of two components Hi and Hj .

The pseudo-code of the Largest Alphabetical Intersection is given in Algorithm 5. Be-

cause the pseudo-code of the other two calcAlgorithmpHq’s is likewise straightforward, they

are left out.

Algorithm 1 Calculating a General Synchronised Product Heuristic

Require: H “
n
ř

i“1

Hi, D = deadline, M “ available memory in target system

1: sizeH “ calcSizepHq
2: deadlH “ calcDeadlinepHq
3: for i “ 1 to n´ 1 do
4: if sizeH ďM and deadlH ď D then
5: return H
6: else
7: if pairwiseConsistentpHq then
8: return H
9: else

10: pi, jq “ calcAlgorithmpHq
11: H “ pH

Ť

pHi n HjqqzpHi

Ť

Hjq
12: sizeH “ sizeH ´ calcSizepHi

Ť

Hjq ` calcSizepHi n Hjq
13: deadlH “ deadlH ´ calcDeadlinepHi

Ť

Hjq ` calcDeadlinepHi n Hjq

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

18 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

Algorithm 2 Calculating the Cartesian Product

Require: Hi, Hj

1: V pHilHjq “ V pHiq ˆ V pHjq
2: ApHilHjq “ H
3: for all gi, g

1

i P V pHiq andh P V pHjq do
4: switch (δpgi, g

1

iq)
5: case ∆, 0:
6: break
7: case 1:
8: ApHilHjq “ ApHilHjq

Ť

tpgi, hqpg
1

i, hqu
9: for all λpgig

1

iq P LpHiq do
10: LpHilHjq “ LpHilHjq

Ť

tλppgi, hqpg
1

i, hqq|λppgi, hqpg
1

i, hqq “ λpgig
1

iqu
11: end switch
12: for all gj , g

1

j P V pHjq andh P V pHiq do

13: switch (δpgj , g
1

jq)
14: case ∆, 0:
15: break
16: case 1:
17: ApHilHjq “ ApHilHjq

Ť

tph, gjqph, g
1

jqu
18: for all λpgjg

1

jq P LpHjq do

19: LpHilHjq “ LpHilHjq
Ť

tλpph, gjqph, g
1

jqq|λpph, gjqph, g
1

jqq “ λpgjg
1

jqu
20: break
21: end switch

Algorithm 3 Calculating the Intermediate Product

Require: Hi, Hj

1: V pHi b Hjq “ V pHiq ˆ V pHjq
2: ApHi b Hjq “ H
3: for all gi, g

1

i P V pHiq andhj , h
1

j P V pHjq or gj , g
1

j P V pHjq andhi, h
1

i P V pHiq do

4: switch (δintpg, g
1q)

5: case ∆, 0:
6: break
7: case 1

a:
8: ApHi b Hjq “ ApHi b Hjq

Ť

tph, gjqph, g
1

jqu
9: for all λpgjg

1

jq P LpHjq do

10: LpHi b Hjq “ LpHi b Hjq
Ť

tλph, gjqph, g
1

jq|λph, gjqph, g
1

jq “ λpgjg
1

jqu
11: break
12: case 1

s:
13: ApHi b Hjq “ ApHi b Hjq

Ť

tph, gjqph, g
1

jqu
14: for all λpgjg

1

jq P LpHjq do

15: LpHi b Hjq “ LpHi b Hjq
Ť

tλph, gjqph, g
1

jq|λph, gjqph, g
1

jq “ λpgjg
1

jqu
16: break
17: end switch

Algorithm 4 Calculating the Synchronised Product

Require: HilHj , Hi ˆHj

1: Hi n Hj “ Hi ˆHj

2: for all g P V pHilHjq do
3: calculate levelpgqHilHj

4: for all g P V pHi n Hjq do
5: calculate levelpgqHinHj

6: for all g P V pHi n Hjq do
7: if levelpgqHilHj

‰ 0 and levelpgqHinHj
“ 0 then

8: for all pg, g1q P ApHi n Hjq do
9: ApHi n Hjq “ pApHi n Hjqzgg

1q
10: V pHi n Hjq “ pV pHi n Hjqzgq
11: for all g P V pHi n Hjq do
12: calculate levelpgqHinHj

13: LpHi n Hjq “ H
14: for all pg, g1q P ApHi n Hjq do
15: LpHi n Hjq “ LpHi n Hjq

Ť

tλpgg1qu

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes 19

Algorithm 5 Calculating the Largest Alphabetical Intersection

Require: H “
k
ř

i“1

Hi

1: first “ 1

2: second “ 2

3: num “ 0

4: for i “ 1 to k ´ 1 do
5: for j “ i` 1 to k do
6: newNum “ |LpHiq

Ş

LpHjq|
7: if pnewNum ą num then
8: num Ð newNum
9: first Ð i

10: secondÐ j
11: return pfirst, secondq

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

20 A.H. Boode and J.F. Broenink / Performance of Periodic Real-Time Processes

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

